WO2023106160A1 - 生体信号検出装置 - Google Patents

生体信号検出装置 Download PDF

Info

Publication number
WO2023106160A1
WO2023106160A1 PCT/JP2022/043852 JP2022043852W WO2023106160A1 WO 2023106160 A1 WO2023106160 A1 WO 2023106160A1 JP 2022043852 W JP2022043852 W JP 2022043852W WO 2023106160 A1 WO2023106160 A1 WO 2023106160A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
electrode
detection device
potential
biological
Prior art date
Application number
PCT/JP2022/043852
Other languages
English (en)
French (fr)
Inventor
僚 佐々木
真央 勝原
一成 吉藤
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to CN202280079856.5A priority Critical patent/CN118338846A/zh
Publication of WO2023106160A1 publication Critical patent/WO2023106160A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/308Input circuits therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/31Input circuits therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/313Input circuits therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • A61B5/374Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves

Definitions

  • the present disclosure relates to a biosignal detection device.
  • the detection electrode is placed near the area of brain activity, and the reference electrode is placed in a part such as the earlobe where electroencephalogram propagation is low.
  • the reference electrode is placed in a part such as the earlobe where electroencephalogram propagation is low.
  • a biological signal detection device has been proposed that has detection electrodes that are configured to be in contact with each other and that measures electroencephalograms using the potential difference between the potential of a reference electrode and that of the detection electrodes (Patent Document 1).
  • a biosignal detection device as an embodiment of the present disclosure includes a first electrode that can contact a living body, a second electrode and a third electrode that can contact a position different from the first electrode on the living body, A first generation unit that generates a third biological signal based on a first signal based on the potential of the first electrode and a second signal based on the potentials of the second and third electrodes.
  • FIG. 1 is a diagram illustrating a configuration example of a biological signal detection device according to an embodiment of the present disclosure
  • FIG. It is a figure which shows the structural example of the sensor part of the biosignal detection apparatus which concerns on embodiment of this indication.
  • FIG. 4 is a diagram showing a configuration example of a reference electrode of the biosignal detection device according to the embodiment of the present disclosure
  • FIG. 5 is a diagram showing another configuration example of the reference electrode of the biosignal detection device according to the embodiment of the present disclosure
  • FIG. 5 is a diagram showing another configuration example of the reference electrode of the biosignal detection device according to the embodiment of the present disclosure
  • FIG. 4 is a diagram for explaining an example of signal processing by the biological signal detection device according to the embodiment of the present disclosure
  • FIG. 4 is a diagram for explaining an example of signal processing by the biological signal detection device according to the embodiment of the present disclosure.
  • FIG. 4 is a flow chart showing an operation example of the biological signal detection device according to the embodiment of the present disclosure
  • FIG. 4 is a block diagram showing another configuration example of the sensor unit of the biosignal detection device according to the embodiment of the present disclosure
  • FIG. 5 is a diagram for explaining another configuration example of the sensor unit of the biosignal detection device according to the embodiment of the present disclosure
  • It is a figure which shows the structural example of the sensor part of the biosignal detection apparatus based on the modified example 1 of this indication.
  • FIG. 10 is a diagram illustrating a configuration example of a reference electrode of a biosignal detection device according to Modification 1 of the present disclosure
  • FIG. 10 is a diagram showing another configuration example of the reference electrode of the biosignal detection device according to Modification 1 of the present disclosure;
  • FIG. 10 is a diagram showing another configuration example of the reference electrode of the biosignal detection device according to Modification 1 of the present disclosure;
  • FIG. 10 is a diagram illustrating a configuration example of a reference electrode of a
  • FIG. 10 is a diagram showing another configuration example of the reference electrode of the biosignal detection device according to Modification 1 of the present disclosure
  • FIG. 10 is a diagram illustrating a configuration example of a sensor unit of a biosignal detection device according to Modification 2 of the present disclosure
  • FIG. 11 is a diagram illustrating a configuration example of a sensor unit of a biological signal detection device according to Modification 3 of the present disclosure
  • FIG. 11 is a diagram illustrating a configuration example of a sensor unit of a biosignal detection device according to Modification 4 of the present disclosure
  • FIG. 11 is a diagram illustrating a configuration example of a sensor unit of a biological signal detection device according to Modification 5 of the present disclosure
  • FIG. 13 is a diagram showing another configuration example of the sensor unit of the biosignal detection device according to Modification 5 of the present disclosure
  • FIG. 10 is a diagram showing another configuration example of the reference electrode of the biosignal detection device according to Modification 1 of the present disclosure
  • FIG. 10 is a diagram illustrating
  • FIG. 1 is a diagram illustrating a configuration example of a biological signal detection device according to an embodiment of the present disclosure.
  • the biological signal detection device 1 includes a sensor section 100 , a signal processing section 110 and an estimation section 120 .
  • the biomedical signal detection device 1 detects a biomedical signal (hereinafter referred to as a biomedical signal).
  • the biological signal detection device 1 can be used for electronic equipment that can be worn on the body such as the ear, head, face, neck, hand, wrist, arm, leg, and chest.
  • a biosignal is, for example, an electric potential that occurs with bioactivity.
  • Specific examples include electroencephalograms, which are signals associated with brain activity, electrocardiograms, which are signals associated with heart activity, and electromyograms, which are signals associated with muscle activity.
  • the biomedical signal detection device 1 acquires a biomedical signal, making it possible to check the state of the biomedical body.
  • the sensor unit 100 is a sensor capable of acquiring biological signals, and outputs biological signals such as signals related to brain waves to the signal processing unit 110 .
  • the signal processing unit 110 and the estimation unit 120 are configured by processors, memories, etc., and perform signal processing (information processing) based on programs.
  • the signal processing unit 110 performs signal processing such as frequency analysis processing and normalization processing on the biological signal output from the sensor unit 100 .
  • Signal processing section 110 outputs the biological signal after signal processing to estimation section 120 .
  • the estimating unit 120 performs processing for estimating the state of the living body using the biological signal.
  • the estimating unit 120 performs, for example, a process of calculating feature amounts using the biosignal normalized by the signal processing unit 110 . It can be said that the estimation unit 120 analyzes the biosignal and extracts the feature amount.
  • the feature amount is, for example, an ⁇ wave component, a ⁇ wave component, a ⁇ wave component, or the like included in the biosignal.
  • the estimation unit 120 estimates the state of the living body based on the calculation result of the feature amount. As an example, the estimating unit 120 determines the psychological state, such as whether or not the living body is relaxed, based on the ⁇ wave and ⁇ wave components.
  • the estimating unit 120 determines whether or not the living body is in a sleeping state, using biomedical signals related to electroencephalograms.
  • the estimating unit 120 estimates the heart rate by analyzing an electrocardiographic biosignal.
  • the estimation unit 120 can also be said to be a determination unit that determines the state of the living body. By analyzing the biological signal in this way, it is possible to grasp the state of the living body.
  • the estimation unit 120 can generate and output state information, which is information indicating the state of the living body, as an estimation result.
  • the state information includes, for example, information indicating whether the living body is in a relaxed state, information indicating whether the living body is in a sleeping state, information indicating a psychological state such as emotions of the living body, and heart rate. Information, etc. are included.
  • the state information may be used for displaying an image indicating the state of the living body and outputting audio indicating the state of the living body.
  • At least one or both of the signal processing unit 110 and the estimating unit 120 may be provided in equipment external to the biological signal detection device 1 .
  • external devices include electronic devices that are terminal devices (terminals) used by users, servers, and the like. Electronic devices include smartphones, tablet terminals, wearable terminals, computers, and the like.
  • the biosignal detection device 1 and the external device can be collectively called a biosignal detection device.
  • the biological signal detection device 1 and the external device connected via a network can be collectively referred to as a biological signal detection device or a biological signal detection system.
  • FIG. 2 is a diagram showing a configuration example of the sensor unit of the biosignal detection device according to the embodiment of the present disclosure.
  • the sensor unit 100 is a sensor unit that has a plurality of electrodes for detecting potential and can measure biopotential.
  • the sensor unit 100 includes an AFE (Analog Front End) unit 50, an electrode (referred to as a measurement electrode 10) electrically connected to the AFE unit 50, a reference signal generation unit 25, and an electrical connection to the reference signal generation unit 25. and a plurality of electrodes (reference electrode 20a and reference electrode 20b in FIG. 2) connected to .
  • AFE Analog Front End
  • the measurement electrode 10 and the reference electrodes 20a and 20b are electrodes that are made of a conductive material and can come into contact with the living body.
  • the measurement electrode 10 and the reference electrodes 20a and 20b are made of, for example, aluminum (Al), copper (Cu), gold (Au), silver chloride (Ag/AgCl), or the like.
  • the measurement electrode 10 and the reference electrodes 20a, 20b may be made of a material having conductivity and elasticity.
  • the measurement electrode 10 and the reference electrodes 20a and 20b are spaced apart and come into contact with each other at different positions.
  • the measurement electrode 10 can be placed at any position from which a biological signal is to be acquired.
  • the reference electrodes 20 a and 20 b can be arranged at arbitrary positions including the vicinity of the measurement electrode 10 .
  • the reference electrode 20a and the reference electrode 20b may be arranged at an interval (distance) of 30 to 40 mm or less, which is the spatial resolution of electroencephalograms.
  • the distance between the measurement electrode 10 and the reference electrode 20a (or the reference electrode 20b) and the distance D2 between the reference electrode 20a and the reference electrode 20b is D1>>D2 and It may be arranged to satisfy D2 ⁇ 40 mm. Also, the measurement electrode 10 and the reference electrodes 20a and 20b may be arranged to satisfy D1>>D2 and D2 ⁇ 30 mm.
  • the sensor unit 100 detects the potential (voltage) on the surface of the living body using the measurement electrode 10 and the reference electrodes 20a and 20b. A potential difference is generated between the electrodes of the sensor unit 100 in contact with the skin of the living body due to electricity generated in the living body.
  • the measurement electrode 10 is in contact with a measurement site (measurement target site) during actual use, and the potential of the contact site is applied.
  • the measurement electrode 10 is arranged, for example, directly above the active region of the living body from which the biosignal is to be acquired.
  • the measurement electrode 10 is connected to the AFE section 50 and supplies the AFE section 50 with a measurement signal Sig1, which is a signal corresponding to the potential of the part of the living body in contact.
  • a measurement signal Sig1 is a biological signal obtained by the measurement electrode 10 .
  • Each of the reference electrodes 20a and 20b is in contact with the living body at a position different from that of the measurement electrode 10, and the electric potential of the contacting portion is applied.
  • the reference electrodes 20a, 20b can be arranged at arbitrary positions around the measuring electrode 10, for example.
  • the reference electrode 20a is connected to the reference signal generator 25, and supplies the reference signal generator 25 with a signal S1 corresponding to the potential of the part of the living body in contact with the reference electrode 20a.
  • the reference electrode 20b is also connected to the reference signal generator 25, and supplies the reference signal generator 25 with a signal S2 corresponding to the potential of the part of the living body that it is in contact with.
  • a signal S1 is a biosignal obtained by the reference electrode 20a
  • a signal S2 is a biosignal obtained by the reference electrode 20b.
  • the sensor section 100 has a power supply section 65 and an electrode electrically connected to the power supply section 65 (referred to as a bias electrode 60).
  • the power supply unit 65 includes a battery (storage battery), a converter, and the like, and is used to operate the sensor unit 100 .
  • the power supply unit 65 supplies electric power to each unit of the sensor unit 100 .
  • the bias electrode 60 is an electrode that is made of a conductive material and can come into contact with a living body.
  • the bias electrode 60 is also made of, for example, aluminum (Al), copper (Cu), gold (Au), silver-silver chloride (Ag/AgCl), or the like.
  • the bias electrode 60 may be made of a conductive and elastic material.
  • the bias electrode 60 is electrically connected to the living body and the power supply section 65, and is supplied with a reference potential.
  • the bias electrode 60 is an electrode for reference potential.
  • a bias electrode 60 serving as a reference potential is electrically connected to each part of the sensor part 100 .
  • the potential of the bias electrode 60 becomes a reference potential (for example, ground potential) for the measurement signal Sig1, the signal S1, the signal S2, and the like.
  • the bias electrode 60 can also be said to be an electrode for determining the relative potential between the sensor section 100 and the living body.
  • the reference signal generator 25 generates a reference signal Ref based on a plurality of signals obtained from a plurality of reference electrodes.
  • the reference signal generator 25 generates the reference signal Ref based on the difference between the signals input from the reference electrodes and outputs the reference signal Ref to the AFE section 50 .
  • the reference signal generator 25 has, for example, an amplifier circuit, and can generate a reference signal Ref according to the potential difference between the signals from the reference electrodes.
  • the reference signal Ref is a signal determined by the potential of each portion contacted by the plurality of reference electrodes.
  • the reference signal Ref is a reference signal indicating the reference level for the measurement signal Sig1.
  • the signal S1 is input to the reference signal generator 25 from the reference electrode 20a, and the signal S2 is input from the reference electrode 20b.
  • the reference signal generator 25 generates a reference signal Ref based on the difference between the signal S1 and the signal S2.
  • the reference signal generator 25 can use the potential of the bias electrode 60 as a reference potential to generate the reference signal Ref based on the difference between the potential of the signal S1 and the potential of the signal S2.
  • the reference signal generator 25 is configured by a differential amplifier circuit, and amplifies the difference between the signal S1 from the reference electrode 20a and the signal S2 from the reference electrode 20b with a predetermined gain (amplification factor) A.
  • the gain A is determined such that the difference between the measurement signal Sig1 and the reference signal Ref is greater than or equal to a predetermined value.
  • the gain A is set such that the signal level of the reference signal Ref is lower than the signal level of the measurement signal Sig1.
  • the gain A may be adjusted such that the RMS value of the measurement signal Sig1 is sufficiently larger than the RMS value of the reference signal Ref.
  • the gain A is not limited to a value greater than 1, and can take a value of 1 or less.
  • the reference signal generation section 25 can output the reference signal Ref according to the difference between the potential of the signal S1 and the potential of the signal S2 to the AFE section 50 .
  • FIG. 3 is a diagram showing a configuration example of the reference electrode of the biosignal detection device according to the embodiment of the present disclosure.
  • the shape of the reference electrode 20a and the reference electrode 20b may be concentric.
  • the reference electrode 20a may be provided concentrically around the outer periphery of the reference electrode 20b.
  • the reference electrode 20a is provided at a distance r from the reference electrode 20b.
  • the shape of the reference electrode 20a and the reference electrode 20b can be changed as appropriate, and may be circular, elliptical, or any other shape.
  • the shape of the reference electrode 20a and the reference electrode 20b may be configured to be circular as a whole, as shown in FIG. In the example shown in FIG. 4, it can be said that the reference electrode 20a and the reference electrode 20b have shapes obtained by dividing a circular electrode.
  • the reference electrode 20a and the reference electrode 20b may each be composed of a plurality of electrodes.
  • a plurality of reference electrodes 20a may be arranged around the reference electrode 20b.
  • each interval between the reference electrode 20b and the plurality of reference electrodes 20a may be the same interval r.
  • the shape of each of the measurement electrode 10 and the bias electrode 60 is also not particularly limited, and may be circular, elliptical, or any other shape.
  • the shape, number, etc. of the measurement electrode 10, the reference electrodes 20a and 20b, and the bias electrode 60 are not limited to the illustrated example.
  • the AFE section 50 of the sensor section 100 has a biological signal generation section 30 and an AD conversion section 40, as shown in FIG.
  • the biomedical signal generator 30 generates a biomedical signal Sig2 based on the measurement signal obtained by the measurement electrode 10 and the reference signal obtained by the reference signal generator 25 .
  • the biosignal generator 30 can also be said to be a signal detector that detects the biosignal Sig2.
  • biosignal generator 30 generates biosignal Sig2 based on the difference between the measurement signal and the reference signal, and outputs it to AD converter 40 .
  • the biological signal generator 30 has, for example, an amplifier circuit, and can generate a biological signal Sig2 according to the potential difference between the measurement signal and the reference signal.
  • the biological signal generator 30 receives the measurement signal Sig ⁇ b>1 from the measurement electrode 10 and the reference signal Ref from the reference signal generator 25 .
  • the biological signal generator 30 generates a biological signal Sig2 based on the difference between the measurement signal Sig1 and the reference signal Ref.
  • the biological signal generator 30 can use the potential of the bias electrode 60 as a reference potential to generate a biological signal Sig2 based on the difference between the potential of the measurement signal Sig1 and the potential of the reference signal Ref.
  • the biological signal generator 30 is configured by a differential amplifier circuit, and amplifies the difference between the measurement signal Sig1 from the measurement electrode 10 and the reference signal Ref from the reference signal generator 25 with a predetermined gain B.
  • the biological signal generator 30 can output the biological signal Sig2 corresponding to the difference between the potential of the measurement signal Sig1 and the potential of the reference signal Ref to the AD converter 40 .
  • the reference signal Ref is a signal corresponding to the potential difference of each of the plurality of reference electrodes.
  • the reference signal Ref which is a potential difference signal
  • the difference between the reference signal Ref and the measurement signal Sig1 can be increased. Even when the contact position of the reference electrode and the contact position of the measurement electrode are close to each other, the difference between the reference signal Ref and the measurement signal Sig1 can be ensured, and the biological signal Sig2 can be detected with high accuracy.
  • By calculating the reference signal Ref from the signal difference between the plurality of reference electrodes it is possible to reduce the noise component propagating from the vicinity of the electrodes and obtain the biological signal Sig2 in which the electroencephalogram component is emphasized, for example.
  • the AD conversion unit 40 is an ADC (Analog to Digital Converter), and performs AD conversion processing on the biological signal Sig2, which is an analog signal output from the biological signal generation unit 30.
  • the AD converter 40 outputs the biological signal Sig2 converted into a digital signal to the signal processor 110 shown in FIG.
  • the biological signal Sig ⁇ b>2 output to the signal processing unit 110 is subjected to signal processing such as frequency analysis processing by the signal processing unit 110 , and then output to the estimation unit 120 .
  • signal processing such as frequency analysis processing by the signal processing unit 110
  • estimation unit 120 Next, an example of signal processing by the signal processing unit 110 will be described.
  • FIG. 6 is a diagram for explaining an example of signal processing by the biological signal detection device according to the embodiment of the present disclosure.
  • biosignal Sig2 representing an electroencephalogram
  • the horizontal axis indicates frequency
  • the vertical axis indicates signal strength (Power).
  • FIG. 6 shows characteristics of the biological signal Sig2 indicated by signal strength (component) for each frequency.
  • the signal processing unit 110 calculates the signal strength for each frequency by performing frequency analysis on the biological signal Sig2. For example, the signal processing unit 110 obtains a power distribution as shown in FIG. 6 by performing fast Fourier transform processing on the biological signal Sig2. Brain waves are classified according to frequency band, for example, delta waves: 2 to 4 Hz, ⁇ waves: 4 to 8 Hz, ⁇ waves: 8 to 13 Hz, ⁇ waves: 13 to 30 Hz, and ⁇ waves: 30 Hz or more.
  • the signal strength of each frequency range is a value according to the activity state of the brain.
  • the signal processing unit 110 calculates normalized power (relative power) as an index for comparing the signal strength of each frequency band.
  • the normalized intensity represents the ratio of the total integrated intensity and the integrated intensity of the specific wavelength band.
  • the normalized intensity is the normalized signal intensity.
  • the normalized intensity is expressed by the following formula (1) using the integrated intensity S ⁇ of 8 to 13 Hz, which is the total integrated intensity S Total of 2 Hz to 48 Hz, as shown in FIG. can be done.
  • Relative power ( ⁇ ) S ⁇ /S Total (1)
  • the signal processing unit 110 can also calculate normalized intensities of other wavelength ranges such as ⁇ waves and ⁇ waves in the same manner as the normalized intensity of ⁇ waves.
  • Signal processing section 110 outputs a signal indicating the calculated normalized intensity to estimation section 120 as a biological signal after signal processing.
  • the estimating unit 120 extracts the normalized intensity of ⁇ waves as a feature quantity from the biological signal after signal processing, and estimates whether the body and mind are in a relaxed state based on the normalized intensity of ⁇ waves.
  • the biological signal detection device 1 can confirm the state of the biological body, such as the presence or absence of a relaxed state, by analyzing the biological signal Sig2.
  • the normalization process is not limited to the process using the integrated intensity described above.
  • An arithmetic expression other than the above-described expression (1) may be used.
  • the signal processing unit 110 may output the signal strength for each frequency obtained by frequency analysis to the estimation unit 120 as a biological signal after signal processing without performing normalization processing. For example, when sufficient signal intensity that can be extracted as a feature quantity is obtained, normalization processing may not be performed.
  • FIG. 7 is a flow chart showing an operation example of the biological signal detection device according to the embodiment of the present disclosure. An operation example of the biological signal detection device 1 will be described with reference to the flowchart of FIG. The processing shown in FIG. 7 is executed, for example, based on a program stored in memory.
  • step S110 the sensor unit 100 of the biosignal detection device 1 starts measuring the user's condition, and acquires the biosignal Sig2 by the measurement electrode 10 and the reference electrodes 20a and 20b.
  • the sensor unit 100 performs AD conversion processing and outputs a biological signal Sig2, which is a digital signal, to the signal processing unit 110.
  • step S120 the signal processing unit 110 performs frequency analysis processing on the biological signal Sig2 to convert the biological signal Sig2 into signal strength for each frequency.
  • step S130 the signal processing unit 110 normalizes the converted signal intensity by the integrated intensity of a predetermined frequency interval.
  • the signal processing unit 110 outputs a signal indicating the normalized signal strength to the estimation unit 120 as a biological signal after signal processing.
  • step S ⁇ b>140 the estimation unit 120 calculates feature amounts from the signal intensity normalized by the signal processing unit 110 .
  • step S150 the estimation unit 120 estimates the state of the user using the calculated feature amount. After that, the biological signal detection device 1 ends the processing shown in the flowchart of FIG.
  • FIG. 8 is a block diagram showing another configuration example of the sensor unit of the biosignal detection device according to the embodiment of the present disclosure.
  • the sensor section 100 has a signal comparison section 35 .
  • the biological signal generation unit 30 of the AFE unit 50 has a signal difference acquisition unit 31 and a signal amplification unit 32 .
  • the signal comparator 35 has, for example, a comparator circuit. Note that the signal difference acquiring unit 31 and the signal amplifying unit 32 may be configured integrally.
  • the signal comparator 35 receives the measurement signal Sig1 from the measurement electrode 10 (see FIG. 2) and the reference signal Ref from the reference signal generator 25 .
  • the signal comparison section 35 compares the measurement signal Sig1 and the reference signal Ref, and outputs an output signal, which is the comparison result, to the signal amplification section 32 of the AFE section 50 .
  • the signal comparison unit 35 is a signal determination unit, and can be said to determine the magnitude relationship between the measurement signal Sig1 and the reference signal Ref.
  • the output signal of the signal comparator 35 is a signal indicating the magnitude relationship between the measurement signal Sig1 and the reference signal Ref.
  • the signal difference acquisition unit 31 outputs to the signal amplification unit 32 an output signal corresponding to the difference between the measurement signal Sig1 and the reference signal Ref.
  • the signal amplifier 32 can amplify the output signal of the signal difference acquisition unit 31 with a gain B and output the amplified signal as the biological signal Sig2.
  • the signal amplifying section 32 changes the gain B based on the signal output from the signal comparing section 35, that is, the output signal indicating the comparison result between the measurement signal Sig1 and the reference signal Ref.
  • the gain B can be adjusted according to the signal levels of the measurement signal Sig1 and the reference signal Ref.
  • the signal comparison section 35 can also be said to be a control section that controls the gain B.
  • the gain B can be set so that the signal level (signal amount) of the biological signal Sig2 is equal to or higher than a predetermined value, and the signal level of the biological signal Sig2 can be secured.
  • the signal amplifier 32 is configured using an instrumentation amplifier as shown in FIG. 9, for example.
  • the output signal Vout of the signal amplifier 32 can be expressed by the following equation (2).
  • V out (1+2R 1 /R G ) ⁇ (Sig1 ⁇ Ref) (2)
  • the gain B of the signal amplification section 32 can be changed by adjusting the resistance value of the resistor RG according to the output signal of the signal comparison section 35 .
  • the signal amplifying unit 32 can output the output signal V out amplified by the gain B set based on the comparison result by the signal comparing unit 35 as the biological signal Sig2.
  • the signal comparison section 35 may change the gain A of the reference signal generation section 25 (see FIG. 2) based on the signal levels of the measurement signal Sig1 and the reference signal Ref.
  • the signal comparison section 35 can also be said to be a control section that controls the gain A.
  • the reference signal generator 25 can output the reference signal Ref amplified by the gain A set based on the comparison result by the signal comparator 35 .
  • the biosignal detection device 1 includes a first electrode (measurement electrode 10) that can come into contact with a living body, a second electrode that can come into contact with a living body at a position different from the first electrode, and a second electrode.
  • a first electrode (measurement electrode 10) that can come into contact with a living body
  • a second electrode that can come into contact with a living body at a position different from the first electrode
  • a second electrode Three electrodes (reference electrode 20a and reference electrode 20b), a first signal (measurement signal Sig1) based on the potential of the first electrode, and a second signal (reference signal Ref ), and a first generator (biological signal generator 30) that generates a third biological signal (biological signal Sig2) based on .
  • the biological signal detection device 1 generates a reference signal Ref based on the potential difference of each of the plurality of reference electrodes, and uses it as the reference signal for the measurement signal Sig1. Therefore, the difference between the measurement signal Sig1 and the reference signal Ref can be increased. Thereby, even when the position of the reference electrode and the position of the measurement electrode are close to each other, the biosignal can be detected with high accuracy, and the biosignal detection performance can be improved.
  • a biological signal is detected using a reference signal Ref, which is a differential signal of potential, so that, for example, remarkable brain waves reflecting changes in brain activity are observed between the adjacent reference electrode and measurement electrode. be able to. Moreover, it is possible to suppress the occurrence of restrictions on the device shape.
  • a reference signal Ref which is a differential signal of potential
  • FIG. 10 is a diagram illustrating a configuration example of a sensor unit of a biological signal detection device according to Modification 1 of the present disclosure.
  • the sensor section 100 according to this modification includes signal generation sections 26a and 26b and reference electrodes 20a to 20c.
  • the signal generator 26a is electrically connected to the reference electrode 20a and the reference electrode 20b.
  • the signal generator 26b is electrically connected to the reference electrode 20b and the reference electrode 20c.
  • the signal generation unit 26a receives the signal S1 from the reference electrode 20a and the signal S2 from the reference electrode 20b.
  • the signal generator 26a is configured by, for example, a differential amplifier circuit, and generates a signal S11 by amplifying the difference between the signal S1 and the signal S2 with a predetermined gain C.
  • FIG. The signal generator 26a outputs to the reference signal generator 25 a signal S11 corresponding to the difference between the potential of the signal S1 and the potential of the signal S2.
  • the signal S2 is input to the signal generator 26b from the reference electrode 20b, and the signal S3 is input from the reference electrode 20c.
  • the signal generator 26b is configured by, for example, a differential amplifier circuit, and generates a signal S12 by amplifying the difference between the signal S2 and the signal S3 with a gain C.
  • FIG. The signal generator 26b outputs to the reference signal generator 25 a signal S12 corresponding to the difference between the potential of the signal S2 and the potential of the signal S3.
  • the reference signal generator 25 amplifies the difference between the signal S11 output from the signal generator 26a and the signal S12 output from the signal generator 26b with a gain A to generate a reference signal Ref.
  • the reference signal generation unit 25 outputs to the AFE unit 50 a reference signal Ref corresponding to the difference between the potential of the signal S11 and the potential of the signal S12.
  • a reference signal Ref corresponding to the difference between the potential of the signal S11 and the potential of the signal S12.
  • FIG. 11 is a diagram showing a configuration example of the reference electrode of the biosignal detection device according to Modification 1.
  • the shape of the reference electrodes 20a to 20c may be concentric.
  • the reference electrode 20a is provided concentrically around the outer circumference of the reference electrode 20b.
  • the reference electrode 20a is provided at a distance r from the reference electrode 20b.
  • the reference electrode 20c is provided concentrically around the outer periphery of the reference electrode 20a.
  • the reference electrode 20c is provided at a distance of 2r from the reference electrode 20b.
  • the shape of the reference electrodes 20a to 20c can be changed as appropriate, and for example, as shown in FIG. 12, they may be configured to have a circular shape as a whole. In the example shown in FIG. 12, it can be said that the reference electrodes 20a to 20c have a shape obtained by dividing a circular electrode.
  • the reference electrode 20b is provided between the reference electrode 20a and the reference electrode 20c.
  • the reference electrode 20a and the reference electrode 20c are arranged side by side with the reference electrode 20b interposed therebetween.
  • each of the reference electrodes 20a to 20c may be composed of a plurality of electrodes.
  • a plurality of reference electrodes 20a may be arranged around the reference electrode 20b.
  • a plurality of reference electrodes 20c may be arranged outside the plurality of reference electrodes 20a.
  • the spacing between the central reference electrode 20b and each of the plurality of reference electrodes 20a may be an equal spacing r.
  • the distance between the center reference electrode 20b and the plurality of reference electrodes 20c may be the same distance 2r.
  • FIG. 14 is a diagram illustrating a configuration example of a sensor unit of a biological signal detection device according to Modification 2 of the present disclosure.
  • the sensor section 100 of the biological signal detection device 1 has measurement electrodes 10a to 10c.
  • the measurement electrodes 10a-10c are in contact with different positions.
  • the AFE section 50 of the sensor section 100 has biological signal generation sections 30a to 30c and AD conversion sections 40a to 40c.
  • the measurement electrode 10a is connected to the biosignal generator 30a, and supplies the biosignal generator 30a with a measurement signal Sig1a corresponding to the potential of the contacting part of the living body.
  • the measurement electrode 10b is connected to the biosignal generator 30b, and supplies the biosignal generator 30b with a measurement signal Sig1b corresponding to the potential of the part of the living body in contact.
  • the measurement electrode 10c is also connected to the biosignal generator 30c, and supplies the biosignal generator 30c with a measurement signal Sig1c corresponding to the potential of the contacting part of the living body.
  • the measurement signals Sig1a-Sig1c are biological signals obtained by the measurement electrodes 10a-10c, respectively.
  • the reference signal Ref is input by the reference signal generator 25 to each of the plurality of biological signal generators 30 (biological signal generators 30a to 30c in FIG. 14).
  • the reference signal Ref generated by the reference signal generator 25 can be used as a common reference signal for the biosignal generators 30a to 30c.
  • the biological signal generator 30a outputs a biological signal Sig2a based on the difference between the potential of the measurement signal Sig1a and the potential of the reference signal Ref to the AD converter 40a.
  • the biological signal generator 30b outputs a biological signal Sig2b based on the difference between the potential of the measurement signal Sig1b and the potential of the reference signal Ref to the AD converter 40b.
  • the biological signal generator 30c outputs a biological signal Sig2c based on the difference between the potential of the measurement signal Sig1c and the potential of the reference signal Ref to the AD converter 40c.
  • the AD converters 40a to 40c perform AD conversion processing on the biological signals Sig2a to Sig2c, respectively.
  • the AD conversion unit 40a performs AD conversion of the biological signal Sig2a, and outputs the biological signal Sig2a converted into a digital signal to the signal processing unit 110 shown in FIG.
  • the AD conversion unit 40b performs AD conversion of the biosignal Sig2b and outputs the biosignal Sig2b converted into a digital signal to the signal processing unit 110 .
  • the AD converter 40c performs AD conversion of the biological signal Sig2c, and outputs the biological signal Sig2c converted into a digital signal to the signal processing unit 110.
  • the biosignal detection device 1 can detect a plurality of biosignals Sig2a to Sig2c using a plurality of measurement electrodes 10a to 10c.
  • the signal processing unit 110 and the estimating unit 120 can estimate the state of the user using the plurality of biosignals Sig2a to Sig2c.
  • FIG. 15 is a diagram showing a configuration example of a sensor unit of a biological signal detection device according to Modification 3.
  • the sensor section 100 according to this modification has a resistive element R1 as shown in FIG.
  • the power supply unit 65 includes, for example, an amplifier circuit connected to a power supply line.
  • the power supply unit 65 is a supply unit capable of supplying voltage, and is configured to supply voltage to the bias electrode 60 .
  • the power supply unit 65 can output a GND (ground) potential or a specific potential to the bias electrode 60 .
  • the resistance element R1 is a resistor and is provided between the power supply section 65 and the bias electrode 60.
  • the resistive element R1 is located between the power supply section 65 and the bias electrode 60 and is electrically connected to the power supply section 65 and the bias electrode 60, as shown in FIG.
  • the resistive element R1 is connected in series between the power supply section 65 and the bias electrode 60 .
  • the reference signal generator 25 including the living body and the biological signal generator 30 operate as a circuit.
  • the reference signal generator 25 generates a reference signal Ref based on the difference between the potential of the signal S1 and the potential of the signal S2.
  • the biomedical signal generator 30 can generate a biomedical signal Sig2 based on the difference between the potential of the measurement signal Sig1 and the potential of the reference signal Ref.
  • a resistance element R1 connected in series between the power supply section 65 and the bias electrode 60 is provided. This reduces the influence of the potential (GND potential or specific potential) of the power supply unit 65 on the measurement signal Sig1 and the biological signals S1 and S2 input to the reference signal generation unit 25 .
  • the amplitude (signal level) of the biological signal Sig2 can be increased compared to when the sensor unit 100 does not have the resistance element R1. Therefore, even if the distance between the electrodes is short, the biological signal detection device 1 can detect the biological signal Sig2 having a larger amplitude than the conventional measurement method.
  • the biomedical signal detection device 1 includes a fourth electrode (bias electrode 60) that can come into contact with the living body, a supply section (power supply section 65) that can supply voltage, and between the supply section and the fourth electrode. and a resistive element (resistive element R1) connected in series.
  • a fourth electrode bias electrode 60
  • a supply section power supply section 65
  • resistive element R1 resistive element connected in series.
  • FIG. 16 is a diagram showing a configuration example of a sensor unit of a biological signal detection device according to Modification 4.
  • the sensor section 100 has a capacitive element C1 in addition to the resistive element R1.
  • Capacitive element C ⁇ b>1 is a capacitor (condenser) and is provided between power supply section 65 and bias electrode 60 .
  • the capacitive element C1 is positioned between the power supply section 65 and the bias electrode 60 and electrically connected to the power supply section 65 and the bias electrode 60, as shown in FIG.
  • Capacitive element C1 is connected in series between power supply section 65 and bias electrode 60 .
  • the resistive element R1 and the capacitive element C1 are connected in parallel.
  • One electrode (terminal) of the capacitive element C1 is connected to the power supply section 65 .
  • the other electrode of capacitive element C1 is connected to bias electrode 60 .
  • the bias electrode 60 is electrically connected to the power supply section 65 via the resistance element R1 and electrically connected to the power supply section 65 via the capacitance element C1.
  • a potential generated by a power supply unit 65 is applied to the bias electrode 60 .
  • the reference signal generator 25 generates a reference signal Ref based on the difference between the potential of the signal S1 and the potential of the signal S2.
  • the biomedical signal generator 30 can generate a biomedical signal Sig2 based on the difference between the potential of the measurement signal Sig1 and the potential of the reference signal Ref.
  • a resistive element R1 connected in series between the power supply section 65 and the bias electrode 60 and a capacitive element C1 connected in series between the power supply section 65 and the bias electrode 60 are provided. This reduces the influence of the potential of the power supply section 65 on the measurement signal Sig1 and the signals S1 and S2. Therefore, even if the distance between the electrodes is short, the biological signal detection device 1 can detect the biological signal Sig2 having a larger amplitude than the conventional measurement method.
  • the biomedical signal detection device 1 includes a fourth electrode (bias electrode 60) that can come into contact with the living body, a supply section (power supply section 65) that can supply voltage, and between the supply section and the fourth electrode. and a capacitive element (capacitive element C1) connected in series between the supply section and the fourth electrode.
  • a capacitive element capacitor element C1 connected in series between the supply section and the fourth electrode.
  • FIG. 17 is a diagram illustrating a configuration example of a sensor unit of a biological signal detection device according to Modification 5.
  • the sensor section 100 as shown in FIG. 17, has a resistive element R1 and a capacitive element C1.
  • the resistive element R1 is connected in series between the power supply section 65 and the bias electrode 60 .
  • the capacitive element C1 is provided between the bias electrode 60 and the ground line.
  • the capacitive element C1 is positioned between the bias electrode 60 and the ground line and electrically connected to the bias electrode 60 and the ground line.
  • One electrode of capacitive element C1 is connected to bias electrode 60 .
  • the other electrode of capacitive element C1 is connected to the ground line.
  • the resistance element R1 and the capacitive element C1 are provided between the power supply unit 65 and the bias electrode 60, so that the potential of the power supply unit 65 affects the measurement signal Sig1 and the signals S1 and S2. Reduced impact. It becomes possible to secure the amplitude of the biosignal Sig2. Therefore, even when the distance between the electrodes is short, it is possible to detect the biological signal Sig2 having a larger amplitude than the conventional measurement method. Also in the case of this modification, biosignals can be detected with high accuracy, and biosignal detection performance can be improved.
  • FIG. 18 is a diagram showing another configuration example of the sensor unit of the biological signal detection device according to Modification 5.
  • the capacitive element C1 may be provided between the power supply section 65 and the ground line.
  • the capacitive element C1 is positioned between the power supply section 65 and the ground line, and is electrically connected to the power supply section 65 and the ground line.
  • One electrode of the capacitive element C1 is connected to the power supply section 65 .
  • the other electrode of capacitive element C1 is connected to the ground line.
  • the influence of the potential of the power supply unit 65 on the measurement signal Sig1 and the signals S1 and S2 can be reduced, and the amplitude of the biological signal Sig2 can be ensured.
  • the arrangement of the resistive element R1 and the capacitive element C1 in the sensor section 100 of the biological signal detection device 1 is not limited to the above example.
  • the sensor section 100 may have multiple resistive elements R1 and multiple capacitive elements C1.
  • the technology according to the present disclosure can be applied to various products.
  • the biological signal detection device 1 according to the present disclosure can be applied to wearable devices such as earphone devices and headphone devices, for example.
  • the present disclosure has been described above with reference to the embodiments and modifications, the present technology is not limited to the above embodiments and the like, and various modifications are possible.
  • the modified examples described above have been described as modified examples of the above-described embodiment, but the configurations of the modified examples can be appropriately combined.
  • the present disclosure has applicability not only to the human body, but also to living organisms other than the human body, such as animals such as pets and livestock.
  • a biomedical signal detection device includes a first electrode that can come into contact with a living body, a second electrode and a third electrode that can come into contact with a living body at a position different from that of the first electrode, and a second electrode.
  • a first generator that generates a third biological signal based on a first signal based on the potential of the one electrode and a second signal based on the potentials of the second and third electrodes.
  • the present disclosure can also be configured as follows. (1) a first electrode contactable with a living body; a second electrode and a third electrode that can contact a position different from the first electrode with respect to the living body; a first generator that generates a third signal related to the living body based on a first signal based on the potential of the first electrode and a second signal based on the potentials of the second electrode and the third electrode; A biological signal detection device comprising: (2) a second generator that generates the second signal based on the difference between the potential of the second electrode and the potential of the third electrode; The biological signal detection device according to (1), wherein the first generator generates the third signal based on the first signal and the second signal generated by the second generator.
  • the first generator generates the third signal based on the difference between the potential of the first signal and the potential of the second signal, using the potential of the fourth electrode as a reference potential.
  • the biological signal detection device according to any one of (5).
  • the signal processing unit normalizes the third signal in a predetermined frequency range.
  • a fourth electrode that can contact the living body; a supply capable of supplying voltage; a resistive element connected in series between the supply unit and the fourth electrode;
  • the biological signal detection device according to any one of (1) to (15), further comprising a capacitive element provided between the fourth electrode and a ground line.
  • the first electrode of the capacitive element is electrically connected to the fourth electrode;
  • a fourth electrode that can contact the living body; a supply capable of supplying voltage; a resistive element connected in series between the supply unit and the fourth electrode;
  • the biological signal detection device according to any one of (1) to (17), further comprising: a capacitive element provided between the supply section and a ground line.
  • the first electrode of the capacitive element is electrically connected to the supply unit;
  • the biological signal detection device according to (18), wherein the second electrode of the capacitive element is electrically connected to the ground line.
  • the first generator can generate the third signal based on a difference between the potential of the first signal and the potential of the second signal, using the potential of the fourth electrode as a reference potential. ) to (19).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本開示の生体信号検出装置は、生体に対して接触可能な第1電極と、前記生体に対して前記第1電極とは異なる位置に接触可能な第2電極及び第3電極と、前記第1電極の電位に基づく第1信号と、前記第2電極及び前記第3電極の各々の電位に基づく第2信号とに基づいて、前記生体に関する第3信号を生成する第1生成部とを備える。

Description

生体信号検出装置
 本開示は、生体信号検出装置に関する。
 従来の脳波計測では、脳活動部位に近い位置に検出電極を、耳朶等の脳波の伝搬が少ない部分に基準電極を配置する。信号レベルの大きな脳波を観測するためには、基準電極と検出電極の間隔を十分に離し、かつ限定された位置に基準電極を配置する必要があり、脳波計を小型化する際の制約となっている。一方で近年、ユーザビリティーの観点から、耳内や耳周辺などの限られたスペースで脳波を取得する取り組みが注目されており、耳介の窪みに配置される基準電極と側頭骨上の皮膚に接するように構成された検出電極を有し、基準電極の電位と検出電極の電位との電位差を用いて脳波を測定する生体信号検出装置が提案されている(特許文献1)。
特開2018-186934号公報
 生体信号検出装置では、検出性能を向上させることが望ましい。
 基準電極の位置が制限されることなく、検出性能を向上可能な生体信号検出装置を提供することが望まれる。
 本開示の一実施形態としての生体信号検出装置は、生体に対して接触可能な第1電極と、生体に対して第1電極とは異なる位置に接触可能な第2電極及び第3電極と、第1電極の電位に基づく第1信号と、第2電極及び第3電極の各々の電位に基づく第2信号とに基づいて、生体に関する第3信号を生成する第1生成部とを備える。
本開示の実施の形態に係る生体信号検出装置の構成例を示す図である。 本開示の実施の形態に係る生体信号検出装置のセンサ部の構成例を示す図である。 本開示の実施の形態に係る生体信号検出装置の基準電極の構成例を示す図である。 本開示の実施の形態に係る生体信号検出装置の基準電極の別の構成例を示す図である。 本開示の実施の形態に係る生体信号検出装置の基準電極の別の構成例を示す図である。 本開示の実施の形態に係る生体信号検出装置による信号処理の一例を説明するための図である。 本開示の実施の形態に係る生体信号検出装置の動作例を示すフローチャートである。 本開示の実施の形態に係る生体信号検出装置のセンサ部の別の構成例を示すブロック図である。 本開示の実施の形態に係る生体信号検出装置のセンサ部の別の構成例を説明するための図である。 本開示の変形例1に係る生体信号検出装置のセンサ部の構成例を示す図である。 本開示の変形例1に係る生体信号検出装置の基準電極の構成例を示す図である。 本開示の変形例1に係る生体信号検出装置の基準電極の別の構成例を示す図である。 本開示の変形例1に係る生体信号検出装置の基準電極の別の構成例を示す図である。 本開示の変形例2に係る生体信号検出装置のセンサ部の構成例を示す図である。 本開示の変形例3に係る生体信号検出装置のセンサ部の構成例を示す図である。 本開示の変形例4に係る生体信号検出装置のセンサ部の構成例を示す図である。 本開示の変形例5に係る生体信号検出装置のセンサ部の構成例を示す図である。 本開示の変形例5に係る生体信号検出装置のセンサ部の別の構成例を示す図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.実施の形態
 2.変形例
  2-1.変形例1
  2-2.変形例2
  2-3.変形例3
  2-4.変形例4
  2-5.変形例5
  2-6.変形例6
<1.実施の形態>
 図1は、本開示の実施の形態に係る生体信号検出装置の構成例を示す図である。生体信号検出装置1は、センサ部100と、信号処理部110と、推定部120とを含む。生体信号検出装置1では、生体に関する信号(以下、生体信号と称する)の検出が行われる。生体信号検出装置1は、耳、頭、顔、首、手、手首、腕、足、胸部などの身体に装着可能な電子機器に利用可能である。
 生体信号は、例えば、生体活動に伴い生じる電位が挙げられる。具体例として、脳活動に伴う信号である脳波や、心臓の活動に伴う信号である心電、筋肉の活動に伴う筋電などが挙げられる。生体信号検出装置1では、生体信号が取得され、生体の状態を確認することが可能となる。
 センサ部100は、生体信号を取得可能なセンサであり、脳波に関する信号等の生体信号を信号処理部110に出力する。信号処理部110及び推定部120は、プロセッサ及びメモリ等により構成され、プログラムに基づいて信号処理(情報処理)を行う。信号処理部110は、センサ部100から出力された生体信号に対して、例えば周波数解析処理、規格化処理等の信号処理を行う。信号処理部110は、信号処理後の生体信号を推定部120に出力する。
 推定部120は、生体信号を用いて、生体の状態を推定する処理を行う。推定部120は、例えば、信号処理部110によって規格化された生体信号を用いて、特徴量を算出する処理を行う。推定部120は、生体信号を解析して特徴量を抽出するともいえる。特徴量は、例えば、生体信号に含まれるα波の成分、β波の成分、γ波の成分等である。推定部120は、特徴量の算出結果に基づき、生体の状態を推定する。一例として、推定部120は、α波およびβ波の成分に基づき、生体がリラックスしているか否か等の心理状態を判定する。
 また、例えば、推定部120は、脳波に関する生体信号を用いて、生体が睡眠状態であるか否かを判断する。他の例として、推定部120は、心電に関する生体信号を解析することで、心拍数を推定する。推定部120は、生体の状態を判定する判定部ともいえる。このように、生体信号を解析することで、生体の状態を把握することが可能となる。
 推定部120は、推定結果として生体の状態を示す情報である状態情報を生成して出力し得る。状態情報には、例えば、生体がリラックス状態であるか否かを示す情報、生体が睡眠状態であるか否かを示す情報、生体の感情などの心理的な状態を示す情報、心拍数を示す情報等が含まれる。状態情報は、生体の状態を示す画像の表示や生体の状態を示す音声の出力に用いられてもよい。
 信号処理部110及び推定部120の少なくとも一方または両方を、生体信号検出装置1の外部の機器に設けるようにしてもよい。外部機器としては、例えば、ユーザにより利用される端末装置(端末)である電子機器や、サーバ等が挙げられる。電子機器は、スマートフォン、タブレット端末、ウェアラブル端末、コンピュータ等である。生体信号検出装置1と外部機器とを併せて、生体信号検出装置ということもできる。なお、ネットワークを介して接続された生体信号検出装置1と外部機器を併せて、生体信号検出装置又は生体信号検出システムということもできる。
 図2は、本開示の実施の形態に係る生体信号検出装置のセンサ部の構成例を示す図である。センサ部100は、電位を検出するための複数の電極を有し、生体電位を測定可能なセンサ部である。センサ部100は、AFE(Analog Front End)部50と、AFE部50に電気的に接続される電極(測定電極10と称する)と、基準信号生成部25と、基準信号生成部25に電気的に接続される複数の電極(図2では基準電極20a、基準電極20b)とを有する。
 測定電極10及び基準電極20a,20bは、それぞれ導電性材料により構成され、生体に接触可能な電極である。測定電極10及び基準電極20a,20bは、例えば、アルミニウム(Al)、銅(Cu)、金(Au)、銀塩化銀(Ag/AgCl)等を用いて構成される。測定電極10及び基準電極20a,20bは、導電性及び弾性を有する材料により構成されてもよい。
 測定電極10及び基準電極20a,20bは、離間して設けられ、互いに異なる位置に接触する。測定電極10は、生体信号の取得対象とする任意の位置に配置可能である。また、基準電極20a,20bは、測定電極10の近傍を含む任意の位置に配置可能である。一例として、基準電極20a及び基準電極20bは、脳波の空間分解能とされる30~40mm以下の間隔(距離)で配置されてもよい。
 また、測定電極10と基準電極20a(又は基準電極20b)との間隔D1、基準電極20aと基準電極20bとの間隔D2とすると、測定電極10及び基準電極20a,20bは、D1>>D2かつD2<40mmを満たすように配置されてもよい。また、測定電極10及び基準電極20a,20bは、D1>>D2かつD2<30mmを満たすように配置されてもよい。センサ部100は、測定電極10及び基準電極20a,20bによって生体表面の電位(電圧)を検出する。生体内で生じる電気に起因して、生体の皮膚に接触したセンサ部100の電極間には電位差が生じる。
 測定電極10は、実使用時に計測部位(被計測箇所)に接触し、接触した部位の電位が与えられる。測定電極10は、例えば、生体信号の取得対象とする生体の活動領域の直上に配置される。測定電極10は、AFE部50に接続され、接触している生体の部位の電位に応じた信号である測定信号Sig1をAFE部50に供給する。測定信号Sig1は、測定電極10により得られる生体信号である。
 基準電極20a,20bは、それぞれ、生体に対して測定電極10とは異なる位置に接触し、接触した部分の電位が与えられる。基準電極20a,20bは、例えば、測定電極10の周辺における任意の位置に配置され得る。基準電極20aは、基準信号生成部25に接続され、接触している生体の部位の電位に応じた信号S1を基準信号生成部25に供給する。また、基準電極20bは、基準信号生成部25に接続され、接触している生体の部位の電位に応じた信号S2を基準信号生成部25に供給する。信号S1は、基準電極20aにより得られる生体信号であり、信号S2は、基準電極20bにより得られる生体信号である。
 また、図2に示す例では、センサ部100は、電源部65と、電源部65に電気的に接続される電極(バイアス電極60と称する)とを有する。電源部65は、バッテリー(蓄電池)及びコンバータ等を含んで構成され、センサ部100を動作させるために用いられる。電源部65は、センサ部100の各部に電力を供給する。バイアス電極60は、導電性材料により構成され、生体に接触可能な電極である。バイアス電極60も、例えば、アルミニウム(Al)、銅(Cu)、金(Au)、銀塩化銀(Ag/AgCl)等を用いて構成される。バイアス電極60は、導電性及び弾性を有する材料により構成されてもよい。
 バイアス電極60は、生体と電源部65とに電気的に接続され、基準電位が与えられる。バイアス電極60は、基準電位用の電極である。センサ部100の各部には、基準電位となるバイアス電極60が電気的に接続される。バイアス電極60の電位は、測定信号Sig1、信号S1、及び信号S2等に対する基準電位(例えば接地電位)となる。バイアス電極60は、センサ部100と生体との相対的な電位を定めるための電極ともいえる。
 基準信号生成部25は、複数の基準電極により得られる複数の信号に基づいて、基準信号Refを生成する。本実施の形態では、基準信号生成部25は、複数の基準電極により入力される複数の信号間の差分に基づく基準信号Refを生成し、AFE部50に出力する。基準信号生成部25は、例えば、アンプ回路を有し、複数の基準電極からの複数の信号間の電位差に応じた基準信号Refを生成し得る。基準信号Refは、複数の基準電極が接触した各部分の電位によって定まる信号である。基準信号Refは、測定信号Sig1に対する基準レベルを示す基準信号となる。
 図2に示す例では、基準信号生成部25には、基準電極20aにより信号S1が入力され、基準電極20bにより信号S2が入力される。基準信号生成部25は、信号S1と信号S2との差分に基づく基準信号Refを生成する。基準信号生成部25は、バイアス電極60の電位を基準電位として用いて、信号S1の電位と信号S2の電位との差分に基づく基準信号Refを生成し得る。例えば、基準信号生成部25は、差動増幅回路により構成され、基準電極20aからの信号S1と基準電極20bからの信号S2との差分を、所定のゲイン(増幅率)Aで増幅する。ゲインAは、測定信号Sig1と基準信号Refとの差が所定値以上となるように定められる。
 一例として、基準信号Refの信号レベルが測定信号Sig1の信号レベルよりも小さくなるように、ゲインAが設定される。測定信号Sig1のRMS値が基準信号RefのRMS値よりも十分大きくなるように、ゲインAを調整してもよい。なお、ゲインAは、1より大きい値に限らず、1以下の値も取り得る。基準信号生成部25は、信号S1の電位と信号S2の電位との差に応じた基準信号Refを、AFE部50に出力し得る。
 図3は、本開示の実施の形態に係る生体信号検出装置の基準電極の構成例を示す図である。基準電極20a及び基準電極20bの形状は、同心円状であってよい。図3に示すように、基準電極20aは、基準電極20bの外周に同心円状に設けられてもよい。図3に示す例では、基準電極20aは、基準電極20bから間隔rで設けられる。このようにすることで、基準電極20aの信号S1及び基準電極20bの信号S2によってノイズの少ない基準信号Refを得ることができ、生体信号の検出精度を向上させることが可能となる。
 なお、基準電極20a及び基準電極20bの形状は、適宜変更可能であり、円形、楕円形、又はその他の形状であってよい。例えば、基準電極20a及び基準電極20bの形状は、図4に示すように、全体として円形状になるように構成されてもよい。図4に示す例では、基準電極20a及び基準電極20bは、円状の電極を分割した形状を有するともいえる。
 基準電極20a及び基準電極20bは、それぞれ、複数の電極によって構成されてもよい。例えば、図5に示すように、基準電極20bの周囲に複数の基準電極20aが配置されてもよい。この場合、図5に示す例のように、基準電極20bと複数の基準電極20aとの各々の間隔は、等しい間隔rであってよい。なお、測定電極10及びバイアス電極60の各々の形状も、特に限定されず、円形、楕円形、又はその他の形状であってよい。また、測定電極10、基準電極20a,20b、バイアス電極60の形状および数等は図示した例に限られない。
 センサ部100のAFE部50は、図2に示すように、生体信号生成部30およびAD変換部40を有する。生体信号生成部30は、測定電極10により得られる測定信号と基準信号生成部25により得られる基準信号とに基づいて、生体信号Sig2を生成する。生体信号生成部30は、生体信号Sig2を検出する信号検出部ともいえる。本実施の形態では、生体信号生成部30は、測定信号と基準信号との差分に基づく生体信号Sig2を生成し、AD変換部40に出力する。生体信号生成部30は、例えば、アンプ回路を有し、測定信号と基準信号との電位差に応じた生体信号Sig2を生成し得る。
 図2に示す例では、生体信号生成部30には、測定電極10により測定信号Sig1が入力され、基準信号生成部25により基準信号Refが入力される。生体信号生成部30は、測定信号Sig1と基準信号Refとの差分に基づく生体信号Sig2を生成する。生体信号生成部30は、バイアス電極60の電位を基準電位として用いて、測定信号Sig1の電位と基準信号Refの電位との差分に基づく生体信号Sig2を生成し得る。例えば、生体信号生成部30は、差動増幅回路により構成され、測定電極10からの測定信号Sig1と基準信号生成部25からの基準信号Refとの差分を、所定のゲインBで増幅する。なお、ゲインBは、1より大きい値に限らず、1以下の値も取り得る。生体信号生成部30は、測定信号Sig1の電位と基準信号Refの電位との差に応じた生体信号Sig2を、AD変換部40に出力し得る。
 上述したように、基準信号Refは、複数の基準電極の各々の電位の差分に応じた信号となる。本実施の形態では、電位の差分信号である基準信号Refを、測定信号Sig1の基準信号として用いる。このため、基準信号Refと測定信号Sig1との差分を大きくすることができる。基準電極の接触位置と測定電極の接触位置とが近い場合でも、基準信号Refと測定信号Sig1との差を確保することができ、高精度に生体信号Sig2の検出を行うことが可能となる。複数の基準電極間の信号差分によって基準信号Refを算出することで、電極周辺から伝搬するノイズ成分を低減し、例えば脳波成分が強調された生体信号Sig2を得ることが可能となる。
 AD変換部40は、ADC(Analog to Digital Converter)であり、生体信号生成部30から出力されるアナログ信号である生体信号Sig2に対して、AD変換処理を行う。AD変換部40は、デジタル信号に変換された生体信号Sig2を、図1に示す信号処理部110に出力する。信号処理部110へ出力された生体信号Sig2は、信号処理部110によって周波数解析処理等の信号処理が行われた後に、推定部120へ出力される。次に、信号処理部110による信号処理の一例について説明する。
 図6は、本開示の実施の形態に係る生体信号検出装置による信号処理の一例を説明するための図である。一例として、脳波を示す生体信号Sig2の場合を例に挙げて説明する。図6において、横軸は周波数を示しており、縦軸は信号強度(Power)を示している。図6は、生体信号Sig2を周波数毎の信号強度(成分)により示した特性を表している。
 信号処理部110は、生体信号Sig2に対して周波数解析を行うことにより、周波数毎の信号強度を算出する。例えば、信号処理部110は、生体信号Sig2に対して高速フーリエ変換処理を行うことで、図6に示すようなパワー分布を取得する。脳波は、周波数帯域によって、例えば、δ波:2~4Hz、θ波:4~8Hz、α波:8~13Hz、β波:13~30Hz、γ波:30Hz~のように区分される。各周波数域の信号強度は、脳の活動状態に応じた値となる。
 信号処理部110は、各周波数帯域の信号強度を比較する指標として、規格化強度(Relative power)を算出する。規格化強度は、全体の積算強度と特定波長帯域の積算強度との割合を表す。規格化強度は、正規化された信号強度となる。例えば、α波の場合、規格化強度は、図6に示すように、2Hz~48Hzの全体の積算強度STotalにしめる8~13Hzの積算強度Sαを用いて、次式(1)で表すことができる。
   Relative power(α)=Sα/STotal ・・・(1)
 信号処理部110は、α波の規格化強度の場合と同様に、β波やγ波等の他の波長域の規格化強度についても算出し得る。信号処理部110は、算出した規格化強度を示す信号を、信号処理後の生体信号として推定部120に出力する。推定部120は、例えば、信号処理後の生体信号から、α波の規格化強度を特徴量として抽出し、α波の規格化強度によって、心身がリラックス状態であるか否かを推定する。このように、生体信号検出装置1は、生体信号Sig2を解析することにより、リラックス状態の有無等、生体の状態を確認することが可能となる。周波数解析処理および規格化処理が施された生体信号を用いることで、生体の活動(例えば脳活動)を反映した特徴的な変化を捉えることが可能となる。
 なお、規格化処理は、上述した積算強度を用いる処理に限らない。上述した式(1)以外の演算式を用いてもよい。なお、信号処理部110は、規格化処理を行わずに、周波数解析により得られる周波数毎の信号強度を、信号処理後の生体信号として推定部120に出力するようにしてもよい。例えば、特徴量として抽出可能な十分な信号強度が得られる場合、規格化処理を行わなくてもよい。
 図7は、本開示の実施の形態に係る生体信号検出装置の動作例を示すフローチャートである。この図7のフローチャートを参照して、生体信号検出装置1の動作例について説明する。図7に示す処理は、例えばメモリに記憶されたプログラムに基づいて実行される。
 ステップS110において、生体信号検出装置1のセンサ部100は、ユーザの状態の計測を開始し、測定電極10及び基準電極20a,20bによって生体信号Sig2を取得する。センサ部100は、AD変換処理を行い、デジタル信号である生体信号Sig2を、信号処理部110に出力する。
 ステップS120において、信号処理部110は、生体信号Sig2に対して周波数解析処理を行い、生体信号Sig2を周波数ごとの信号強度に変換する。ステップS130では、信号処理部110は、変換した信号強度を、所定の周波数区間の積分強度によって正規化する。信号処理部110は、正規化された信号強度を示す信号を、信号処理後の生体信号として推定部120に出力する。
 ステップS140において、推定部120は、信号処理部110により正規化された信号強度から、特徴量を算出する。ステップS150では、推定部120は、算出した特徴量を用いて、ユーザの状態を推定する。その後、生体信号検出装置1は、図7のフローチャートに示す処理を終了する。
 図8は、本開示の実施の形態に係る生体信号検出装置のセンサ部の別の構成例を示すブロック図である。図8に示す例では、センサ部100は、信号比較部35を有する。また、AFE部50の生体信号生成部30は、信号差分取得部31と、信号増幅部32とを有する。信号比較部35は、例えば、コンパレータ回路を有する。なお、信号差分取得部31及び信号増幅部32は、一体的に構成されていてもよい。
 信号比較部35には、測定電極10(図2参照)により測定信号Sig1が入力され、基準信号生成部25により基準信号Refが入力される。信号比較部35は、測定信号Sig1と基準信号Refとを比較し、比較結果である出力信号をAFE部50の信号増幅部32に出力する。信号比較部35は、信号判定部であり、測定信号Sig1と基準信号Refとの大小関係を判定するともいえる。信号比較部35の出力信号は、測定信号Sig1と基準信号Refとの大小関係を示す信号となる。
 信号差分取得部31は、測定信号Sig1と基準信号Refとの差分に対応する出力信号を、信号増幅部32に出力する。信号増幅部32は、信号差分取得部31の出力信号をゲインBで増幅し、増幅された信号を生体信号Sig2として出力し得る。信号増幅部32は、信号比較部35から出力される信号、即ち測定信号Sig1と基準信号Refとの比較結果を示す出力信号に基づいて、ゲインBを変更する。測定信号Sig1及び基準信号Refの信号レベルに応じて、ゲインBを調整することが可能となる。信号比較部35は、ゲインBを制御する制御部ともいえる。生体信号Sig2の信号レベル(信号量)が所定値以上となるようにゲインBを設定することができ、生体信号Sig2の信号レベルを確保することが可能となる。
 信号増幅部32は、例えば、図9に示すような計装アンプを用いて構成される。図9に示す例では、信号増幅部32の出力信号Voutは、次式(2)で表すことができる。
   Vout=(1+2R/R)×(Sig1-Ref) ・・・(2)
 図9に示す例では、信号比較部35の出力信号に応じて抵抗Rの抵抗値が調整されることで、信号増幅部32のゲインBを変更することが可能となる。信号増幅部32は、信号比較部35による比較結果に基づいて設定されたゲインBで増幅した出力信号Voutを、生体信号Sig2として出力可能となる。
 なお、信号比較部35は、測定信号Sig1及び基準信号Refの信号レベルに基づいて、上述した基準信号生成部25(図2参照)のゲインAを変更するようにしてもよい。信号比較部35は、ゲインAを制御する制御部ともいえる。基準信号生成部25は、信号比較部35による比較結果に基づいて設定されたゲインAで増幅した基準信号Refを出力し得る。
[作用・効果]
 本実施の形態に係る生体信号検出装置1は、生体に対して接触可能な第1電極(測定電極10)と、生体に対して第1電極とは異なる位置に接触可能な第2電極及び第3電極(基準電極20a及び基準電極20b)と、第1電極の電位に基づく第1信号(測定信号Sig1)と、第2電極及び第3電極の各々の電位に基づく第2信号(基準信号Ref)とに基づいて、生体に関する第3信号(生体信号Sig2)を生成する第1生成部(生体信号生成部30)とを備える。
 本実施の形態に係る生体信号検出装置1は、複数の基準電極の各々の電位の差分に基づく基準信号Refを生成して、測定信号Sig1の基準信号として用いる。このため、測定信号Sig1と基準信号Refとの差分を大きくすることができる。これにより、基準電極の位置と測定電極の位置とが近い場合であっても高精度に生体信号の検出を行うことができ、生体信号の検出性能を向上させることが可能となる。
 本実施の形態では、電位の微分信号となる基準信号Refを用いて生体信号の検出を行うことで、近接した基準電極及び測定電極間において、例えば脳活動変化を反映した顕著な脳波を観測することができる。また、デバイス形状に制約が生じることを抑制することが可能となる。
 次に、本開示の変形例について説明する。以下では、上記実施の形態と同様の構成要素については同一の符号を付し、適宜説明を省略する。
<2.変形例>
(2-1.変形例1)
 上述した実施の形態では、センサ部100が2つの基準電極を有する例について説明したが、基準電極の数および配置はこれに限らない。センサ部100は、3つ以上の基準電極を有していてもよい。図10は、本開示の変形例1に係る生体信号検出装置のセンサ部の構成例を示す図である。本変形例に係るセンサ部100は、信号生成部26a,26bと基準電極20a~20cを有する。信号生成部26aは、基準電極20a及び基準電極20bと電気的に接続される。また、信号生成部26bは、基準電極20b及び基準電極20cと電気的に接続される。
 信号生成部26aには、基準電極20aにより信号S1が入力され、基準電極20bにより信号S2が入力される。信号生成部26aは、例えば、差動増幅回路により構成され、信号S1と信号S2との差分を所定のゲインCで増幅した信号S11を生成する。信号生成部26aは、信号S1の電位と信号S2の電位との差に応じた信号S11を、基準信号生成部25に出力する。
 信号生成部26bには、基準電極20bにより信号S2が入力され、基準電極20cにより信号S3が入力される。信号生成部26bは、例えば、差動増幅回路により構成され、信号S2と信号S3との差分をゲインCで増幅した信号S12を生成する。信号生成部26bは、信号S2の電位と信号S3の電位との差に応じた信号S12を、基準信号生成部25に出力する。
 基準信号生成部25は、信号生成部26aから出力された信号S11と、信号生成部26bから出力された信号S12との差分を、ゲインAで増幅した基準信号Refを生成する。基準信号生成部25は、信号S11の電位と信号S12の電位との差に応じた基準信号Refを、AFE部50に出力する。このように、本変形例では、3つの基準電極20a~20cの各々の電位に応じた基準信号Refを得ることができる。基準信号Refを用いることで、基準電極の位置と測定電極の位置とが近い場合であっても、生体信号の検出を精度良く行うことが可能となる。
 図11は、変形例1に係る生体信号検出装置の基準電極の構成例を示す図である。基準電極20a~基準電極20cの形状は、同心円状であってよい。図11に示す例では、基準電極20aは、基準電極20bの外周に同心円状に設けられる。基準電極20aは、基準電極20bから間隔rで設けられる。また、基準電極20cは、基準電極20aの外周に同心円状に設けられる。基準電極20cは、基準電極20bから間隔2rで設けられる。
 なお、基準電極20a~20cの形状は、適宜変更可能であり、例えば図12に示すように、全体として円形状になるように構成されてもよい。図12に示す例では、基準電極20a~20cは、円状の電極を分割した形状を有するともいえる。基準電極20bは、基準電極20aと基準電極20cとの間に設けられる。基準電極20a及び基準電極20cは、基準電極20bを挟んで並んで配置される。
 また、基準電極20a~20cは、それぞれ、複数の電極によって構成されてもよい。例えば、図13に示すように、基準電極20bの周囲に複数の基準電極20aが配置されてもよい。また、複数の基準電極20aの外側に、複数の基準電極20cが配置されてもよい。図13に示す例のように、中央の基準電極20bと複数の基準電極20aとの各々の間隔は、等しい間隔rであってよい。また、中央の基準電極20bと複数の基準電極20cとの各々の間隔は、等しい間隔2rであってよい。
(2-2.変形例2)
 上述した実施の形態では、センサ部100が1つの測定電極を有する例について説明したが、測定電極の数および配置はこれに限らない。センサ部100は、2つ以上の測定電極を有していてもよい。図14は、本開示の変形例2に係る生体信号検出装置のセンサ部の構成例を示す図である。本変形例では、生体信号検出装置1のセンサ部100は、測定電極10a~10cを有する。測定電極10a~10cは、互いに異なる位置に接触する。センサ部100のAFE部50は、図14に示すように、生体信号生成部30a~30c、およびAD変換部40a~40cを有する。
 測定電極10aは、生体信号生成部30aに接続され、接触している生体の部位の電位に応じた測定信号Sig1aを生体信号生成部30aに供給する。測定電極10bは、生体信号生成部30bに接続され、接触している生体の部位の電位に応じた測定信号Sig1bを生体信号生成部30bに供給する。また、測定電極10cは、生体信号生成部30cに接続され、接触している生体の部位の電位に応じた測定信号Sig1cを生体信号生成部30cに供給する。測定信号Sig1a~Sig1cは、それぞれ、測定電極10a~10cにより得られる生体信号である。
 本変形例では、複数の生体信号生成部30(図14では生体信号生成部30a~30c)の各々には、基準信号生成部25によって基準信号Refが入力される。基準信号生成部25によって生成される基準信号Refを、生体信号生成部30a~30cに共通の基準信号として用いることが可能となる。
 生体信号生成部30aは、測定信号Sig1aの電位と基準信号Refの電位との差分に基づく生体信号Sig2aを、AD変換部40aに出力する。生体信号生成部30bは、測定信号Sig1bの電位と基準信号Refの電位との差分に基づく生体信号Sig2bを、AD変換部40bに出力する。また、生体信号生成部30cは、測定信号Sig1cの電位と基準信号Refの電位との差分に基づく生体信号Sig2cを、AD変換部40cに出力する。
 AD変換部40a~40cは、それぞれ、生体信号Sig2a~Sig2cに対して、AD変換処理を行う。AD変換部40aは、生体信号Sig2aのAD変換を行い、デジタル信号に変換された生体信号Sig2aを、図1に示す信号処理部110に出力する。AD変換部40bは、生体信号Sig2bのAD変換を行い、デジタル信号に変換された生体信号Sig2bを信号処理部110に出力する。また、AD変換部40cは、生体信号Sig2cのAD変換を行い、デジタル信号に変換された生体信号Sig2cを信号処理部110に出力する。
 このように、本変形例に係る生体信号検出装置1は、複数の測定電極10a~10cを用いて、複数の生体信号Sig2a~Sig2cの検出を行うことができる。信号処理部110及び推定部120は、複数の生体信号Sig2a~Sig2cを用いて、ユーザの状態の推定を行うことが可能となる。
(2-3.変形例3)
 図15は、変形例3に係る生体信号検出装置のセンサ部の構成例を示す図である。本変形例に係るセンサ部100は、図15に示すように抵抗素子R1を有する。また、電源部65は、図15に模式的に示すように、例えば、電源線に接続されるアンプ回路を含んで構成される。電源部65は、電圧を供給可能な供給部であり、バイアス電極60へ電圧を供給するように構成される。電源部65は、GND(グラウンド)電位又は特定の電位を、バイアス電極60へ出力し得る。
 抵抗素子R1は、抵抗体であり、電源部65とバイアス電極60との間に設けられる。抵抗素子R1は、図15に示すように、電源部65とバイアス電極60の間に位置し、電源部65とバイアス電極60に電気的に接続される。抵抗素子R1は、電源部65とバイアス電極60の間に直列に接続される。
 抵抗素子R1の一端は、電源部65に接続される。抵抗素子R1の他端は、バイアス電極60に接続される。図15に示す例では、バイアス電極60は、抵抗素子R1を介して電源部65に電気的に接続され、電源部65で生成された電位が印加される。これにより、生体を含む基準信号生成部25と生体信号生成部30が回路として動作する。基準信号生成部25は、信号S1の電位と信号S2の電位との差分に基づく基準信号Refを生成する。また、生体信号生成部30は、測定信号Sig1の電位と基準信号Refの電位との差分に基づく生体信号Sig2を生成し得る。
 本変形例では、電源部65とバイアス電極60の間に直列接続される抵抗素子R1が設けられる。これにより、電源部65の電位(GND電位又は特定の電位)が測定信号Sig1及び基準信号生成部25に入力される生体信号S1、S2に及ぼす影響が低減される。センサ部100が抵抗素子R1を有しない場合と比較して、生体信号Sig2の振幅(信号レベル)を大きくすることが可能となる。このため、生体信号検出装置1は、電極間の距離が短い場合であっても、従来の計測方式よりも大きな振幅を有する生体信号Sig2を検出することが可能となる。
 本変形例に係る生体信号検出装置1は、生体に接触可能な第4電極(バイアス電極60)と、電圧を供給可能な供給部(電源部65)と、供給部と第4電極との間に直列に接続される抵抗素子(抵抗素子R1)と、を有する。これにより、電極間の距離が小さい場合であっても高精度に生体信号の検出を行うことができ、生体信号の検出性能を向上させることが可能となる。例えば、TWS(True Wireless Stereo)のような小型のイヤホンデバイスに脳波計を実装し、従来の計測方式よりも大きな振幅の脳波電位を取得することが可能となる。
(2-4.変形例4)
 図16は、変形例4に係る生体信号検出装置のセンサ部の構成例を示す図である。図16に示す例では、センサ部100は、抵抗素子R1に加えて、容量素子C1を有する。容量素子C1は、キャパシタ(コンデンサ)であり、電源部65とバイアス電極60との間に設けられる。容量素子C1は、図16に示すように、電源部65とバイアス電極60の間に位置し、電源部65とバイアス電極60に電気的に接続される。容量素子C1は、電源部65とバイアス電極60の間に直列に接続される。抵抗素子R1と容量素子C1は、並列接続されている。
 容量素子C1の一方の電極(端子)は、電源部65に接続される。容量素子C1の他方の電極は、バイアス電極60に接続される。図16に示す例では、バイアス電極60は、抵抗素子R1を介して電源部65に電気的に接続されると共に、容量素子C1を介して電源部65に電気的に接続される。バイアス電極60には、電源部65で生成された電位が印加される。基準信号生成部25は、信号S1の電位と信号S2の電位との差分に基づく基準信号Refを生成する。また、生体信号生成部30は、測定信号Sig1の電位と基準信号Refの電位との差分に基づく生体信号Sig2を生成し得る。
 本変形例では、電源部65とバイアス電極60の間に直列接続される抵抗素子R1と、電源部65とバイアス電極60の間に直列接続される容量素子C1とが設けられる。これにより、電源部65の電位が測定信号Sig1及び信号S1、S2に及ぼす影響が低減される。このため、生体信号検出装置1は、電極間の距離が短い場合であっても、従来の計測方式よりも大きな振幅を有する生体信号Sig2を検出することが可能となる。
 本変形例に係る生体信号検出装置1は、生体に接触可能な第4電極(バイアス電極60)と、電圧を供給可能な供給部(電源部65)と、供給部と第4電極との間に直列に接続される抵抗素子(抵抗素子R1)と、供給部と第4電極との間に直列に接続される容量素子(容量素子C1)と、を有する。これにより、電極間の距離が小さい場合であっても高精度に生体信号の検出を行うことができ、生体信号の検出性能を向上させることが可能となる。例えば、TWSのような小型のイヤホンデバイスに脳波計を実装し、従来の計測方式よりも大きな振幅の脳波電位を取得することが可能となる。
(2-5.変形例5)
 図17は、変形例5に係る生体信号検出装置のセンサ部の構成例を示す図である。センサ部100は、図17に示すように、抵抗素子R1及び容量素子C1を有する。抵抗素子R1は、電源部65とバイアス電極60の間に直列に接続される。図17に示す例では、容量素子C1は、バイアス電極60とグラウンド線との間に設けられる。容量素子C1は、バイアス電極60とグラウンド線の間に位置し、バイアス電極60とグラウンド線とに電気的に接続される。容量素子C1の一方の電極は、バイアス電極60に接続される。容量素子C1の他方の電極は、グラウンド線に接続される。
 生体信号検出装置1のセンサ部100では、電源部65とバイアス電極60の間に抵抗素子R1及び容量素子C1が設けられることで、電源部65の電位が測定信号Sig1及び信号S1、S2に及ぼす影響が低減される。生体信号Sig2の振幅を確保することが可能となる。このため、電極間の距離が短い場合であっても、従来の計測方式よりも大きな振幅を有する生体信号Sig2を検出することが可能となる。本変形例の場合も、高精度に生体信号の検出を行うことができ、生体信号の検出性能を向上させることが可能となる。
 図18は、変形例5に係る生体信号検出装置のセンサ部の別の構成例を示す図である。図18に示す例のように、容量素子C1を、電源部65とグラウンド線との間に設けてもよい。図18に示す例では、容量素子C1は、電源部65とグラウンド線の間に位置し、電源部65とグラウンド線とに電気的に接続される。容量素子C1の一方の電極は、電源部65に接続される。容量素子C1の他方の電極は、グラウンド線に接続される。この場合も、電源部65の電位が測定信号Sig1及び信号S1、S2に及ぼす影響を低減し、生体信号Sig2の振幅を確保することが可能となる。
 なお、生体信号検出装置1のセンサ部100における抵抗素子R1及び容量素子C1の配置は、上述した例に限られない。例えば、センサ部100は、複数の抵抗素子R1及び複数の容量素子C1を有していてもよい。
(2-6.変形例6)
 本開示に係る技術は、様々な製品へ応用することができる。本開示に係る生体信号検出装置1は、例えば、イヤホンデバイス、ヘッドホンデバイス等のウェアラブル機器に適用され得る。
 以上、実施の形態および変形例を挙げて本開示を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々の変形が可能である。例えば、上述した変形例は、上記実施の形態の変形例として説明したが、各変形例の構成を適宜組み合わせることができる。また、本開示は、人体だけでなく、人体以外の生体、例えばペットや家畜などの動物にも適用可能性を有する。
 本開示の一実施形態の生体信号検出装置は、生体に対して接触可能な第1電極と、生体に対して第1電極とは異なる位置に接触可能な第2電極及び第3電極と、第1電極の電位に基づく第1信号と、第2電極及び第3電極の各々の電位に基づく第2信号とに基づいて、生体に関する第3信号を生成する第1生成部とを備える。これにより、高精度に生体信号の検出を行うことができ、生体信号の検出性能を向上させることが可能となる。
 なお、本明細書中に記載された効果はあくまで例示であってその記載に限定されるものではなく、他の効果があってもよい。また、本開示は以下のような構成をとることも可能である。
(1)
 生体に対して接触可能な第1電極と、
 前記生体に対して前記第1電極とは異なる位置に接触可能な第2電極及び第3電極と、
 前記第1電極の電位に基づく第1信号と、前記第2電極及び前記第3電極の各々の電位に基づく第2信号とに基づいて、前記生体に関する第3信号を生成する第1生成部と
 を備える生体信号検出装置。
(2)
 前記第2電極の電位と前記第3電極の電位との差分に基づく前記第2信号を生成する第2生成部を有し、
 前記第1生成部は、前記第1信号と前記第2生成部により生成された前記第2信号とに基づいて前記第3信号を生成する
 前記(1)に記載の生体信号検出装置。
(3)
 前記第1信号と前記第2信号とを比較する比較部を有し、
 前記第2生成部は、前記比較部による比較結果に基づいて設定されたゲインで増幅した前記第2信号を出力する
 前記(2)に記載の生体信号検出装置。
(4)
 前記第1生成部は、前記第1信号と基準信号である前記第2信号との差分に基づく前記第3信号を生成する
 前記(1)から(3)のいずれか1つに記載の生体信号検出装置。
(5)
 前記第1信号と前記第2信号とを比較する比較部を有し、
 前記第1生成部は、前記比較部による比較結果に基づいて設定されたゲインで増幅した前記第3信号を出力する
 前記(1)から(4)のいずれか1つに記載の生体信号検出装置。
(6)
 前記生体に接触可能な第4電極を有し、
 前記第1生成部は、前記第4電極の電位を基準電位として用いて、前記第1信号の電位と前記第2信号の電位との差分に基づく前記第3信号を生成する
 前記(1)から(5)のいずれか1つに記載の生体信号検出装置。
(7)
 前記第3信号を周波数ごとの強度に変換する信号処理部を有する
 前記(1)から(6)のいずれか1つに記載の生体信号検出装置。
(8)
 前記信号処理部は、前記第3信号を所定の周波数範囲において規格化する
 前記(7)に記載の生体信号検出装置。
(9)
 前記第2電極及び前記第3電極は、同心円状の形状を有する
 前記(1)から(8)のいずれか1つに記載の生体信号検出装置。
(10)
 前記第2電極の周囲に配置される複数の前記第3電極と、
 前記第2電極の電位と複数の前記第3電極の電位との差分に基づく前記第2信号を生成する第2生成部と、を有する
 前記(1)から(9)のいずれか1つに記載の生体信号検出装置。
(11)
 複数の前記第3電極は、前記第2電極の周囲に等間隔に配置される
 前記(10)に記載の生体信号検出装置。
(12)
 複数の前記第1電極を有し、
 前記第1生成部は、前記第1電極毎に設けられ、
 前記第2生成部は、前記第2信号を複数の前記第1生成部へ出力する
 前記(2)または(3)に記載の生体信号検出装置。
(13)
 前記生体に接触可能な第4電極と、
 電圧を供給可能な供給部と、
 前記供給部と前記第4電極との間に直列に接続される抵抗素子と、を有する
 前記(1)から(12)のいずれか1つに記載の生体信号検出装置。
(14)
 前記生体に接触可能な第4電極と、
 電圧を供給可能な供給部と、
 前記供給部と前記第4電極との間に直列に接続される抵抗素子と、
 前記供給部と前記第4電極との間に直列に接続される容量素子と、を有する
 前記(1)から(13)のいずれか1つに記載の生体信号検出装置。
(15)
 前記抵抗素子と前記容量素子は、並列接続されている
 前記(14)に記載の生体信号検出装置。
(16)
 前記生体に接触可能な第4電極と、
 電圧を供給可能な供給部と、
 前記供給部と前記第4電極との間に直列に接続される抵抗素子と、
 前記第4電極とグラウンド線との間に設けられる容量素子と、を有する
 前記(1)から(15)のいずれか1つに記載の生体信号検出装置。
(17)
 前記容量素子の第1電極は、前記第4電極に電気的に接続され、
 前記容量素子の第2電極は、前記グラウンド線に電気的に接続される
 前記(16)に記載の生体信号検出装置。
(18)
 前記生体に接触可能な第4電極と、
 電圧を供給可能な供給部と、
 前記供給部と前記第4電極との間に直列に接続される抵抗素子と、
 前記供給部とグラウンド線との間に設けられる容量素子と、を有する
 前記(1)から(17)のいずれか1つに記載の生体信号検出装置。
(19)
 前記容量素子の第1電極は、前記供給部に電気的に接続され、
 前記容量素子の第2電極は、前記グラウンド線に電気的に接続される
 前記(18)に記載の生体信号検出装置。
(20)
 前記第1生成部は、前記第4電極の電位を基準電位として用いて、前記第1信号の電位と前記第2信号の電位との差分に基づく前記第3信号を生成可能である
 前記(13)から(19)のいずれか1つに記載の生体信号検出装置。
 本出願は、日本国特許庁において2021年12月7日に出願された日本特許出願番号2021-198820号および2022年8月8日に出願された日本特許出願番号第2022-126216号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (20)

  1.  生体に対して接触可能な第1電極と、
     前記生体に対して前記第1電極とは異なる位置に接触可能な第2電極及び第3電極と、
     前記第1電極の電位に基づく第1信号と、前記第2電極及び前記第3電極の各々の電位に基づく第2信号とに基づいて、前記生体に関する第3信号を生成する第1生成部と
     を備える生体信号検出装置。
  2.  前記第2電極の電位と前記第3電極の電位との差分に基づく前記第2信号を生成する第2生成部を有し、
     前記第1生成部は、前記第1信号と前記第2生成部により生成された前記第2信号とに基づいて前記第3信号を生成する
     請求項1に記載の生体信号検出装置。
  3.  前記第1信号と前記第2信号とを比較する比較部を有し、
     前記第2生成部は、前記比較部による比較結果に基づいて設定されたゲインで増幅した前記第2信号を出力する
     請求項2に記載の生体信号検出装置。
  4.  前記第1生成部は、前記第1信号と基準信号である前記第2信号との差分に基づく前記第3信号を生成する
     請求項1に記載の生体信号検出装置。
  5.  前記第1信号と前記第2信号とを比較する比較部を有し、
     前記第1生成部は、前記比較部による比較結果に基づいて設定されたゲインで増幅した前記第3信号を出力する
     請求項1に記載の生体信号検出装置。
  6.  前記生体に接触可能な第4電極を有し、
     前記第1生成部は、前記第4電極の電位を基準電位として用いて、前記第1信号の電位と前記第2信号の電位との差分に基づく前記第3信号を生成する
     請求項1に記載の生体信号検出装置。
  7.  前記第3信号を周波数ごとの強度に変換する信号処理部を有する
     請求項1に記載の生体信号検出装置。
  8.  前記信号処理部は、前記第3信号を所定の周波数範囲において規格化する
     請求項7に記載の生体信号検出装置。
  9.  前記第2電極及び前記第3電極は、同心円状の形状を有する
     請求項1に記載の生体信号検出装置。
  10.  前記第2電極の周囲に配置される複数の前記第3電極と、
     前記第2電極の電位と複数の前記第3電極の電位との差分に基づく前記第2信号を生成する第2生成部と、を有する
     請求項1に記載の生体信号検出装置。
  11.  複数の前記第3電極は、前記第2電極の周囲に等間隔に配置される
     請求項10に記載の生体信号検出装置。
  12.  複数の前記第1電極を有し、
     前記第1生成部は、前記第1電極毎に設けられ、
     前記第2生成部は、前記第2信号を複数の前記第1生成部へ出力する
     請求項2に記載の生体信号検出装置。
  13.  前記生体に接触可能な第4電極と、
     電圧を供給可能な供給部と、
     前記供給部と前記第4電極との間に直列に接続される抵抗素子と、を有する
     請求項1に記載の生体信号検出装置。
  14.  前記生体に接触可能な第4電極と、
     電圧を供給可能な供給部と、
     前記供給部と前記第4電極との間に直列に接続される抵抗素子と、
     前記供給部と前記第4電極との間に直列に接続される容量素子と、を有する
     請求項1に記載の生体信号検出装置。
  15.  前記抵抗素子と前記容量素子は、並列接続されている
     請求項14に記載の生体信号検出装置。
  16.  前記生体に接触可能な第4電極と、
     電圧を供給可能な供給部と、
     前記供給部と前記第4電極との間に直列に接続される抵抗素子と、
     前記第4電極とグラウンド線との間に設けられる容量素子と、を有する
     請求項1に記載の生体信号検出装置。
  17.  前記容量素子の第1電極は、前記第4電極に電気的に接続され、
     前記容量素子の第2電極は、前記グラウンド線に電気的に接続される
     請求項16に記載の生体信号検出装置。
  18.  前記生体に接触可能な第4電極と、
     電圧を供給可能な供給部と、
     前記供給部と前記第4電極との間に直列に接続される抵抗素子と、
     前記供給部とグラウンド線との間に設けられる容量素子と、を有する
     請求項1に記載の生体信号検出装置。
  19.  前記容量素子の第1電極は、前記供給部に電気的に接続され、
     前記容量素子の第2電極は、前記グラウンド線に電気的に接続される
     請求項18に記載の生体信号検出装置。
  20.  前記第1生成部は、前記第4電極の電位を基準電位として用いて、前記第1信号の電位と前記第2信号の電位との差分に基づく前記第3信号を生成可能である
     請求項13に記載の生体信号検出装置。
PCT/JP2022/043852 2021-12-07 2022-11-29 生体信号検出装置 WO2023106160A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280079856.5A CN118338846A (zh) 2021-12-07 2022-11-29 生物信号检测设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-198820 2021-12-07
JP2021198820 2021-12-07
JP2022126216 2022-08-08
JP2022-126216 2022-08-08

Publications (1)

Publication Number Publication Date
WO2023106160A1 true WO2023106160A1 (ja) 2023-06-15

Family

ID=86730251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043852 WO2023106160A1 (ja) 2021-12-07 2022-11-29 生体信号検出装置

Country Status (1)

Country Link
WO (1) WO2023106160A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050277826A1 (en) * 2004-06-10 2005-12-15 Conopco, Inc. Apparatus and method for reducing interference

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050277826A1 (en) * 2004-06-10 2005-12-15 Conopco, Inc. Apparatus and method for reducing interference

Similar Documents

Publication Publication Date Title
Sullivan et al. A low-noise, non-contact EEG/ECG sensor
US8626259B2 (en) Biomedical sensors usable on un-prepared contact surfaces
JP6659536B2 (ja) 電位測定装置及び電位検出方法
Lin et al. Development of novel non-contact electrodes for mobile electrocardiogram monitoring system
JP6162366B2 (ja) 生体信号測定装置と方法、そのための単位測定器、及びその方法に係る記録媒体
US20090112080A1 (en) System for Measuring Electric Signals
CN109171702A (zh) 一种非接触式心电信号的测量装置和测量方法
KR20100103537A (ko) 비-접촉 생체 전위 감지기
KR20110135296A (ko) 생체 신호를 측정하는 장치 및 방법
Morikawa et al. Compact wireless EEG system with active electrodes for daily healthcare monitoring
KR101843083B1 (ko) 다중의 단위 측정기들을 포함하는 생체 신호 측정 장치 및 방법
De Lucia et al. The in-ear region as a novel anatomical site for ECG signal detection: validation study on healthy volunteers
JP4063349B2 (ja) 心臓監視システムおよびその方法
CA3120321A1 (en) Contactless electrode for sensing physiological electrical activity
Yama et al. Development of a wireless capacitive sensor for ambulatory ECG monitoring over clothes
KR20120121975A (ko) 밴드형 센서셋 및 그 동작 방법
Gourmelon et al. Contactless sensors for surface electromyography
WO2023106160A1 (ja) 生体信号検出装置
Rosa et al. Smart wireless headphone for cardiovascular and stress monitoring
CN118338846A (zh) 生物信号检测设备
US20200367776A1 (en) Biosignal measurement device, electroencephalograph, and control method
Anas et al. On-line monitoring and analysis of bioelectrical signals
KR101053137B1 (ko) 착용형 건식 전극 장치 및 제조 방법
US20230270367A1 (en) Apparatus for biopotential measurement
WO2024052977A1 (ja) 生体信号計測システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023566253

Country of ref document: JP

Kind code of ref document: A