CN112261606A - 一种基于动态环境的自适应室内融合定位方法 - Google Patents

一种基于动态环境的自适应室内融合定位方法 Download PDF

Info

Publication number
CN112261606A
CN112261606A CN202011038958.1A CN202011038958A CN112261606A CN 112261606 A CN112261606 A CN 112261606A CN 202011038958 A CN202011038958 A CN 202011038958A CN 112261606 A CN112261606 A CN 112261606A
Authority
CN
China
Prior art keywords
positioning
positioning method
base station
error
cir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011038958.1A
Other languages
English (en)
Other versions
CN112261606B (zh
Inventor
张晖
王志坤
赵海涛
孙雁飞
朱洪波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202011038958.1A priority Critical patent/CN112261606B/zh
Priority to PCT/CN2020/133553 priority patent/WO2022062177A1/zh
Priority to JP2021551830A priority patent/JP7239958B2/ja
Publication of CN112261606A publication Critical patent/CN112261606A/zh
Application granted granted Critical
Publication of CN112261606B publication Critical patent/CN112261606B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于动态环境的自适应室内融合定位方法,首先,基于CIR进行离线阶段的定位点参数采集;基于5G定位基站对待测定位目标进行参数获取及分析;其次,基于多边定位法和CIR指纹定位法对待测目标定位,并对预测位置和实际位置进行误差分析;以多边定位法测量的位置为测试值,CIR指纹定位法预测的位置为预测值,根据两者的误差,进行基于均方误差的融合计算,估算最优的位置;最后,基于室内环境变化自适应的融合定位。本发明能够通过检测室内的变化,从而进行5G定位基站切换与误差修正,使得定位模型在适应环境变化的同时提高预测准确率。

Description

一种基于动态环境的自适应室内融合定位方法
技术领域
本发明属于室内定位领域与5G领域,具体涉及一种基于动态环境的自适应室内融合定位方法。
背景技术
随着通信技术和互联网技术的不断发展,多领域都投身于位置服务产业,而高精度位置信息是提供高质量位置服务的基础。目前智能家居,汽车导航和手机跟踪等领域成为无线定位技术的热门研究方向。而全球导航卫星系统能够为用户提供较高精度的定位服务,基本满足了用户在室外场景中对基于位置服务的需求,但在室内由于建筑物的遮挡,GNSS信号衰减极快,无法准确的应用于室内定位。为此对室内环境精确定位,成为定位的研究热点,其研究成果不仅带来极大的经济效益,而且还能结合其他领域进行创新。
现在的室内定位技术有蓝牙技术、UWB技术、红外线技术、地磁技术、Zig-Bee技术等技术,但是这些技术都存在或多或少的缺点,且都难在变化的室内环境中保持其准确率。而基于多边定位法进行室内定位是一种比较常用的定位方法,其原理是通过接收的信号强度,确定信号的衰减从而来计算距离,但是该方法确定的距离与实际距离有些许的差距。基于CIR指纹定位法进行室内定位是一种数据库的对照方法,但是采集到的数据库无法包括室内环境的所有情况,导致数据库的对照误差。这两者技术也会受到室内变化的影响而降低定位的精确度。随着通信技术的发展,以及人们对无线通信速度的需求,使得通信网络加速发展,容易实现5G定位基站的协同定位,同时人们也不断创新提出了融合定位的方法。但是大部分的室内定位尚未分析室内环境变化对定位的影响,失去的环境的自适应性,同时单一的室内定位方法相比于融合定位,其准确度总是略差的。
综上所述,现有的大多室内定位技术无法对室内环境变化进行修正以及其单一的室内定位方法的性能差于融合定位的问题。
发明内容
发明目的:本发明提出一种基于动态环境的自适应室内融合定位方法,一方面,使用融合定位能有更高的定位准确度;另一方面,使用图像识别进行自适应修改具有更好的环境适应性。
发明内容:本发明提供的一种基于动态环境的自适应室内融合定位方法,具体包括以下步骤:
(1)基于CIR进行离线阶段的定位点参数采集;
(2)基于5G定位基站对待测定位目标进行参数获取及分析;
(3)采用多边定位法对待测目标定位,并对预测位置和实际位置进行误差分析;
(4)采用CIR指纹定位法进行待测目标定位,并对预测位置与实际位置进行误差分析;
(5)以多边定位法测量的位置为测试值,CIR指纹定位法预测的位置为预测值,根据两者的误差,进行基于均方误差的融合计算,估算最优的位置;
(6)基于室内环境变化自适应的融合定位。
进一步地,所述步骤(2)包括以下步骤:
(21)5G定位基站采集待测目标点的时延、功率和频率等参数;
(22)采集和分析室内环境图像;
(23)进行获取数据的处理。
进一步地,所述步骤(3)实现过程如下:
d1,d2和d3分别是三个5G定位基站与目标的计算距离,(A1,A2),(B1,B2)和(C1,C2)分别表示5G定位基站的位置,则可得:
Figure BDA0002706027680000021
Figure BDA0002706027680000022
Figure BDA0002706027680000023
其中,ε(d)≤εmax是距离误差;第i次计算的位置为
Figure BDA0002706027680000024
而目标的实际位置为
Figure BDA0002706027680000025
则平均误差可以表示为:
Figure BDA0002706027680000026
其中,J表示获取的总数据次数。
进一步地,所述步骤(4)实现过程如下:
5G定位基站根据时延、功率和频率等参数建立离线CIR指纹库,CIR表示为:
Figure BDA0002706027680000031
其中,an为信道增益,
Figure BDA0002706027680000032
表示频率偏移,τn信道时延;
CIR指纹库用以下公式表示:
lc=F{τ,p,f}
其中,lc=(xc,yc)表示位置,F为映射关系,τ={τ12...τN}表示时延,p={p1,p2...pN}表示功率,f={f1,f2...fN}表示频率;
假设第i次预测的位置为
Figure BDA0002706027680000033
而目标的实际位置为
Figure BDA0002706027680000034
则平均误差可以表示为:
Figure BDA0002706027680000035
进一步地,所述步骤(6)实现过程如下:
由RSSI测距模型,得A和B两点之间的接收信号强度,如以下公式:
Figure BDA0002706027680000036
其中,A和B是两个位置,Q和U是经验常数,RSSIAB表示位置A接收到位置B的RSSI值;而环境的变化会带来Q和U的变化,通过对两个常数估计来减小环境变化带来的影响,来保证环境变化对距离计算的影响小:
Figure BDA0002706027680000037
Figure BDA0002706027680000038
同样的方法可以计算出UB,QB和UC,QC,环境变换后的模型参数更新为:
Figure BDA0002706027680000041
Figure BDA0002706027680000042
寻找变化最小的5G定位基站,结合图像识别判断障碍物对5G定位基站的影响;当障碍物在5G定位基站和目标的路径内半平面内,则对CIR信号的影响特别大,需要切换到满足路径外平面的5G定位基站,根据接收参数的相似性来预测位置,用如下公式:
Figure BDA0002706027680000043
其中,[τe,pe,fe]表示环境变化后的接收参数,[τk,pk,fk]表示离线CIR指纹库参数,|·|表示取模运算;
每个5G定位基站分别建立多边定位法和CIR指纹定位法的误差修正库,修正后的误差为:
enda=C1(category,size,distance1,eda)
enca=C2(category,size,distance2,eca)
其中,C1和C2分别为多边定位法和CIR指纹定位法的误差修正的映射关系;计算均方误差:
Figure BDA0002706027680000044
Figure BDA0002706027680000045
其中,H1和H2代表误差系数;
融合定位计算:
xa=xd+(xc-xd)·H2
ya=yc+(yd-yc)·H1
la=(xa,ya)
其中,la是融合定位计算结果。
有益效果:与现有技术相比,本发明的有益效果:本发明能够通过检测室内的变化,从而进行5G定位基站切换与误差修正,使得定位模型在适应环境变化的同时提高预测准确率。
附图说明
图1为本发明的流程图;
图2为多边定位方法的示意图;
图3为CIR指纹定位法的示意图;
图4为多边定位方法的基站切换图;
图5为CIR指纹定位法的基站切换图。
具体实施方式
下面结合附图对发明的技术方案进行详细说明:
本发明提供了一种基于动态环境的自适应室内融合定位方法,如图1所示,该方法首先获取室内各点的特征,同时使用5G定位基站进行定位测试,再根据CIR指纹定位和多边定位与实际位置的差距进行误差分析。采用图像识别检测周围环境的变化,将结果反馈给融合系统进行基站切换以及误差修改,帮助其做出更加准确的、更可靠的环境适应性强的位置预测。
本发明主要包含三个内容:一是定位方法的误差分析,根据计算位置与实际位置相对比,分析两种方法的平均误差;二是使用图像识别认知环境变化认知,排除某些严重受影响的5G定位基站进行定位。本次的检测结果将用来严重受影响的5G定位基站的离线CIR指纹库更新和误差修正,实现全面更新;三是使用融合定位,预测目标最优的位置。具体包括以下步骤:
步骤1:基于CIR进行离线阶段的定位点参数采集;并基于5G定位基站对待测定位目标进行参数获取及分析。
5G定位基站采集待测目标点的时延、功率和频率等参数;采集和分析室内环境图像;并对获取数据进行处理。
步骤2:基于多边定位法对待测目标定位,并对预测位置和实际位置进行误差分析。
(1)多边定位法的误差分析:如图2所示,因为信道是时变的,所以每个5G定位基站测出的距离有一定范围的,以信号强度最大的三个5G定位基站来计算位置,它们变换范围的重叠区域就是目标的位置,会有一定的误差的。假设d1,d2和d3分别是三个5G定位基站与目标的计算距离,(A1,A2),(B1,B2)和(C1,C2)分别表示5G定位基站的位置,则可得到下公式:
Figure BDA0002706027680000061
Figure BDA0002706027680000062
Figure BDA0002706027680000063
其中ε(d)≤εmax是距离误差,为保证上述的式子有解。
假设第i次计算的位置为
Figure BDA0002706027680000064
而目标的实际位置为
Figure BDA0002706027680000065
则平均误差可以表示为:
Figure BDA0002706027680000066
步骤3:基于CIR指纹定位法进行待测目标定位,并对预测位置与实际位置进行误差分析。
首先多个5G定位基站根据时延、功率和频率等参数建立离线CIR指纹库(每个5G定位基站的离线CIR指纹库基本不同的)。如图3所示,阴影部分表示距离极近的点,其环境下的CIR信号基本认为是相同的,同时信道是时变的,该方法会有一定的估计误差,但是CIR考虑了多径效应,所以根据前述的参数可以得到唯一的位置,且精度会比较高,CIR表示为:
Figure BDA0002706027680000067
其中,an为信道增益,
Figure BDA0002706027680000068
表示频率偏移,τn信道时延。
CIR指纹库用以下公式表示:
lc=F{τ,p,f}
其中,lc=(xc,yc)表示位置,F为映射关系,τ={τ12...τN}表示时延,p={p1,p2...pN}表示功率,f={f1,f2...fN}表示频率。
假设第i次预测的位置为
Figure BDA0002706027680000069
而目标的实际位置为
Figure BDA00027060276800000610
则平均误差可以表示为:
Figure BDA00027060276800000611
步骤4:基于均方误差实现融合定位。
将多边定位法与CIR指纹定位法相结合,每次进行位置预测时,以多边定位法测量的位置为测试值,而CIR指纹定位法预测的位置为预测值,然后根据彼此的误差,进行基于均方误差的融合计算,最终估算最优的位置。
步骤5:基于室内环境变化自适应的融合定位。
在定位之前,需要通过图像识别对室内环境进行认知,以确保系统能进行自适应的调整。通过上一时刻的图像与这一时刻图像的对比,再结合神经网络算法,可以快速的反映室内环境发生怎样的变化。对于一些大变化,如室内家具的搬动,人的走动等,会使两种定位算法都会出现很大的误差,为此需要切换5G定位基站以及误差修正来提高定位的准确度。
对于多边定位法,采用的是信号强度最大的三个5G定位基站来计算目标的位置,所以当环境变化时,会自发的切换5G定位基站,如图4所示。由RSSI测距模型,可得两点之间的接收信号强度,如以下公式:
Figure BDA0002706027680000071
其中,A和B是两个位置,Q和U是经验常数,RSSIAB表示位置A接收到位置B的RSSI值。而环境的变化会带来Q和U的变化,所以通过对两个常数估计来减小环境变化带来的影响,来保证环境变化对距离计算的影响小。
Figure BDA0002706027680000072
Figure BDA0002706027680000073
同样的方法可以计算出UB,QB和UC,QC。环境变换后的模型参数更新为:
Figure BDA0002706027680000074
Figure BDA0002706027680000075
对于CIR指纹定位法,采用的是视距内无障碍阻挡的5G定位基站获取的离线CIR指纹库。根据前文表述,室内的5G定位基站都会在离线阶段建立独有的离线CIR指纹库,当由障碍物带来环境变化是,各个5G定位基站受到的多径效应都会发生变化,所以需要寻找变化最小的5G定位基站,结合图像识别来判断障碍物最5G定位基站的影响。如图5所示,当障碍物在5G定位基站和目标的路径内半平面内,则对CIR信号的影响特别大,需要切换到满足路径外平面的5G定位基站。因为在路径外平面,对该5G定位基站的影响较小,然后根据接收参数的相似性来预测位置,用如下公式:
Figure BDA0002706027680000081
其中,[τe,pe,fe]表示环境变化后的接收参数,[τk,pk,fk]表示离线CIR指纹库参数,|·|表示取模运算。
对于满足路径外平面的5G定位基站,因外界环境造成的影响较大,需要对这些检测器的离线CIR指纹库进行动态的更新,具体步骤如下:
第一步:图像识别判定室内环境变化,根据满足路径内和外平面的5G定位基站,对5G定位基站进行划分,满足路径内的5G定位基站被判定为要更新离线CIR指纹库,而在满足路径外的5G定位基站集合中,寻找接收信号最强的5G定位基站进行预测;
第二步:结合5G定位基站和预测结果来更新离线CIR指纹库;
lc=F{τm,pm,fm}
lp=F'{τm,pm,fm}
Figure BDA0002706027680000082
其中,F{}为更新前的映射关系,F'{}为更新后的映射关系,lp表示对lc的修正位置,其是通过满足路径外的5G定位基站所预测的结果。
误差修正:通过图像识别来感知环境变化,5G定位基站的切换对定位的准确度有了一定提升,但是环境变化对前面分析的定位误差也会带来影响。为此,需要结合图像识别的感知,对定位方法的误差进行修正。显然,定位误差的影响因素包括新障碍物的类别、大小以及新障碍物离5G定位基站的距离。所以通过图像识别对新障碍物的类别和大小进行分析,而通过5G基站的定位技术对新障碍物离定自身的距离进行分析。每个5G定位基站分别建立多边定位法和CIR指纹定位法的误差修正库,修正后的误差为:
enda=C1(category,size,distance1,eda)
enca=C2(category,size,distance2,eca)
其中,C1和C2分别为多边定位法和CIR指纹定位法的误差修正的映射关系。
当图像识别检测到环境发生变化时,在切换基站后,不仅对当前实施定位的基站进行误差修正,还要对为实施定位的基站进行误差修正。
两种定位方法的实施以及面对环境变化的自适应切换,但是单一的定位手段会存在一定的误差,为此采用了融合定位方法。
已知多边定位法所计算的位置为ld=(xd,yd),修正误差为enda;而CIR指纹定位法所预测的位置为lc=(xc,yc)=F'{τ,p,f},修正误差为enda,使用均方误差的方法进行融合定位。不失一般性,假设xc=max{xc,xd}和yd=max{yc,yd},计算过程如下:
计算均方误差:
Figure BDA0002706027680000091
Figure BDA0002706027680000092
其中,H1和H2代表误差系数。
融合定位计算:
xa=xd+(xc-xd)·H2
ya=yc+(yd-yc)·H1
la=(xa,ya)
其中,la是融合定位计算结果。

Claims (5)

1.一种基于动态环境的自适应室内融合定位方法,其特征在于,包括以下步骤:
(1)基于CIR进行离线阶段的定位点参数采集;
(2)基于5G定位基站对待测定位目标进行参数获取及分析;
(3)采用多边定位法对待测目标定位,并对预测位置和实际位置进行误差分析;
(4)采用CIR指纹定位法进行待测目标定位,并对预测位置与实际位置进行误差分析;
(5)以多边定位法测量的位置为测试值,CIR指纹定位法预测的位置为预测值,根据两者的误差,进行基于均方误差的融合计算,估算最优的位置;
(6)基于室内环境变化自适应的融合定位。
2.根据权利要求1所述的基于动态环境的自适应室内融合定位方法,其特征在于,所述步骤(2)包括以下步骤:
(21)5G定位基站采集待测目标点的时延、功率和频率等参数;
(22)采集和分析室内环境图像;
(23)进行获取数据的处理。
3.根据权利要求1所述的基于动态环境的自适应室内融合定位方法,其特征在于,所述步骤(3)实现过程如下:
d1,d2和d3分别是三个5G定位基站与目标的计算距离,(A1,A2),(B1,B2)和(C1,C2)分别表示5G定位基站的位置,则可得:
Figure FDA0002706027670000011
Figure FDA0002706027670000012
Figure FDA0002706027670000013
其中,ε(d)≤εmax是距离误差;第i次计算的位置为
Figure FDA0002706027670000014
而目标的实际位置为
Figure FDA0002706027670000015
则平均误差可以表示为:
Figure FDA0002706027670000016
其中,J表示获取的总数据组数。
4.根据权利要求1所述的基于动态环境的自适应室内融合定位方法,其特征在于,所述步骤(4)实现过程如下:
5G定位基站根据时延、功率和频率等参数建立离线CIR指纹库,CIR表示为:
Figure FDA0002706027670000021
其中,an为信道增益,
Figure FDA0002706027670000022
表示频率偏移,τn为信道时延;
CIR指纹库用以下公式表示:
lc=F{τ,p,f}
其中,lc=(xc,yc)表示位置,F为映射关系,τ={τ12...τN}表示时延,p={p1,p2...pN}表示功率,f={f1,f2...fN}表示频率;
假设第i次预测的位置为
Figure FDA0002706027670000023
而目标的实际位置为
Figure FDA0002706027670000024
则平均误差可以表示为:
Figure FDA0002706027670000025
5.根据权利要求1所述的基于动态环境的自适应室内融合定位方法,其特征在于,所述步骤(6)实现过程如下:
由RSSI测距模型,得A和B两点之间的接收信号强度,如以下公式:
Figure FDA0002706027670000026
其中,A和B是两个位置,Q和U是经验常数,RSSIAB表示位置A接收到位置B的RSSI值;而环境的变化会带来Q和U的变化,通过对两个常数估计来减小环境变化带来的影响,来保证环境变化对距离计算的影响小:
Figure FDA0002706027670000027
Figure FDA0002706027670000031
同样的方法可以计算出UB,QB和UC,QC,环境变换后的模型参数更新为:
Figure FDA0002706027670000032
Figure FDA0002706027670000033
寻找变化最小的5G定位基站,结合图像识别判断障碍物对5G定位基站的影响;当障碍物在5G定位基站和目标的路径内半平面内,则对CIR信号的影响特别大,需要切换到满足路径外平面的5G定位基站,根据接收参数的相似性来预测位置,用如下公式:
Figure FDA0002706027670000034
其中,[τe,pe,fe]表示环境变化后的接收参数,[τk,pk,fk]表示离线CIR指纹库参数,|·|表示取模运算;
每个5G定位基站分别建立多边定位法和CIR指纹定位法的误差修正库,修正后的误差为:
enda=C1(category,size,distance1,eda)
enca=C2(category,size,distance2,eca)
其中,C1和C2分别为多边定位法和CIR指纹定位法的误差修正的映射关系;
计算均方误差:
Figure FDA0002706027670000035
Figure FDA0002706027670000036
其中,H1和H2代表误差系数;
融合定位计算:
xa=xd+(xc-xd)·H2
ya=yc+(yd-yc)·H1
la=(xa,ya)
其中,la是融合定位计算结果。
CN202011038958.1A 2020-09-28 2020-09-28 一种基于动态环境的自适应室内融合定位方法 Active CN112261606B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011038958.1A CN112261606B (zh) 2020-09-28 2020-09-28 一种基于动态环境的自适应室内融合定位方法
PCT/CN2020/133553 WO2022062177A1 (zh) 2020-09-28 2020-12-03 一种基于动态环境的自适应室内融合定位方法
JP2021551830A JP7239958B2 (ja) 2020-09-28 2020-12-03 動的環境に基づく自己適応室内融合位置決め方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011038958.1A CN112261606B (zh) 2020-09-28 2020-09-28 一种基于动态环境的自适应室内融合定位方法

Publications (2)

Publication Number Publication Date
CN112261606A true CN112261606A (zh) 2021-01-22
CN112261606B CN112261606B (zh) 2021-09-07

Family

ID=74234117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011038958.1A Active CN112261606B (zh) 2020-09-28 2020-09-28 一种基于动态环境的自适应室内融合定位方法

Country Status (3)

Country Link
JP (1) JP7239958B2 (zh)
CN (1) CN112261606B (zh)
WO (1) WO2022062177A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113108775A (zh) * 2021-06-15 2021-07-13 北京奇岱松科技有限公司 基于蓝牙和视觉的室内定位系统
CN115348540A (zh) * 2022-08-16 2022-11-15 青岛柯锐思德电子科技有限公司 一种nlos环境下连续定位的跟踪方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115002702B (zh) * 2022-06-27 2024-05-14 五邑大学 一种基于信道状态信息的滑动窗口指纹匹配定位方法
CN115930971B (zh) * 2023-02-01 2023-09-19 七腾机器人有限公司 一种机器人定位与建图的数据融合处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736093A (zh) * 2012-06-11 2012-10-17 北京邮电大学 融合定位方法及装置
CN104619020A (zh) * 2015-02-06 2015-05-13 合肥工业大学 基于rssi和toa测距的wifi室内定位方法
CN109164411A (zh) * 2018-09-07 2019-01-08 中国矿业大学 一种基于多数据融合的人员定位方法
CN109951798A (zh) * 2019-03-13 2019-06-28 南京邮电大学 融合Wi-Fi和蓝牙的增强位置指纹室内定位方法
CN110072282A (zh) * 2019-04-24 2019-07-30 华宇智联科技(武汉)有限公司 一种融合定位方法
CN110430522A (zh) * 2019-06-04 2019-11-08 南京邮电大学 基于多边定位和指纹定位相结合的室内定位方法
US20200018812A1 (en) * 2017-01-16 2020-01-16 Combain Mobile AB A method for generating an indoor environment model and a method for determining position data for a location in an indoor environment
CN110958575A (zh) * 2019-12-02 2020-04-03 重庆邮电大学 一种基于WiFi融合预测的定位方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890746B2 (en) * 2010-11-03 2014-11-18 Skyhook Wireless, Inc. Method of and system for increasing the reliability and accuracy of location estimation in a hybrid positioning system
KR102604366B1 (ko) * 2016-07-19 2023-11-24 한국전자통신연구원 측위 시스템 및 그 방법
US20190170521A1 (en) * 2017-12-05 2019-06-06 Invensense, Inc. Method and system for fingerprinting survey

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736093A (zh) * 2012-06-11 2012-10-17 北京邮电大学 融合定位方法及装置
CN104619020A (zh) * 2015-02-06 2015-05-13 合肥工业大学 基于rssi和toa测距的wifi室内定位方法
US20200018812A1 (en) * 2017-01-16 2020-01-16 Combain Mobile AB A method for generating an indoor environment model and a method for determining position data for a location in an indoor environment
CN109164411A (zh) * 2018-09-07 2019-01-08 中国矿业大学 一种基于多数据融合的人员定位方法
CN109951798A (zh) * 2019-03-13 2019-06-28 南京邮电大学 融合Wi-Fi和蓝牙的增强位置指纹室内定位方法
CN110072282A (zh) * 2019-04-24 2019-07-30 华宇智联科技(武汉)有限公司 一种融合定位方法
CN110430522A (zh) * 2019-06-04 2019-11-08 南京邮电大学 基于多边定位和指纹定位相结合的室内定位方法
CN110958575A (zh) * 2019-12-02 2020-04-03 重庆邮电大学 一种基于WiFi融合预测的定位方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈国良等: "WiFi-PDR室内组合定位的无迹卡尔曼滤波算法", 《测绘学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113108775A (zh) * 2021-06-15 2021-07-13 北京奇岱松科技有限公司 基于蓝牙和视觉的室内定位系统
CN115348540A (zh) * 2022-08-16 2022-11-15 青岛柯锐思德电子科技有限公司 一种nlos环境下连续定位的跟踪方法
CN115348540B (zh) * 2022-08-16 2023-05-16 青岛柯锐思德电子科技有限公司 一种nlos环境下连续定位的跟踪方法

Also Published As

Publication number Publication date
WO2022062177A1 (zh) 2022-03-31
JP7239958B2 (ja) 2023-03-15
CN112261606B (zh) 2021-09-07
JP2022546656A (ja) 2022-11-07

Similar Documents

Publication Publication Date Title
CN112261606B (zh) 一种基于动态环境的自适应室内融合定位方法
CN103763680B (zh) 基于信号传播的室内定位追踪方法及系统
CN109275095B (zh) 一种基于蓝牙的室内定位系统、定位设备和定位方法
CN112533149B (zh) 一种基于uwb移动节点的移动目标定位算法
Elbakly et al. A robust zero-calibration RF-based localization system for realistic environments
US7783302B2 (en) Apparatus and method for determining a current position of a mobile device
US7574221B2 (en) Method for estimating jointly time-of-arrival of signals and terminal location
CN106412839B (zh) 基于二级分区与指纹梯度匹配的室内定位与跟踪方法
CN109490826B (zh) 一种基于无线电波场强rssi的测距与位置定位方法
CN109951798A (zh) 融合Wi-Fi和蓝牙的增强位置指纹室内定位方法
CN112929826B (zh) 一种基于uwb三角定位与指纹信息的室内混合定位方法
CN114521014B (zh) 一种在uwb定位过程中提高定位精度的方法
CN107484123B (zh) 一种基于集成HWKNN的WiFi室内定位方法
CN111308420A (zh) 一种基于声信号时延估计及到达频率的室内非视距定位方法
CN111398894A (zh) 一种基于移动通信网络的低慢小目标检测追踪系统及检测追踪方法
CN110769370A (zh) 基于定向天线与全向天线信号融合的室内定位方法
Yang et al. Dynamic Feature-fused Localization with Smartphones Exploiting 5G NR SSB and Wi-Fi for Indoor Environments
Chen et al. Deep neural network based on feature fusion for indoor wireless localization
CN117676462A (zh) 一种融合Wi-Fi和蓝牙的双三角定位方法
CN116819436A (zh) 一种多路口场景下的地标匹配pdr定位方法
CN109600711B (zh) 一种基于信道响应频域和空域联合处理的室内定位方法
CN108064020B (zh) 一种优化的室内定位方法
CN115119141B (zh) 一种可用于复杂室内环境基于卡尔曼滤波的uwb定位方法
CN116095600A (zh) 一种基于5g时空大数据协同的室内定位方法
Kim et al. Indoor localization system with pdr and wifi complementary integration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant