CN112259673B - 一种含混合人工钉扎相的(re,y)-123超导膜及其制备方法 - Google Patents

一种含混合人工钉扎相的(re,y)-123超导膜及其制备方法 Download PDF

Info

Publication number
CN112259673B
CN112259673B CN202011120751.9A CN202011120751A CN112259673B CN 112259673 B CN112259673 B CN 112259673B CN 202011120751 A CN202011120751 A CN 202011120751A CN 112259673 B CN112259673 B CN 112259673B
Authority
CN
China
Prior art keywords
superconducting film
phase
mixed
superconducting
artificial pinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011120751.9A
Other languages
English (en)
Other versions
CN112259673A (zh
Inventor
赵跃
武悦
姜广宇
朱佳敏
吴东红
陈宇
丁逸珺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI SUPERCONDUCTOR TECHNOLOGY CO LTD
Original Assignee
SHANGHAI SUPERCONDUCTOR TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI SUPERCONDUCTOR TECHNOLOGY CO LTD filed Critical SHANGHAI SUPERCONDUCTOR TECHNOLOGY CO LTD
Priority to CN202011120751.9A priority Critical patent/CN112259673B/zh
Priority to US16/950,435 priority patent/US20220123193A1/en
Publication of CN112259673A publication Critical patent/CN112259673A/zh
Application granted granted Critical
Publication of CN112259673B publication Critical patent/CN112259673B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0521Processes for depositing or forming copper oxide superconductor layers by pulsed laser deposition, e.g. laser sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0632Intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种含混合人工钉扎相的(RE,Y)‑123超导膜及其制备方法,所述的(RE,Y)‑123超导膜母相中Cu的化学计量比在3.05‑5之间;所述混合人工钉扎相包括钙钛矿结构BaMO3和双钙钛矿结构氧化物Ba2(RE,Y)NO6;所述Ba2(RE,Y)NO6在超导膜中的总摩尔百分数不低于2.5%。所述混合人工钉扎相在超导膜中形成延厚度方向有序排列的柱状结构。本发明旨在克服在高速脉冲激光沉积技术,单一的第二相无法沿(RE,Y)‑123厚度方向有序排列的问题,也能有效克服含人工钉扎相(RE,Y)‑123膜厚度效应,能够在满足工业化高速生产的条件下,显著提高超导膜在磁场下载流能力。

Description

一种含混合人工钉扎相的(RE,Y)-123超导膜及其制备方法
技术领域
本发明涉及超导材料制备技术领域,具体地,涉及一种含混合人工钉扎相的(RE,Y)-123超导膜及其制备方法,尤其涉及一种适用于生产含有混合人工钉扎相二代高温超导带材的工艺方法,可以在高速沉积条件下获得具有沿厚度方向有序柱状结构的人工钉扎相,显著提高超导带材磁场下载流能力的方法。
背景技术
第二代高温超导带材作为一类有重要应用前景的实用超导材料,其核心功能层为(RE,Y)-Ba-Cu-O铜氧化合物,以下简写为(RE,Y)-123。与其他实用超导材料相比,该类铜氧化合物具有高超导转变温度,高载流能力,高不可逆场等优势。将这种材料以薄膜外延的方式沉积在柔性基带上,可获得“涂层导体”,即第二代高温超导带材(以下简称二代带材)。二代带材在高温温区,特别是在外加磁场下,工程电流密度高、力学性能优异;同时它生产原料成本低,具有潜在的价格优势。这种材料未来有望作为基础材料支撑,推动强磁场的特种医疗、大科学装备、紧凑核聚变等超导实用技术的发展。
面向强磁场的应用,大量研究聚焦在提升第二代高温超导带材低温外场的载流能力(即外加磁场条件下的承载的最大电流值,通常外加磁场可以为中低场,如0-5T,高场,如10T以上)。通常的技术方案是在超导膜中引入第二相,即“人工钉扎相”(SuperconductorScience and Technology 30.12(2017):123001)。这方面的研究始于2004年(Naturematerials 3.7(2004):439)。经过近20年的发展,有大量学者研究了第二相的种类(US20190318849A1,US20160172080A1,US20110287939A1,US20110034336A1),但其都是在较低生长速度下(<1纳米/秒)生成第二相,且采用的第二相材料都是单一材料。二代超导带材的在场载流密度提高至2010年研究水平的50倍(Superconductor Science andTechnology 31.10(2018):10LT01),带材性能达到了低温超导材料Nb3Sn的五倍,开启了二代超导带材在高场磁体应用的新纪元。引入人工钉扎相,重要的目的就是形成沿厚度方向有序的柱状结构,这就需要慢速生长,一般生长速率低于5~7纳米/秒(IEEE Transactionson Applied Superconductivity 28.4(2018):6600604)。当生长速率高于10纳米/秒以上,沿厚度方向有序的柱状结构被破坏,第二相形成纳米点、倾斜的纳米棒,或者两者的混合结构(2017Jpn.J.Appl.Phys.56 015601),这使得超导膜载流量与具有柱状结构的存在较大差异。这一生长速度的限制导致高性能带材产量较低,无法满足大规模应用的需求。
发明内容
针对现有技术中的生长速度的限制,本发明提供一种含混合人工钉扎相的(RE,Y)-123(即(RE,Y)Ba2Cu3+xO7的简写,其中(RE,Y)表示RE和/或Y)超导膜及其制备方法,能够在高速生产的条件下(生长速度高于20纳米/秒)依然获得沿厚度方向有序柱状结构的第二相。
本发明的目的是通过以下技术方案实现的:
本发明提供了一种含混合人工钉扎相的(RE,Y)-123超导膜,所述的(RE,Y)-123超导膜母相中Cu的化学计量比在3.05-5之间,即(RE,Y)Ba2Cu3+xO7中,x含量为0.05-2;
所述混合人工钉扎相包括钙钛矿结构BaMO3和双钙钛矿结构氧化物Ba2(RE,Y)NO6
所述双钙钛矿结构氧化物Ba2(RE,Y)NO6在超导膜中的总摩尔百分数不低于2.5%;
所述混合人工钉扎相在超导膜中形成延厚度方向有序排列的柱状结构。
优选地,所述(RE,Y)-123超导膜中,RE选自Gd、Eu、Sm中的一种或者几种的混合稀土;
优选地,所述钙钛矿结构BaMO3中,M选自Zr、Hf、Sn中的一种或者几种的混合元素;所述双钙钛矿结构氧化物Ba2(RE,Y)NO6中,RE选自Gd、Eu、Sm中的一种或者几种的混合稀土,N选Nb、Ta中的一种或者几种的混合元素。
优选地,所述混合人工钉扎相在超导膜中的总摩尔百分数为5~20%。
本发明还提供了一种含混合人工钉扎相的(RE,Y)-123超导膜的制备方法,包括以下步骤:
S1、制备含有混合人工钉扎相的(RE,Y)-123超导靶材;
S2、选择双轴织构缓冲层的金属基带作为衬底;
S3、采用高速脉冲激光沉积技术将步骤S1的靶材在步骤S2所述的衬底上原位沉积,即得含混合人工钉扎相的(RE,Y)-123超导膜。
优选地,步骤S1中,所述靶材为复合金属氧化物靶材,其制备方法为:将第二相BaMO3和Ba2(RE,Y)NO6粉末与超导母相(RE,Y)-123粉末混合混匀,然后压制烧结,经表面处理后即获得含混合人工钉扎相的(RE,Y)-123超导靶材。
优选地,所述靶材密度达到理论密度的90%以上。
优选地,步骤S2中,所述金属基带为镍基或铜基柔性金属基带,所述金属基带为镍基或铜基柔性金属基带,所述金属基带上涂敷有单层或多层氧化物薄膜,氧化物薄膜的结构为CeO2/YSZ/Y2O3,MgO,LaMnO3/MgO/Y2O3/Al-O或CeO2/MgO/Y2O3/Al-O中的一种。
优选地,步骤S3中,所述原位沉积制备超导膜的生长速度大于20纳米/秒。
更优选地,所述原位沉积制备超导膜的生长速度为20~50纳米/秒。
优选地,步骤S3中,所述原位沉积制备的超导膜的厚度大于1微米,在场载流量较未采用本发明方法制备的超导膜有显著提高。
与现有技术相比,本发明具有如下有益效果:
1、本发明通过钙钛矿和双钙钛矿结构的第二相混合掺杂,同时增加超导母相(RE,Y)-123中Cu元素的化学计量比,因此在超高速脉冲激光沉积生长条件下(生长速度高于20纳米/秒),在混合人工钉扎相(RE,Y)-123超导膜中仍能获得沿厚度方向有序排列柱状结构的第二相。
2、本发明的方法不仅克服了在高速脉冲激光沉积技术下单一的第二相无法沿(RE,Y)BCO厚度方向有序排列的问题,也有效克服了含人工钉扎相的(RE,Y)-123超导膜的膜厚度效应,可制备厚度大于1微米的超导膜。
3、采用本发明获得的超导膜的在场载流能力明显提升,从而显著地提高了高性能超导带材的生产效率,提高单台脉冲激光沉积设备的产能。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为实施例1制备的超导膜的2D-X射线衍射花样;
图2为实施例1制备的超导膜的截面的透射电子显微镜照片;
图3为对比例1制备的超导膜的截面的透射电子显微镜照片。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
以下实施例所述的钙钛矿结构BaMO3、双钙钛矿结构氧化物Ba2(RE,Y)NO6的摩尔百分数为其在超导膜中的摩尔百分数。
实施例1
本实施例涉及一种含混合人工钉扎相的Gd-Ba-Cu-O(简称Gd-123)超导膜,混合人工钉扎相包括钙钛矿结构BaZrO3和双钙钛矿结构氧化物Ba2YNbO6,BaZrO3摩尔百分数为2%,Ba2YNbO6摩尔百分数为3%,(RE,Y)-123超导膜母相中Cu的化学计量比为3.05,其制备方法包括如下步骤:
(1)制备含有两种混合人工钉扎的Gd-123超导靶材:将摩尔百分数为2%的BaZrO3和摩尔百分数为3%的Ba2YNO6粉末与超导母相Gd-123粉末混合混匀,然后压制烧结,经表面处理获得两种混合人工钉扎的Gd-123超导靶材,靶材密度达到理论密度的90%。
(2)选择具有CeO2/MgO/Y2O3/Al-O双轴织构缓冲层的金属基带作为衬底;
(3)采用高速脉冲激光沉积技术将步骤(1)的靶材在步骤(2)所述的衬底上原位沉积,生长速度为20纳米/秒,沉积后得含混合人工钉扎相的Gd-123超导膜。
采用实施例1所述方法制备的超导膜的厚度为2微米,混合人工钉扎相BaZrO3和Ba2YNbO6在超导膜中仍能获得沿厚度方向有序排列柱状结构,其2D-X射线衍射花样如图1所示,图中箭头所指出的BaZrO3和Ba2YNbO6(101)晶面的衍射峰表明混合人工钉扎相形成了沿厚度方向的柱状结构,其截面的透射电子显微镜照片如图2所示,箭头指出了柱状晶的分布,其柱状结构的直径约为5nm,超导膜在场载流量在30K,1T条件下为15MA/cm2
实施例2
本实施例涉及一种含混合人工钉扎相的(Gd,Sm)-Ba-Cu-O(简称(Gd,Sm)-123)超导膜,混合人工钉扎相包括钙钛矿结构BaHfO3和双钙钛矿结构氧化物Ba2GdNbO6,BaHfO3摩尔百分数为4%,Ba2GdNbO6摩尔百分数为2.5%,(Gd,Sm)-123超导膜母相中Cu的化学计量比为3.5,其制备方法包括如下步骤:
(1)制备含有两种混合人工钉扎的(Gd,Sm)-123超导靶材:将摩尔百分数为4%的BaHfO3和摩尔百分数为2.5%的Ba2GdNbO6粉末与超导母相(Gd,Sm)-123粉末混合混匀,然后压制烧结,经表面处理获得两种混合人工钉扎的(Gd,Sm)-123超导靶材,靶材密度达到理论密度的95%。
(2)选择具有MgO双轴织构缓冲层的金属基带作为衬底;
(3)采用高速脉冲激光沉积技术将步骤(1)的靶材在步骤(2)所述的衬底上原位沉积,生长速度为50纳米/秒,沉积后得含混合人工钉扎相的(Gd,Sm)-123超导膜。
采用实施例2所述方法制备的超导膜的厚度为1微米,混合人工钉扎相BaHfO3和Ba2GdNbO6在超导膜中仍能获得沿厚度方向有序排列柱状结构,超导膜在场载流量在30K,1T条件下为13MA/cm2
实施例3
本实施例涉及一种含混合人工钉扎相的Y-Ba-Cu-O(简称Y-123)超导膜,混合人工钉扎相包括钙钛矿结构BaSnO3和双钙钛矿结构氧化物Ba2GdTaO6,BaSnO3摩尔百分数为6%,Ba2GdTaO6摩尔百分数为6%,Y-123超导膜母相中Cu的化学计量比为4,其制备方法包括如下步骤:
(1)制备含有两种混合人工钉扎的Y-123超导靶材:将摩尔百分数为6%的BaSnO3和摩尔百分数为6%的Ba2GdTaO6粉末与超导母相Y-123粉末混合混匀,然后压制烧结,经表面处理获得两种混合人工钉扎的Y-123超导靶材,靶材密度达到理论密度的92%。
(2)选择具有LaMnO3/MgO/Y2O3/Al-O双轴织构缓冲层的金属基带作为衬底;
(3)采用高速脉冲激光沉积技术将步骤(1)的靶材在步骤(2)所述的衬底上原位沉积,生长速度为25纳米/秒,沉积后得含混合人工钉扎相的Y-123超导膜。
采用实施例3所述方法制备的超导膜的厚度为2.5微米,混合人工钉扎相BaSnO3和Ba2GdTaO6在超导膜中仍能获得沿厚度方向有序排列柱状结构,超导膜在场载流量在4.2K,10T条件下为16MA/cm2
实施例4
本实施例涉及一种含混合人工钉扎相的(Eu,Gd)-Ba-Cu-O(简称(Eu,Gd)-123)超导膜,混合人工钉扎相包括钙钛矿结构BaSnO3,BaZrO3和双钙钛矿结构氧化物Ba2YTaO6,Ba2YNbO6,BaSnO3摩尔百分数为7%,BaZrO3摩尔百分数为8%,Ba2YTaO6摩尔百分数为2.5%,Ba2YNbO6摩尔百分数为2.5%,(Eu,Gd)-123超导膜母相中Cu的化学计量比为5,其制备方法包括如下步骤:
(1)制备含有两种混合人工钉扎的(Eu,Gd)-123超导靶材:将摩尔百分数为7%BaSnO3,摩尔百分数为8%BaZrO3,摩尔百分数为2.5%Ba2YTaO6,摩尔百分数为2.5%Ba2YNbO6与超导母相(Eu,Gd)-123粉末混合混匀,然后压制烧结,经表面处理获得两种混合人工钉扎的(Eu,Gd)-123超导靶材,靶材密度达到理论密度的97%。
(2)选择具有LaMnO3/MgO/Y2O3/Al-O双轴织构缓冲层的金属基带作为衬底;
(3)采用高速脉冲激光沉积技术将步骤(1)的靶材在步骤(2)所述的衬底上原位沉积,生长速度为25纳米/秒,沉积后得含混合人工钉扎相的(Eu,Gd)-123超导膜。
采用实施例4所述方法制备的超导膜的厚度为3微米,混合人工钉扎BaSnO3,BaZrO3,Ba2YTaO6,Ba2YNbO6在超导膜中仍能获得沿厚度方向有序排列柱状结构,超导膜在场载流量在4.2K,10T条件下为20MA/cm2
对比例1
本对比例涉及一种含混合人工钉扎相的Gd-Ba-Cu-O超导膜,所述方法与实施例1基本相同,不同之处仅在于:本对比例中,混合人工钉扎相为BaZrO3和Y2O3,摩尔百分数分别为2%和3%。
所得超导膜人工钉扎相BaZrO3和Y2O3在超导膜中结构为纳米点,无法在该高速生长速度下得到有序排列的柱状结构,其截面的透射电子显微镜照片如图3所示,从图中可以看出,该超导膜仅形成了纳米点(直径为5nm),无明显柱状结构。该超导膜在场载流量在30K,1T条件下为2MA/cm2
对比例2
本对比例涉及一种含人工钉扎相的Gd-Ba-Cu-O超导膜,所述方法与实施例1基本相同,不同之处仅在于:本对比例中,人工钉扎相仅为BaZrO3,摩尔百分数为5%。
所得超导膜人工钉扎相BaZrO3在超导膜中结构为纳米点,无法在该高速生长速度下得到有序排列的柱状结构,该超导膜在场载流量在30K,1T条件下为1.5MA/cm2
对比例3
本对比例涉及一种含混合人工钉扎相的(Gd,Sm)-Ba-Cu-O超导膜,所述方法与实施例2基本相同,不同之处仅在于:本对比例中,(Gd,Sm)-123超导膜母相中Cu的化学计量比为3。
所得超导膜的人工钉扎相BaHfO3和Ba2GdNbO6在超导膜中结构为纳米点和柱状结构的混合组织,超导膜在场载流量在30K,1T条件下为4MA/cm2
对比例4
本对比例涉及一种含混合人工钉扎相的Y-Ba-Cu-O超导膜,所述方法与实施例3基本相同,不同之处仅在于:本对比例中,Ba2GdTaO6摩尔百分数为2%。
所得超导膜的人工钉扎相BaSnO3和Ba2GdTaO6在超导膜中结构为纳米点,无法在该高速生长速度下得到有序排列的柱状结构,该超导膜在场载流量在4.2K,10T条件下为4MA/cm2
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (7)

1.一种含混合人工钉扎相的(RE,Y)-123超导膜,其特征在于,
所述的(RE,Y)-123超导膜母相中Cu的化学计量比在3.05-5之间;
所述混合人工钉扎相包括钙钛矿结构BaMO3和双钙钛矿结构氧化物Ba2(RE,Y)NO6
所述双钙钛矿结构氧化物Ba2(RE,Y)NO6在超导膜中的总摩尔百分数不低于2.5%;
所述混合人工钉扎相在超导膜中形成沿厚度方向有序排列的柱状结构;
所述(RE,Y)-123为(RE,Y)Ba2Cu3+xO7的简写,(RE,Y)表示RE和/或Y;
所述(RE,Y)-123超导膜中,RE选自Gd、Eu、Sm中的一种或者几种的混合稀土;
所述钙钛矿结构BaMO3中,M选自Zr、Hf、Sn中的一种或者几种的混合元素;所述双钙钛矿结构氧化物Ba2(RE,Y)NO6中,RE选自Gd、Eu、Sm中的一种或者几种的混合稀土,N选自Nb、Ta中的一种或者几种的混合元素。
2.根据权利要求1所述的含混合人工钉扎相的(RE,Y)-123超导膜,其特征在于,所述混合人工钉扎相在超导膜中的总摩尔百分数为5~20%。
3.一种根据权利要求1-2任一项所述的含混合人工钉扎相的(RE,Y)-123超导膜的制备方法,其特征在于,包括以下步骤:
S1、制备含有混合人工钉扎相的(RE,Y)-123超导靶材;
S2、选择双轴织构缓冲层的金属基带作为衬底;
S3、采用高速脉冲激光沉积技术将步骤S1的靶材在步骤S2所述的衬底上原位沉积,即得含混合人工钉扎相的(RE,Y)-123超导膜;
步骤S3中,所述原位沉积制备超导膜的生长速度大于20nm/s。
4.根据权利要求3所述的含混合人工钉扎相的(RE,Y)-123超导膜的制备方法,其特征在于,步骤S1中,所述靶材为复合金属氧化物靶材,其制备方法为:将第二相BaMO3和Ba2(RE,Y)NO6粉末与超导母相(RE,Y)-123粉末混合混匀,然后压制烧结,经表面处理后即获得含混合人工钉扎相的(RE,Y)-123超导靶材。
5.根据权利要求3或4所述的含混合人工钉扎相的(RE,Y)-123超导膜的制备方法,其特征在于,所述靶材密度达到理论密度的90%以上。
6.根据权利要求3所述的含混合人工钉扎相的(RE,Y)-123超导膜的制备方法,其特征在于,步骤S2中,所述金属基带为镍基或铜基柔性金属基带,所述金属基带上涂敷有单层或多层氧化物薄膜,氧化物薄膜的结构为CeO2/YSZ/Y2O3,MgO,LaMnO3/MgO/Y2O3/Al-O或CeO2/MgO/Y2O3/Al-O中的一种。
7.根据权利要求3所述的含混合人工钉扎相的(RE,Y)-123超导膜的制备方法,其特征在于,步骤S3中,所述原位沉积制备的超导膜的厚度大于1微米。
CN202011120751.9A 2020-10-19 2020-10-19 一种含混合人工钉扎相的(re,y)-123超导膜及其制备方法 Active CN112259673B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011120751.9A CN112259673B (zh) 2020-10-19 2020-10-19 一种含混合人工钉扎相的(re,y)-123超导膜及其制备方法
US16/950,435 US20220123193A1 (en) 2020-10-19 2020-11-17 (re,y)-123 superconducting film containing mixed artificial pinning centers and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011120751.9A CN112259673B (zh) 2020-10-19 2020-10-19 一种含混合人工钉扎相的(re,y)-123超导膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112259673A CN112259673A (zh) 2021-01-22
CN112259673B true CN112259673B (zh) 2021-07-13

Family

ID=74245597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011120751.9A Active CN112259673B (zh) 2020-10-19 2020-10-19 一种含混合人工钉扎相的(re,y)-123超导膜及其制备方法

Country Status (2)

Country Link
US (1) US20220123193A1 (zh)
CN (1) CN112259673B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114724769B (zh) * 2022-04-08 2022-12-06 上海交通大学 一种第二代高温超导带材制备方法及第二代高温超导带材
CN117079888B (zh) * 2023-02-07 2024-03-22 甚磁科技(上海)有限公司 一种含有双掺杂相rebco超导膜及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116766A (zh) * 1994-08-12 1996-02-14 宋毅 钇钡铜氧(ybco)超导体的低温下(t<960℃)熔融织构生长法
US7737087B2 (en) * 2004-07-27 2010-06-15 Los Alamos National Security, Llc Enhanced pinning in YBCO films with BaZrO3 nanoparticles
US8034745B2 (en) * 2005-08-01 2011-10-11 Amit Goyal High performance devices enabled by epitaxial, preferentially oriented, nanodots and/or nanorods
US20110034336A1 (en) * 2009-08-04 2011-02-10 Amit Goyal CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)NbO6 IN REBCO FILMS
US10040121B2 (en) * 2009-12-09 2018-08-07 Porite Taiwan Co., Ltd. Method for forming an interconnect of a solid oxide fuel cell
US20120035056A1 (en) * 2010-08-04 2012-02-09 Tolga Aytug Nb-DOPED PEROVSKITE FLUX PINNING OF REBCO BASED SUPERCONDUCTORS BY MOCVD
CN102142300B (zh) * 2010-12-12 2012-06-20 西北有色金属研究院 一种第二相纳米粒子掺杂ybco薄膜的制备方法
EP2728589A4 (en) * 2011-06-30 2015-04-15 Int Superconductivity Tech SUPRENEES OF THE RE-123 WIRE AND METHOD FOR THE PRODUCTION THEREOF
US9543496B2 (en) * 2014-03-17 2017-01-10 Uchicago Argonne, Llc Creation of high-pinning microstructures in post production YBCO coated conductors
KR102596245B1 (ko) * 2018-09-17 2023-11-01 광주과학기술원 자속고정점을 가지는 초전도체 박막 제작 장치 및 초전도체 박막
JP2022508690A (ja) * 2018-10-14 2022-01-19 メタル オキサイド テクノロジーズ,エルエルシー 柱状欠陥のない超電導体磁束ピンニング
CN111485213A (zh) * 2020-04-28 2020-08-04 上海超导科技股份有限公司 一种适用于生产二代高温超导带材的工艺方法
CN111785443B (zh) * 2020-07-15 2021-09-21 上海超导科技股份有限公司 一种多源离子喷射源非原位沉积生产高温超导带材的方法

Also Published As

Publication number Publication date
US20220123193A1 (en) 2022-04-21
CN112259673A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
US8354136B2 (en) Thick superconductor films with improved performance
US7902120B2 (en) High temperature superconductors having planar magnetic flux pinning centers and methods for making the same
Iida et al. Grain boundary characteristics of Fe-based superconductors
US20130196856A1 (en) Iron based superconducting structures and methods for making the same
JP2009507358A (ja) 高温超電導ワイヤ及びコイル
JPH1081518A (ja) 超伝導材料からなる製品の製造方法
CN112259673B (zh) 一种含混合人工钉扎相的(re,y)-123超导膜及其制备方法
KR100910601B1 (ko) 성능이 개선된 초전도체 후막
US20050074220A1 (en) Magnesium -boride superconducting wires fabricated using thin high temperature fibers
Gharahcheshmeh et al. Control of in-field performance of 25 mol.% Zr-added REBCO superconductor tapes
JP2009503792A (ja) Ybco被覆において高い臨界電流密度の改良された構造体
JP4452805B2 (ja) ビスマス系酸化物超電導薄膜及びその作製法
JP5799081B2 (ja) 単層コーティングによる酸化物厚膜
JP2008514545A5 (zh)
Qiao et al. Scale up of coated conductor substrate process by reel-to-reel planarization of amorphous oxide layers
Wang et al. Microstructure and superconducting properties of (BaTiO 3, Y 2 O 3)-doped YBCO films under different firing temperatures
Paidpilli et al. High-current, double-sided REBCO tapes by advanced MOCVD
KR970005158B1 (ko) 복합 산화물 초전도박막 또는 선재와 그 제작방법
JP3289134B2 (ja) 不確定性原理に基づく低異方性高温超伝導体とその製造方法
Wu et al. Thickness modulation effect of CeO 2 layer for YBCO films grown by pulsed laser deposition
CN117079888B (zh) 一种含有双掺杂相rebco超导膜及其制备方法
KR20150028256A (ko) 산화물 초전도 박막과 그의 제조 방법
JP4155796B2 (ja) 単結晶性薄膜
JP2004155647A (ja) 高温超伝導層の製造方法
Zhang et al. Fe-doped epitaxial YBCO films prepared by chemical solution deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant