CN112229938A - 一种全氟化合物检测用固相萃取柱及其制作方法和应用 - Google Patents
一种全氟化合物检测用固相萃取柱及其制作方法和应用 Download PDFInfo
- Publication number
- CN112229938A CN112229938A CN202011265972.5A CN202011265972A CN112229938A CN 112229938 A CN112229938 A CN 112229938A CN 202011265972 A CN202011265972 A CN 202011265972A CN 112229938 A CN112229938 A CN 112229938A
- Authority
- CN
- China
- Prior art keywords
- phase extraction
- extraction column
- column
- solid phase
- water sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002414 normal-phase solid-phase extraction Methods 0.000 title claims abstract description 72
- 150000001875 compounds Chemical class 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000007788 liquid Substances 0.000 claims abstract description 24
- 238000001514 detection method Methods 0.000 claims abstract description 9
- 238000012856 packing Methods 0.000 claims abstract description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 63
- 239000002048 multi walled nanotube Substances 0.000 claims description 24
- 239000000945 filler Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- -1 perfluoro compound Chemical class 0.000 claims description 10
- 239000003480 eluent Substances 0.000 claims description 8
- 238000010828 elution Methods 0.000 claims description 8
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 claims description 5
- 239000012528 membrane Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 238000007664 blowing Methods 0.000 claims description 4
- 238000002386 leaching Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 4
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 4
- 239000012498 ultrapure water Substances 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 10
- 238000000926 separation method Methods 0.000 abstract description 4
- 238000000605 extraction Methods 0.000 abstract description 3
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 238000001179 sorption measurement Methods 0.000 description 10
- 238000011084 recovery Methods 0.000 description 8
- 238000011049 filling Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000012156 elution solvent Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000005661 hydrophobic surface Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- ABDBNWQRPYOPDF-UHFFFAOYSA-N carbonofluoridic acid Chemical class OC(F)=O ABDBNWQRPYOPDF-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical class OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- JGTNAGYHADQMCM-UHFFFAOYSA-N perfluorobutanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F JGTNAGYHADQMCM-UHFFFAOYSA-N 0.000 description 1
- YFSUTJLHUFNCNZ-UHFFFAOYSA-N perfluorooctane-1-sulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-N 0.000 description 1
- SNGREZUHAYWORS-UHFFFAOYSA-N perfluorooctanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-N 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N30/08—Preparation using an enricher
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/182—Specific anions in water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/1826—Organic contamination in water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N2030/062—Preparation extracting sample from raw material
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Sampling And Sample Adjustment (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明公开了一种用于水样中全氟化合物检测的前处理固相萃取柱及其制作方法和应用,固相萃取柱包括:柱管,柱管的底部设有出液口,柱管内自出液端由下至上依次设有下筛板、填料层、上筛板;下筛板和上筛板分别与柱管内壁过盈配合安装;所述柱管顶部设有进液口。本发明的水样中全氟化合物的固相萃取柱,操作简单,萃取效果好,大大提高检测灵敏度,适合与大体积水样中低浓度全氟化合物的预处理,在水样中全氟化合物富集分离方面具有很好的应用前景。
Description
技术领域
本发明涉及环境水样检测技术领域,具体涉及一种全氟化合物检测用固相萃取柱及其制作方法和应用。
背景技术
全氟化合物(PFCS)是一类人为生产的烷基链上每个氢原子被氟原子取代的新型持久性有机污染物,主要包括全氟羧酸(PFCAs)和全氟磺酸(PFSAs)。其具有极其特殊的稳定性和疏水疏油特性,使得他们广泛应用于各个领域并且在环境中长期存在。由于其具有高毒、强持久性、在生物体内长时间留存并进行富集、并随大气进行长距离迁移,甚至通过食物链进行生物放大,对人体健康造成极大潜在威胁,引起全球决策者和科学家的关注和重视,其中检出率最高的全氟辛酸和全氟辛烷磺酸已被列入斯德哥尔摩公约。
水样中全氟化合物痕量或超痕量存在且全氟化合物碳链跨度大,其同系物间的理化性质差异大,这给水样中全氟化合物的检测带来难度。当前固相萃取柱填料单一,无法满足当前的水样中全氟化合物检测的需要。
发明内容
本发明要解决当前固相萃取柱填料单一,无法满足当前的水样中全氟化合物检测的需要的缺陷,提供一种全氟化合物检测用固相萃取柱及其制作方法和应用。
新型纳米材料由于比表面积大,吸附能力强且表面易于修饰性,其作为固相萃取吸附剂越来越受到关注。
多壁碳纳米管是以碳为基础的纳米材料,是一种理想的固相萃取吸附剂,结合全氟化合物的阴离子特性,通过表面阳性氨基化修饰后大大提高吸附性能。因此,开发基于氨基化多壁碳纳米管基质的新型固相萃取柱并探索其最佳的应用方法,以实现水样中全氟化合物的超痕量富集,将在实际市场中具有广阔的应用前景。
本发明提供一种用于水样中全氟化合物检测的固相萃取柱,包括:
柱管,所述柱管的底部设有出液口,柱管内自出液端由下至上依次设有下筛板、填料层、上筛板;
所述下筛板和上筛板分别与柱管内壁过盈配合安装;
所述柱管顶部设有进液口。
优选的,所述填料为氨基化多壁碳纳米管(纯度>95%,长度50um,内径3-5nm,外径8-15nm。优选的填料用量为100mg。
氨基化多壁碳纳米管是一种碳基新型纳米材料,具有多孔的疏水表面和离域大π电子系,且表面修饰有阳性的氨基,能够与阴离子特性的全氟化合物静电结合,具有极强的吸附能力和极大的吸附容量。通过筛选洗脱液及调节洗脱液的酸碱度可以将目标物从萃取柱上洗脱,实现水样中全氟化合物的富集分离,具有广阔的应用前景。
优选的,所述柱管内径1cm、长度为10cm,容量为5mL,所述柱管为聚丙烯柱管,所述下筛板和上筛板均为聚乙烯板。
可按照如下步骤制作固相萃取柱:在柱管内的出液端安装下筛板,再将填料从进液口分层填至柱管内,再将上筛板安装入柱管内,压平压紧即得。
其中一些实施例中,将填料氨基多壁碳纳米管从进液口填至柱管内。
固相萃取柱萃取水样中全氟化合物的方法,包括步骤如下:
步骤一:准确量取待测水样品,准确加入全氟化合物内标标准品,充分涡旋混匀。
步骤二:固相萃取柱依次经过甲醇和纯水活化平衡后,将加入全氟化合物内标标准品的水样转移至固相萃取柱,通过负压装置使待测水样经过固相萃取柱,使水样中全氟化合物富集在固相萃取柱上;
步骤三:采用3-5mL超纯水淋洗固相萃取柱,以除去强极性干扰物;
步骤四:采用甲醇洗脱固相萃取柱,收集洗脱液,并氮吹至干,在用甲醇定容至0.2mL,涡旋后过0.22μm滤膜,待LC-MS/MS检测。
进一步的,步骤一中将10mL待测水样加入1ng内标标准品;步骤二中依次经过3mL甲醇和纯水活化平衡,待测水样经过固相萃取柱的流速为1mL/min;步骤四中将10mL甲醇洗脱固相萃取柱,洗脱流速为1mL/min。
本发明与现有技术相比,其有益效果为:
第一:本发明的固相萃取柱制作方法简单,便于大规模生产,还可以由检测人员自行装填,具有极强的实用性;
第二:本发明的固相萃取柱对全氟化合物的富集容量大,可用于大体积水样中全氟化合物的固相萃取。
第三:本发明的水样中全氟化合物固相萃取柱,富集效果好,可大大提高检测的灵敏度。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明的水样中全氟化合物固相萃取柱的结构示意图;
图2为不同填充材料对水样中典型全氟化合物吸附率的柱状图;
图3为不同洗脱溶剂对典型全氟化合物洗脱回收率的柱状图;
图4为实际水样的10种典型全氟化合物添加回收率的柱状图;
其中,1、柱管;2、上筛板;3、填料层;4、下筛板;5、出液口;6、进液口。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例
本发明提供一种用于水样中全氟化合物检测的固相萃取柱,包括:
柱管1,柱管1顶部设有进液口6,底部设有出液口5;柱管1内自出液端由下至上依次设有下筛板4、填料层3、上筛板2;
所述下筛板4和上筛板2分别与柱管1内壁过盈配合安装;
所述填料层3为氨基化多壁碳纳米管。氨基化多壁碳纳米管用量为100mg,纯度>95%,长度50um,内径3-5nm,外径8-15nm。
氨基化多壁碳纳米管是一种碳基新型纳米材料,具有多孔的疏水表面和离域大π电子系,且表面修饰有阳性的氨基,能够与阴离子特性的全氟化合物静电结合,具有极强的吸附能力和极大的吸附容量。通过筛选洗脱液及调节洗脱液的酸碱度可以将目标物从萃取柱上洗脱,实现水样中全氟化合物的富集分离,具有广阔的应用前景。
在一个实施例中,所述柱管1内径1cm、长度为10cm,容量为5mL,所述柱管1为聚丙烯柱管,所述下筛板4和上筛板2均为聚乙烯板。
本发明还提供一种所述的用于水样中全氟化合物检测的固相萃取柱的制作方法,步骤如下:在柱管1内的出液端安装下筛板4,再将填料从进液口6填至柱管1内,再将上筛板2安装入柱管1内,压平压紧即得。
用于水样中全氟化合物检测的固相萃取柱富集水样中全氟化合物的方法,步骤如下:
步骤一:准确量取待测水样品,准确加入全氟化合物内标标准品,充分涡旋混匀。
步骤二:固相萃取柱依次经过甲醇和纯水活化平衡后,将加入全氟化合物内标标准品的水样转移至固相萃取柱,通过负压装置使待测水样经过固相萃取柱,使水样中全氟化合物富集在固相萃取柱上;
步骤三:采用3-5mL超纯水淋洗固相萃取柱,以除去强极性干扰物;
步骤四:采用甲醇洗脱固相萃取柱,收集洗脱液,并氮吹至干,在用甲醇定容至0.2mL,涡旋后过0.22μm滤膜,待LC-MS/MS检测。
其中一些实施例中,步骤一中将10mL待测水样加入1ng内标标准品;步骤二中依次经过3mL甲醇和纯水活化平衡,待测水样经过固相萃取柱的流速为1mL/min;步骤四中将10mL甲醇洗脱固相萃取柱,洗脱流速为1mL/min。
氨基化多壁碳纳米管>95%,内径3~5nm,外径8~5nm,长度50um,购自阿拉丁。
固相萃取柱填料的筛选
选取3种纳米材料(多壁碳纳米管、羧基化多壁碳纳米管、氨基化多壁碳纳米管)3个不同的用量(50mg,100mg,150mg),分别装入底部装下筛板的空柱管中,并在填料上装入上筛板,适当压紧,制备成9种固相萃取柱。取10mL水样,负压装置过柱后,收集全部流出液。
图2为不同填充材料对水样中全氟化合物吸附率的柱状图,图2结果显示测试的氨基化多壁碳的富集效果最好,多壁碳纳米管富集效果对短链的PFBS的吸附较差,羧基化多壁碳纳米管吸附效果最差。100mg和150mg氨基化多壁碳纳米管均有较好的富集效果且无显著差异。
洗脱溶剂的筛选
将100mg氨基化多壁碳纳米管装填固相萃取柱水样过滤后,选取4种洗脱溶剂(甲醇、乙腈、丙酮、乙酸乙酯)10mL用量洗脱固相萃取柱,洗脱液氮吹至干,0.2mL甲醇复溶后,过0.22um有机滤膜后,LC-MS/MS测试。
图3为不同洗脱溶剂对全氟化合物洗脱回收率的柱状图,图3结果显示甲醇的洗脱效果最好,洗脱回收率在75%以上。
以全氟化合物添加回收率依据,开展水样中全氟化合物的添加回收试验,内标法定量。图4为实际水样的10种典型全氟化合物添加回收率的柱状图;结果显示本发明的固相萃取柱的添加回收结果均在80%-120%之间,符合水样中检测的要求,说明全氟化合物在氨基化多壁碳纳米管的固相萃取柱中具有较好的富集分离效果。因此将100mg氨基化多壁碳纳米管作为水样中全氟化合物固相萃取柱填料。
水样中全氟化合物固相萃取柱原料和制备
(1)原料:
柱管:容量5mL,内径为1cm、长度为10cm;柱管内填料的填充量为200mg;
筛板:孔径为10μm的聚乙烯板。
(2)制备:
在柱管出液端安装一片下筛板,再将50mg或100mg氨基化多壁碳纳米管从进液口端装填至柱管中,在将上筛板安装入柱管内,其中上筛板和下筛板过盈配合安装,压紧即得。
对比实验发现100mg制得的净化柱净化效果较好,由此可知,将100mg的氨基化多壁碳纳米管装填,以此质量为填料的制备的净化柱可达到较好的净化效果。
应用例:利用100mg氨基化多壁碳纳米管制得的水样中全氟化合物固相萃取柱固相萃取水样中全氟化合物
(1)准确量取10mL待测水样品,准确加入1ng全氟化合物内标标准品,充分涡旋混匀。
(2)固相萃取柱依次经过3mL甲醇和纯水活化平衡后,将加入全氟化合物内标标准品的水样转移至固相萃取柱,通过负压装置使待测水样经过固相萃取柱,流速控制在1mL/min,使水样中全氟化合物富集在固相萃取柱上。
(3)用3-5mL超纯水淋洗固相萃取柱后,采用10mL甲醇洗脱固相萃取柱,收集洗脱液,并氮吹至干,在用甲醇定容至0.2mL,涡旋后过0.22μm滤膜,待LC-MS/MS检测。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (9)
1.一种全氟化合物检测用固相萃取柱,其特征在于,包括柱管(1),所述柱管(1)的底部设有出液口(5),柱管(1)内自出液端由下至上依次设有下筛板(4)、填料层(3)和上筛板(6);所述下筛板(4)和上筛板(6)分别与柱管(1)内壁过盈配合安装。
2.根据权利要求1所述的全氟化合物检测用固相萃取柱,其特征在于,所述填料层(3)的内径3-5 nm,外径8-15 nm。
3.根据权利要求1所述的全氟化合物检测用固相萃取柱,其特征在于,所述填料层(3)为氨基化多壁碳纳米管,纯度>95%。
4.根据权利要求2所述的全氟化合物检测用固相萃取柱,其特征在于,所述填料层(5)氨基多壁碳纳米管中填料的用量为100 mg±10mg。
5.根据权利要求1所述的全氟化合物检测用固相萃取柱,其特征在于,所述柱管(1)内径1cm,长度为10 cm,容量为5 mL。
6.根据权利要求1所述的全氟化合物检测用固相萃取柱,其特征在于,所述柱管(1)为聚丙烯柱管,所述下筛板(4)和上筛板(6)均为聚乙烯板。
7.权利要求1所述的全氟化合物检测用固相萃取柱的制作方法,其特征在于,在柱管(1)内的出液端安装下筛板(4),再将填料从进液口(7)分层填至柱管(1)内,再将上筛板(6)安装入柱管(1)内,压平压紧即得。
8.权利要求1所述的固相萃取柱萃取水样中全氟化合物的方法,其特征在于,步骤如下:
S1、准确量取待测水样品,准确加入全氟化合物内标标准品,充分涡旋混匀;
S2、固相萃取柱依次经过甲醇和纯水活化平衡后,将加入全氟化合物内标标准品的水样转移至固相萃取柱,通过负压装置使待测水样经过固相萃取柱,使水样中全氟化合物富集在固相萃取柱上;
S3、采用3-5 mL超纯水淋洗固相萃取柱,以除去强极性干扰物;
S4、采用甲醇洗脱固相萃取柱,收集洗脱液,并氮吹至干,在用甲醇定容,涡旋后过滤膜,待LC-MS/MS检测。
9.根据权利要求8所述的检测的方法,其特征在于,S1中将10 mL待测水样加入1 ng内标标准品;S2中依次经过3 mL甲醇和纯水活化平衡,待测水样经过固相萃取柱的流速为1mL/min;S4中将10 mL甲醇洗脱固相萃取柱,洗脱流速为1 mL/min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011265972.5A CN112229938A (zh) | 2020-11-13 | 2020-11-13 | 一种全氟化合物检测用固相萃取柱及其制作方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011265972.5A CN112229938A (zh) | 2020-11-13 | 2020-11-13 | 一种全氟化合物检测用固相萃取柱及其制作方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112229938A true CN112229938A (zh) | 2021-01-15 |
Family
ID=74124857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011265972.5A Pending CN112229938A (zh) | 2020-11-13 | 2020-11-13 | 一种全氟化合物检测用固相萃取柱及其制作方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112229938A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113419013A (zh) * | 2021-08-11 | 2021-09-21 | 山东省分析测试中心 | 一种分析环境水样中全氟烷基酸类污染物的方法及应用 |
CN115341339A (zh) * | 2022-08-25 | 2022-11-15 | 武汉大学 | 用于全氟多氟类化合物检测分析的丝素蛋白复合纤维膜及方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108159734A (zh) * | 2018-01-12 | 2018-06-15 | 浙江省食品药品检验研究院 | 一种氨基化多壁碳纳米管固相萃取柱及其制备方法 |
CN111307997A (zh) * | 2020-04-01 | 2020-06-19 | 上海市农业科学院 | 用于全氟化合物检测的前处理快速净化柱及其制作方法和应用 |
CN111389372A (zh) * | 2020-05-15 | 2020-07-10 | 安阳工学院 | 全氟酸类化合物专用氧化石墨烯气凝胶固相萃取柱及其制备方法 |
-
2020
- 2020-11-13 CN CN202011265972.5A patent/CN112229938A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108159734A (zh) * | 2018-01-12 | 2018-06-15 | 浙江省食品药品检验研究院 | 一种氨基化多壁碳纳米管固相萃取柱及其制备方法 |
CN111307997A (zh) * | 2020-04-01 | 2020-06-19 | 上海市农业科学院 | 用于全氟化合物检测的前处理快速净化柱及其制作方法和应用 |
CN111389372A (zh) * | 2020-05-15 | 2020-07-10 | 安阳工学院 | 全氟酸类化合物专用氧化石墨烯气凝胶固相萃取柱及其制备方法 |
Non-Patent Citations (2)
Title |
---|
ANDREA SPELTINI等: "Solid-phase extraction of PFOA and PFOS from surface waters on functionalized multiwalled carbon nanotubes followed by UPLC–ESI-MS", 《ANALYTICAL AND BIOANALYTICAL CHEMISTRY》 * |
刘江花等: "新兴纳米材料在食品安全检测样品前处理中的应用", 《食品安全质量检测学报》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113419013A (zh) * | 2021-08-11 | 2021-09-21 | 山东省分析测试中心 | 一种分析环境水样中全氟烷基酸类污染物的方法及应用 |
CN115341339A (zh) * | 2022-08-25 | 2022-11-15 | 武汉大学 | 用于全氟多氟类化合物检测分析的丝素蛋白复合纤维膜及方法 |
CN115341339B (zh) * | 2022-08-25 | 2024-03-22 | 武汉大学 | 用于全氟多氟类化合物检测分析的丝素蛋白复合纤维膜及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Electrospinning fabrication of covalent organic framework composite nanofibers for pipette tip solid phase extraction of tetracycline antibiotics in grass carp and duck | |
Wang et al. | Magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the simultaneous enantiomeric analysis of five β-blockers in the environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry | |
Yongfeng et al. | Molecularly imprinted polymers of allyl-β-cyclodextrin and methacrylic acid for the solid-phase extraction of phthalate | |
Cao et al. | Metal-organic framework UiO-66 for rapid dispersive solid phase extraction of neonicotinoid insecticides in water samples | |
Zhou et al. | Preparation of magnetic superhydrophilic molecularly imprinted composite resin based on multi-walled carbon nanotubes to detect triazines in environmental water | |
Zhang et al. | Polydopamine-based immobilization of zeolitic imidazolate framework-8 for in-tube solid-phase microextraction | |
CN112229938A (zh) | 一种全氟化合物检测用固相萃取柱及其制作方法和应用 | |
Zang et al. | Solid phase microextraction of polycyclic aromatic hydrocarbons from water samples by a fiber coated with covalent organic framework modified graphitic carbon nitride | |
Wang et al. | Development of magnetic graphene@ hydrophilic polydopamine for the enrichment and analysis of phthalates in environmental water samples | |
Yin et al. | Magnetic molecularly imprinted polydopamine nanolayer on multiwalled carbon nanotubes surface for protein capture | |
Gao et al. | Constructing chiral caves and efficiently separating enantiomers of glutamic acid with novel surface-imprinting technique | |
CN113842901B (zh) | 一种海胆形MOFs@COFs核壳结构材料及其制备方法与应用 | |
CN102974324A (zh) | 一种强极性大孔吸附树脂 | |
Liu et al. | Facile mechanochemistry synthesis of magnetic covalent organic framework composites for efficient extraction of microcystins in lake water samples | |
Chen et al. | High extraction efficiency for polar aromatic compounds in natural water samples using multiwalled carbon nanotubes/Nafion solid-phase microextraction coating | |
Wang et al. | Co-Al bimetallic hydroxide nanocomposites coating for online in-tube solid-phase microextraction | |
Yuan et al. | Simultaneous enantiomeric analysis of chiral non-steroidal anti-inflammatory drugs in water, river sediment, and sludge using chiral liquid chromatography-tandem mass spectrometry | |
Zhang et al. | Analysis of nitrobenzene compounds in water and soil samples by graphene composite-based solid-phase microextraction coupled with gas chromatography–mass spectrometry | |
Jafari et al. | Evaluation of carbon nanotubes as solid-phase extraction sorbent for the removal of cephalexin from aqueous solution | |
Gao et al. | Porous covalent organic frameworks-improved solid phase microextraction ambient mass spectrometry for ultrasensitive analysis of tetrabromobisphenol-A analogs | |
Intrchom et al. | Analytical sample preparation, preconcentration and chromatographic separation on carbon nanotubes | |
CN113203819A (zh) | 基于羟基化共价有机骨架材料分离富集糖皮质激素的方法 | |
Gubin et al. | Ionic-liquid-modified magnetite nanoparticles for MSPE-GC-MS determination of 2, 4-D butyl ester and its metabolites in water, soil, and bottom sediments | |
CN104807688A (zh) | 一种萃取富集大体积环境水样中微量多环芳烃的方法 | |
Xiang et al. | Polyelectrolyte multilayers on magnetic silica as a new sorbent for the separation of trace copper in food samples and determination by flame atomic absorption spectrometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210115 |