CN112229816B - 基于opls-spa-mix-pls的木材弹性模量预测方法 - Google Patents

基于opls-spa-mix-pls的木材弹性模量预测方法 Download PDF

Info

Publication number
CN112229816B
CN112229816B CN202010918281.4A CN202010918281A CN112229816B CN 112229816 B CN112229816 B CN 112229816B CN 202010918281 A CN202010918281 A CN 202010918281A CN 112229816 B CN112229816 B CN 112229816B
Authority
CN
China
Prior art keywords
matrix
pls
mix
opls
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010918281.4A
Other languages
English (en)
Other versions
CN112229816A (zh
Inventor
张怡卓
于慧伶
蒋大鹏
张健
罗泽
葛奕麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Shengdong Technology Development Co ltd
Original Assignee
Jiangsu Shengdong Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Shengdong Technology Development Co ltd filed Critical Jiangsu Shengdong Technology Development Co ltd
Priority to CN202010918281.4A priority Critical patent/CN112229816B/zh
Publication of CN112229816A publication Critical patent/CN112229816A/zh
Application granted granted Critical
Publication of CN112229816B publication Critical patent/CN112229816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Abstract

本发明公开了一种基于OPLS‑SPA‑MIX‑PLS的木材弹性模量预测方法,利用正交偏最小二乘法对获取的近红外光谱数据进行预处理,实现散射光、基线漂移和高频噪声等干扰因素的去除;接着,运用连续投影算法(SPA)提取有效的波长信息;最后,运用MIX‑PLS多专家模型寻找不同树种下的板材试件近红外光谱与板材弹性模量之间的关联,并利用归一化指数函数进行叠加,实现木材弹性模量光谱预测模型的构建,能够有效提高泛化能力。

Description

基于OPLS-SPA-MIX-PLS的木材弹性模量预测方法
技术领域
本发明涉及木材弹性模量预测技术领域,尤其涉及一种基于OPLS-SPA-MIX-PLS的木材弹性模量预测方法。
背景技术
木材的弹性模量是木材重要的力学指标,体现了该材料最重要,最具特征的力学性质。光谱分析技术具有操作过程简单、方便、快速等优势,已成为木材检测的重要手段,但是在实际应用中,基线漂移、光谱特征欠优、模型泛化能力低等问题还没有得到充分解决,木材弹性模量模型的精度与可靠性有待于提升,导致泛化能力不高。
发明内容
本发明的目的在于提供一种基于OPLS-SPA-MIX-PLS的木材弹性模量预测方法,能有效提高泛化能力。
为实现上述目的,本发明提供了一种基于OPLS-SPA-MIX-PLS的木材弹性模量预测方法,包括:
利用正交偏最小二乘法对获取的近红外光谱数据进行预处理;
利用连续投影算法对预处理后得到的光谱矩阵进行特征提取;
利用多专家模型对特征提取后的所述光谱矩阵进行非线性建模,并利用归一化指数函数进行叠加。
其中,利用正交偏最小二乘法对获取的近红外光谱数据进行预处理,包括:
将获取的近红外光谱数据中的原始光谱矩阵减去正交成分得分矩阵与正交成分载荷矩阵的乘积,并利用正交偏最小二乘法将得到的删除矩阵与弹性模量进行计算,得到光谱矩阵。
其中,利用正交偏最小二乘法对获取的近红外光谱数据进行预处理,还包括:
利用S-G卷积平滑对得到的所述光谱矩阵进行平滑处理。
其中,利用多专家模型对特征提取后的所述光谱矩阵进行非线性建模,并利用归一化指数函数进行叠加,包括:
利用贝叶斯计算法计算出多个所述光谱矩阵的叠加组成的多专家模型的后验概率,并得到指定所述光谱矩阵对应的概率值。
其中,利用多专家模型对特征提取后的所述光谱矩阵进行非线性建模,并利用归一化指数函数进行叠加,还包括:
将得到的所述概率值与归一化指数函数输出的概率分布进行逐项乘积,并根据得到全概率分布和所述归一化指数函数的权值,得到所述多专家模型的预测结果。
本发明的一种基于OPLS-SPA-MIX-PLS的木材弹性模量预测方法,利用正交偏最小二乘法对获取的近红外光谱数据进行预处理,实现散射光、基线漂移和高频噪声等干扰因素的去除;接着,运用连续投影算法(SPA)提取有效的波长信息;最后,运用MIX-PLS多专家模型寻找不同树种下的板材试件近红外光谱与板材弹性模量之间的关联,并利用归一化指数函数进行叠加,实现木材弹性模量光谱预测模型的构建,能够有效提高泛化能力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的一种基于OPLS-SPA-MIX-PLS的木材弹性模量预测方法的步骤示意图。
图2是本发明提供的MIX-PLS流程框图。
图3是本发明提供的SPA每个波段的投影占比。
图4是本发明提供的MIX-PLS模型校验结果。
图5是本发明提供的MIX-PLS模型验证预测结果。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请参阅图1,本发明提供一种基于OPLS-SPA-MIX-PLS的木材弹性模量预测方法,包括:
S101、利用正交偏最小二乘法对获取的近红外光谱数据进行预处理。
具体的,在利用正交偏最小二乘法(OPLS)进行预处理过程中,设X与y分别为光谱矩阵与木材弹性模量,X与y分别表示为:
Figure BDA0002665810740000031
y=U C+f
其中,E与f是残差矩阵,U是y的数据得分矩阵,C是y的预测成分权重矩阵,T为预测分数矩阵,To为正交分数矩阵。
进行OPLS处理时:首先将获取的近红外光谱数据中的原始光谱矩阵X减去正交成分得分矩阵与正交成分载荷矩阵的乘积
Figure BDA0002665810740000032
即是将与弹性模量y正交的变量剔除,即删除矩阵
Figure BDA0002665810740000033
为正交成分得分矩阵To与正交成分载荷矩阵
Figure BDA0002665810740000034
的乘积;然后,对删除矩阵Xp与弹性模量y进行偏最小二乘分析得Xp=TWT+E,其中预测成分得分矩阵T与预测成分载荷矩阵WT的乘积TWT为最终输出Xopls。OPLS算法根据弹性模量y校正原始近红外光谱矩阵X,将原始光谱矩阵X中与弹性模量y无关的正交部分去除并输出Xopls,实现散射光、基线漂移和高频噪声等干扰因素的去除。
实验发现,S-G卷积平滑对OPLS校正后光谱平滑处理效果很好。S-G卷积平滑为:
Figure BDA0002665810740000035
其中,x是吸光度,λ是波长,i,j是波长点数范围内的序号,△λ是波长间隔,k!是求导阶数的阶乘,αk是权重系数。
S102、利用连续投影算法对预处理后得到的光谱矩阵进行特征提取。
具体的,对预处理后光谱矩阵Xopls,进行连续投影算法(SPA)处理时:首先计算投影
Figure BDA0002665810740000041
最大的i,j,其中,xi与xj为预处理后光谱矩阵Xopls的两个子波段;然后,将此时的i记入待选波长字典中,设
Figure BDA0002665810740000042
接着,计算令投影
Figure BDA0002665810740000043
最大的i,并将i记入待选波长字典中。当字典中波长个数达到预定值时,终止程序运行。
S103、利用多专家模型对特征提取后的所述光谱矩阵进行非线性建模,并利用归一化指数函数进行叠加。
具体的,MIX-PLS模型源于多专家模型,通过各个PLS模型输出值的概率分布叠加近似得到真实的概率分布。其示意图如图2所示。其中,子系统是简单的PLS模型,f(x(i)|θ)是PLS子模型输出向量的概率分布,子系统的个数为p,门函数选用softmax函数。
Figure BDA0002665810740000044
为MIX-PLS模型参数空间
Figure BDA0002665810740000045
的参数向量,参数空间
Figure BDA0002665810740000046
每个维度都代表着MIX-PLS模型的一种参数,Z、y、X分别为p个PLS子系统输出的光谱矩阵的占比。则MIX-PLS的后验概率分布
Figure BDA0002665810740000047
可由贝叶斯公式计算而得,
Figure BDA0002665810740000048
Figure BDA0002665810740000049
分别如下公式表示:
Figure BDA00026658107400000410
其中,
Figure BDA00026658107400000411
为全概率公式,已知向量Z控制着子系统输出占比,在子系统确定为第p个PLS子系统的情况下,模型最终输出结果为p(y(i)|zp(i),x(i),ε)。p(y(i)|zp(i),x(i),ε)为一定条件下PLS输出的概率分布,ε为所有PLS子系统参数的集合,即ε={θ1,w1...θp,wp};p(zp(i)=1|x(i),V)为门函数的输出概率分布,两者的逐项乘积即为
Figure BDA00026658107400000413
的解。
p(y(i)|zp(i),x(i),ε)服从高斯分布N(y(i)|fp(x(i),θp),wp),y(i)与x(i)为第i组力学性能特征与光谱样本,θp与wp为mix-pls算法的参数矩阵,θp与wp的解析解如下:
θp=(XTΓpX)XTΓpy
Figure BDA00026658107400000412
其中,Γp=diag(γp(1),γp(2),...,γp(k))为对角矩阵,对角矩阵中第i个元素γp(i)为MIX-PLS的隐变量zp(i)在
Figure BDA0002665810740000052
上的期望。
p(zp(i)=1|x(i),Vold)为门函数的输出概率分布,门函数控制各个子系统的开闭,权衡各个子系统输出并决定最终输出。子系统p的个数为MIX-PLS模型参数,需要研究人员自行拟定。该概率分布服从softmax回归,Vold为softmax回归的权值,vl与vp为权值矩阵Vold中的向量,该分布表达式为:
Figure BDA0002665810740000051
所述方法还包括:
根据采集的不同时间下,不同树种的近红外光谱信息,构建对应的非线性预测模型。
具体的,以柞木、色木、桦木3种木材的弹性模量为研究对象,每种材料加工试件70个,共210个。实验材料经光谱仪测量后,按照国家标准《木材抗弯弹性模量测定方法》(GB1936.2-2009)中的测试步骤及规范,进行编号并测定其抗弯弹性模量,其中光谱仪为美国海洋光学公司NIRQuest512光谱仪。
NIRQuest512光谱仪光程为900-1700nm,光谱仪分辨率达到3nm,实验室温度维持在(22±2)℃、相对湿度维持在50%。光谱仪检测光纤探头外部安装环状垫片,探头与待测试件距离保持在2mm。光谱仪探头在试件表面匀速移动,采集到8组近红外光谱数据,求和取平均作为试件光谱数据。
为了比较光谱预处理方法面对外部环境变化的情况下稳定性强弱,本实验使用近红外光谱仪对210个实验材料进行采集,共采集3次并分别设得到的3组原始光谱数据组编号为A,B,C,每次测量需要重置近红外光谱仪。三次测量分别随机选择3个时间点、由不同人员测量。
基于OPLS的NIR预处理
NIRQuest512光谱仪采集的原始光谱数据波段数为512个,其中,OPLS方法循环次数设置为50,S-G卷积平滑的窗口设置为9,设近似多项式阶数为2。从3种木材的近红外原始光谱图可以看出从1650波段开始,波段数据出现震荡,伴随大量噪声。并且由于近红外光谱漂移等误差因素,一些光谱曲线在1200波段左右的吸收峰不明显。从经OPLS-SG算法处理后的近红外光谱图可以看出1650-1700波段的噪声基本消失,1200波段附近吸收峰变得清晰。
为了验证OPLS预处理方法的优越性,对光谱归一化后,分别选用OPLS-SG、SNV-SG、正交校正(OSC)-SG三种方法进行对板材全波谱的A,B,C这3组数据进行弹性模量PLS建模。从A、B、C,3组数据集选择一组建立弹性模量校准模型后,将其他两组的光谱数据输入到该模型中分析。由于A、B、C,3组数据分别由不同时间点、不同人员测量得到。那么模型评价指标越高,说明校准模型的鲁棒性越强。
表1预处理方法对建模结果的影响
Figure BDA0002665810740000061
不同模型在不同光谱数据组所建模型的模型评价指标表如表1所示。比较表1中模型评价指标Rc与RMSEC可知,OPLS处理过的光谱矩阵模型评估结果Rc与RMSEC最高,模型更稳定。OPLS方法可以识别并分离与木材力学性能正交的木材样品光谱矩阵,抑制由外部扰动引起的光谱波动、固体样品散射引起的基线漂移与信号噪声,保证模型的鲁棒性。
SPA-MIX-PLS光谱校准模型
采用SPA算法进行特征波段选择,SPA模型的最大组件数为20,执行五折搜索交叉验证对MIX-PLS的子系统最佳个数进行寻优。SPA模型所获得的最佳波段数为13,经校正集确定MIX-PLS模型的子系统个数为4个,此时相关系数Rc为0.95,均方根误差RMSEC为2.075。图3为SPA每个波段的投影占比,即光谱波段重要性占比,根据SPA光谱波段筛选结果,本研究在900到1700,512个波段中选取出权重最大的13个波段。
使用经SPA算法处理后训练集数据建立木材力学性能的MIX-PLS光谱辨识模型,并在预测集上对辨识模型进行评价图4与图5给出了MIX-PLS校准模型校验与预测结果。
为验证SPA-MIX-PLS回归模型的有效性,使用PLS、iPLS、BiPLS、PCR等几种建模方法进行对比,选择相关系数Rc、均方根误差RMSEC、预测相关系数Rp、预测均方根误差RMSEP作为评价指标,对所建模型结果进行比较分析,相关参数如表2所示。
表2各校准模型结果的比较
Figure BDA0002665810740000071
从表2可以看出,应用SPA算法后,iPLS、BiPLS、MIX-PLS精度都有所提升。虽然在校正集中SPA-MIX-PLS模型表现并非最佳,但多其泛化能力很强,在预测集中SPA-MIX-PLS模型预测精度最好。
本文以木材弹性模量预测为目标,以近红外光谱为检测手段,选用OPLS、SG方法对光谱进行预处理,应用SPA方法进行特征光谱优选,并利用MIX-PLS进行建模,选择柞木、色木、柞木三种材料验证方法有效性。实验结果表明:OPLS校正能够根据目标对象有针对性的对近红外光谱进行预处理,提高光谱矩阵质量,有效简化后续模型数据处理过程;SPA作为光谱矩阵特征提取经典算法,能够快速提取特征光谱波段,提高预测模型精度;MIX-PLS校准模型的相关系数Rc与Rp分别为0.95与0.90,均方根误差RMSEC与RMSEP分别为2.075与6.001,PLS、iPLS、BiPLS、PCR与MIX-PLS这5个校准模型的比较得出,MIX-PLS校准模型预测性能最优,泛化能力最强。
本发明的一种基于OPLS-SPA-MIX-PLS的木材弹性模量预测方法,利用正交偏最小二乘法对获取的近红外光谱数据进行预处理,实现散射光、基线漂移和高频噪声等干扰因素的去除;接着,运用连续投影算法(SPA)提取有效的波长信息;最后,运用MIX-PLS多专家模型寻找不同树种下的板材试件近红外光谱与板材弹性模量之间的关联,并利用归一化指数函数进行叠加,实现木材弹性模量光谱预测模型的构建,能够有效提高泛化能力。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (1)

1.一种基于OPLS-SPA-MIX-PLS的木材弹性模量预测方法,其特征在于,包括:
利用正交偏最小二乘法对获取的近红外光谱数据进行预处理;
利用连续投影算法对预处理后得到的光谱矩阵进行特征提取;
利用多专家模型对特征提取后的所述光谱矩阵进行非线性建模,并利用归一化指数函数进行叠加;
利用正交偏最小二乘法对获取的近红外光谱数据进行预处理,包括:
在利用正交偏最小二乘法OPLS进行预处理过程中,设X与y分别为光谱矩阵与木材弹性模量,X与y分别表示为:
Figure FDA0003577356930000011
y=U C+f
其中,E与f是残差矩阵,U是y的数据得分矩阵,C是y的预测成分权重矩阵,T为预测分数矩阵,To为正交分数矩阵;
进行OPLS处理时:首先将获取的近红外光谱数据中的原始光谱矩阵X减去正交成分得分矩阵与正交成分载荷矩阵的乘积
Figure FDA0003577356930000012
得到删除矩阵
Figure FDA0003577356930000013
为正交成分得分矩阵To与正交成分载荷矩阵
Figure FDA0003577356930000014
的乘积;然后,对删除矩阵Xp与弹性模量y进行偏最小二乘分析得Xp=TWT+E,其中预测成分得分矩阵T与预测成分载荷矩阵WT的乘积TWT为最终输出Xopls;OPLS算法根据弹性模量y校正原始近红外光谱矩阵X,将原始光谱矩阵X中与弹性模量y无关的正交部分去除并输出Xopls,实现散射光、基线漂移和高频噪声干扰因素的去除;
利用连续投影算法对预处理后得到的光谱矩阵进行特征提取,包括:
对预处理后光谱矩阵Xopls,进行连续投影算法处理时:首先计算投影
Figure FDA0003577356930000015
最大的i,j,其中,xi与xj为预处理后光谱矩阵Xopls的两个子波段;然后,将此时的i记入待选波长字典中,设
Figure FDA0003577356930000016
接着,计算令投影
Figure FDA0003577356930000017
最大的i,并将i记入待选波长字典中;当字典中波长个数达到预定值时,终止程序运行;
利用多专家模型对特征提取后的所述光谱矩阵进行非线性建模,并利用归一化指数函数进行叠加,包括:
MIX-PLS模型源于多专家模型,通过各个PLS模型输出值的概率分布叠加近似得到真实的概率分布;其中,子系统是简单的PLS模型,f(x(i)|θ)是PLS子模型输出向量的概率分布,子系统的个数为p,门函数选用softmax函数;
Figure FDA0003577356930000021
为MIX-PLS模型参数空间
Figure FDA0003577356930000022
的参数向量,参数空间
Figure FDA0003577356930000023
每个维度都代表着MIX-PLS模型的一种参数,Z、y、X分别为p个PLS子系统输出的光谱矩阵的占比,则MIX-PLS的后验概率分布
Figure FDA0003577356930000024
由贝叶斯公式计算而得,
Figure FDA0003577356930000025
Figure FDA0003577356930000026
分别如下公式表示:
Figure FDA0003577356930000027
其中,
Figure FDA0003577356930000028
为全概率公式,已知向量Z控制着子系统输出占比,在子系统确定为第p个PLS子系统的情况下,模型最终输出结果为p(y(i)|zp(i),x(i),ε);p(y(i)|zp(i),x(i),ε)为一定条件下PLS输出的概率分布,ε为所有PLS子系统参数的集合,即ε={θ1,w1...θp,wp};p(zp(i)=1|x(i),V)为门函数的输出概率分布,两者的逐项乘积即为
Figure FDA0003577356930000029
的解;
p(y(i)|zp(i),x(i),ε)服从高斯分布N(y(i)|fp(x(i),θp),wp),y(i)与x(i)为第i组力学性能特征与光谱样本,θp与wp为mix-pls算法的参数矩阵,θp与wp的解析解如下:
θp=(XTΓpX)XTΓpy
Figure FDA00035773569300000210
其中,Γp=diag(γp(1),γp(2),...,γp(k))为对角矩阵,对角矩阵中第i个元素γp(i)为MIX-PLS的隐变量zp(i)在
Figure FDA00035773569300000211
上的期望;
p(zp(i)=1|x(i),Vold)为门函数的输出概率分布,门函数控制各个子系统的开闭,权衡各个子系统输出并决定最终输出;子系统p的个数为MIX-PLS模型参数,该概率分布服从softmax回归,Vold为softmax回归的权值,vl与vp为权值矩阵Vold中的向量,分布表达式为:
Figure FDA0003577356930000031
CN202010918281.4A 2020-09-04 2020-09-04 基于opls-spa-mix-pls的木材弹性模量预测方法 Active CN112229816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010918281.4A CN112229816B (zh) 2020-09-04 2020-09-04 基于opls-spa-mix-pls的木材弹性模量预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010918281.4A CN112229816B (zh) 2020-09-04 2020-09-04 基于opls-spa-mix-pls的木材弹性模量预测方法

Publications (2)

Publication Number Publication Date
CN112229816A CN112229816A (zh) 2021-01-15
CN112229816B true CN112229816B (zh) 2022-06-07

Family

ID=74115969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010918281.4A Active CN112229816B (zh) 2020-09-04 2020-09-04 基于opls-spa-mix-pls的木材弹性模量预测方法

Country Status (1)

Country Link
CN (1) CN112229816B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115372310B (zh) * 2022-08-19 2023-07-04 江西农业大学 一种用近红外光谱技术预测湿地松弹性模量的方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064054A (zh) * 2017-02-28 2017-08-18 浙江大学 一种基于cc‑pls‑rbfnn优化模型的近红外光谱分析方法
CN107530064A (zh) * 2015-03-06 2018-01-02 英国质谱公司 气态样品的改进电离
WO2018010352A1 (zh) * 2016-07-11 2018-01-18 上海创和亿电子科技发展有限公司 一种定性定量相结合的近红外定量模型构建方法
CN109738600A (zh) * 2018-12-22 2019-05-10 河南农业大学 一种冷链肉制品微生物间歇性动态预测模型的构建方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107530064A (zh) * 2015-03-06 2018-01-02 英国质谱公司 气态样品的改进电离
WO2018010352A1 (zh) * 2016-07-11 2018-01-18 上海创和亿电子科技发展有限公司 一种定性定量相结合的近红外定量模型构建方法
CN107064054A (zh) * 2017-02-28 2017-08-18 浙江大学 一种基于cc‑pls‑rbfnn优化模型的近红外光谱分析方法
CN109738600A (zh) * 2018-12-22 2019-05-10 河南农业大学 一种冷链肉制品微生物间歇性动态预测模型的构建方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KF光谱优选的木材抗弯强度预测方法;于慧伶等;《光谱学与光谱分析》;20180930;全文 *
Nondestructive determination of the modulus of elasticity of Fraxinus mandschurica using near-infrared spectroscopy;Huiling Yu等;《Optical Engineering》;20180429;全文 *
Recognition of wood surface defects with near infrared spectroscopy and machine vision;Huiling Yu等;《J. For. Res.》;20190130;全文 *
The effects on customer satisfaction and customer loyalty by integrating marketing communication and after sale service into the traditional marketingmix model of Umrah travel services in Malaysia;Bestoon Abdulmaged Othman等;《Journal of Islamic Marketing》;20200320;全文 *
落叶松抗弯弹性模量的细观尺度建模方法;于慧伶等;《东北林业大学学报》;20181231;全文 *

Also Published As

Publication number Publication date
CN112229816A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
CN109324013B (zh) 利用高斯过程回归模型构建原油性质近红外快速分析方法
Ye et al. Non-destructive prediction of protein content in wheat using NIRS
CN109253985B (zh) 基于神经网络的近红外光谱识别古筝面板用木材等级的方法
Guo et al. Vis-NIR wavelength selection for non-destructive discriminant analysis of breed screening of transgenic sugarcane
CN109324014B (zh) 一种自适应的原油性质近红外快速预测方法
CN108169165B (zh) 基于太赫兹光谱和图像信息融合的麦芽糖混合物定量分析方法
CN108802002B (zh) 一种快速无损鉴别解除滞育的蚕卵拉曼光谱模型构建方法
Jiang et al. Using an optimal CC-PLSR-RBFNN model and NIR spectroscopy for the starch content determination in corn
CN112229816B (zh) 基于opls-spa-mix-pls的木材弹性模量预测方法
Ruan et al. A novel hybrid filter/wrapper method for feature selection in archaeological ceramics classification by laser-induced breakdown spectroscopy
CN114611582A (zh) 一种基于近红外光谱技术分析物质浓度的方法及系统
CN114216877B (zh) 茶叶近红外光谱分析中谱峰自动检测与重构方法及系统
Zhang et al. Uninformative biological variability elimination in apple soluble solids content inspection by using Fourier transform near-infrared spectroscopy combined with multivariate analysis and wavelength selection algorithm
CN110887798B (zh) 基于极端随机树的非线性全光谱水体浊度定量分析方法
CN110186870B (zh) 一种极限学习机光谱模型判别恩施玉露茶鲜叶产地的方法
Cao et al. Potential of near-infrared spectroscopy to detect defects on the surface of solid wood boards
CN114062306B (zh) 一种近红外光谱数据分段预处理方法
CN113049526B (zh) 一种基于太赫兹衰减全反射的玉米种子水分含量测定方法
Shi et al. Compression strength prediction of Xylosma racemosum using a transfer learning system based on near-infrared spectral data
CN115015120A (zh) 一种傅里叶红外光谱仪及其温漂在线校正方法
Huang et al. Neural network for classification of Chinese zither panel wood via near-infrared spectroscopy
Chen et al. A novel NIRS modelling method with OPLS-SPA and MIX-PLS for timber evaluation
CN109145887B (zh) 一种基于光谱潜变量混淆判别的阈值分析方法
CN110646371A (zh) 一种烟用香精香料含水量的测定方法
CN111103259B (zh) 基于光谱技术的煎炸油品质快速检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant