CN112226451A - Bacillus subtilis expression system and method for producing alpha-L-AFs by using same - Google Patents

Bacillus subtilis expression system and method for producing alpha-L-AFs by using same Download PDF

Info

Publication number
CN112226451A
CN112226451A CN202011143233.9A CN202011143233A CN112226451A CN 112226451 A CN112226451 A CN 112226451A CN 202011143233 A CN202011143233 A CN 202011143233A CN 112226451 A CN112226451 A CN 112226451A
Authority
CN
China
Prior art keywords
bacillus subtilis
expression system
arbf
arabinofuranosidase
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011143233.9A
Other languages
Chinese (zh)
Inventor
孙俊松
纪明华
段海燕
刘云辉
史吉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Advanced Research Institute of CAS
Original Assignee
Shanghai Advanced Research Institute of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Advanced Research Institute of CAS filed Critical Shanghai Advanced Research Institute of CAS
Priority to CN202011143233.9A priority Critical patent/CN112226451A/en
Publication of CN112226451A publication Critical patent/CN112226451A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01055Alpha-N-arabinofuranosidase (3.2.1.55)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a bacillus subtilis expression system and a method for producing alpha-L-AFs by using the same. The Bacillus subtilis expression system was established by inserting the xylose-induced T7RNA polymerase expression system at the aprE site of the Bacillus subtilis genome. The method for producing the alpha-L-arabinofuranosidase by using the bacillus subtilis expression system comprises the following steps: synthesizing a plasmid pMK4-T7 with a sequence shown as SEQ ID NO. 2, inserting an alpha-L-arabinofuranosidase encoding gene into the plasmid pMK4-T7 to obtain an expression plasmid pMK 4-T7-arbf; transforming the expression plasmid pMK4-T7-arbf into the Bacillus subtilis expression system of claim 1 to obtain Bacillus subtilis T7-arbf; the bacillus subtilis T7-arbf is fermented, cultured and secreted to produce alpha-L-arabinofuranosidase. The invention can efficiently express protein by taking cheap bran as an inducer; in a fermentation experiment, the highest enzyme activity of the alpha-L-arabinofuranosidase can reach 194.8 +/-4.1U/mL.

Description

Bacillus subtilis expression system and method for producing alpha-L-AFs by using same
Technical Field
The invention belongs to the technical field of construction of a bacillus subtilis expression system, and particularly relates to a bacillus subtilis expression system and a method for producing alpha-L-arabinofuranosidase by using the same.
Background
Bacillus subtilis, a GRAS (generally recognized As safe) species, is widely used in bioengineering As a basal disc cell, and is particularly useful for expressing food-related enzymes. Nevertheless, promoter tools in B.subtilis remain limited. The most widely used promoter is P43. Several new promoters have been reported in recent years, but their efficiency is still not superior to that of the T7 promoter in the T7 expression system. The T7 promoter was first used in E.coli and initiated to transcribe DNA sequences downstream of it with high efficiency by the action of T7RNA polymerase. In recent years, the T7 expression system has been reported to function in Bacillus, but it has not been reported in Bacillus subtilis ATCC6051 a. Compared with Bacillus subtilis model bacterium 168 and derivative strains thereof used in laboratory research, the Bacillus subtilis ATCC6051a also called A164 strain has better effect of secreting and expressing heterologous proteins, can grow faster in a culture medium containing peptone and has better potential for industrial application.
alpha-L-arabinofuranosidases (EC 3.2.1.55; alpha-L-arabinofuranosidases; alpha-L-AFs) can act specifically on alpha-L-arabinofuranosides, arabinoxylans or arabinogalactans, and can hydrolyze the (1,3) and/or (1,5) -position bonds, trimming the side chains containing alpha-L-arabinosyl groups. alpha-L-AFs can be used in a variety of industrial processes, such as the production of sugars or pharmaceutical compounds using biomass, the improvement of beverage flavor, bread storage, animal feed processing, and pulp delignification. According to sequence similarity and evolutionary relationship, the alpha-L-AFs can be divided into 5 glycosyl hydrolase families (GHs), namely GH3, GH43, GH51, GH54, GH62 and the like. Some α -L-AFs have been identified and overexpressed in E.coli, A.niger or Pichia pastoris, but secretory expression of α -L-AFs in B.subtilis has not been reported.
Disclosure of Invention
The invention aims to provide a bacillus subtilis expression system and a method for producing alpha-L-arabinofuranosidase by using the same.
The technical scheme adopted by the invention for realizing the purpose is as follows:
the invention provides a bacillus subtilis expression system which is established by inserting a T7RNA polymerase expression system induced by xylose into an aprE site of a bacillus subtilis genome.
As a preferred embodiment, the Bacillus subtilis is Bacillus subtilis 164S, which is obtained by integrating one copy of comk at the nprE site of Bacillus subtilis ATCC6051 a.
As a preferred embodiment, the DNA sequence of the expression system of T7RNA polymerase is shown in SEQ ID NO. 1.
The invention also provides application of the bacillus subtilis expression system in biotransformation or expression of enzyme protein. Specifically, the invention provides application of the bacillus subtilis expression system in production of alpha-L-arabinofuranosidase.
The invention also provides a method for producing alpha-L-arabinofuranosidase by using the bacillus subtilis expression system, which comprises the following steps:
step 1, synthesizing a plasmid pMK4-T7 with a sequence shown as SEQ ID NO. 2, inserting an alpha-L-arabinofuranosidase encoding gene into the plasmid pMK4-T7 to obtain an expression plasmid pMK 4-T7-arbf;
step 2, transforming the expression plasmid pMK4-T7-arbf into the Bacillus subtilis expression system of claim 1 to obtain Bacillus subtilis T7-arbf;
and 3, fermenting, culturing and secreting the bacillus subtilis T7-arbf to produce the alpha-L-arabinofuranosidase.
As a preferred embodiment, the DNA sequence of plasmid pMK4-T7-arbf in step 1 is shown in SEQ ID NO 3.
As a preferred embodiment, the amino acid sequence of the alpha-L-arabinofuranosidase in the step 1 is shown as SEQ ID NO. 4.
As a preferred embodiment, the Bacillus subtilis T7-arbf in the step 3 is subjected to fermentation culture in LB medium under the induction of xylose, xylan or bran.
As a preferred embodiment, the culture medium for fermentation culture of the bacillus subtilis T7-arbf is: LB medium + 3% (m/V) bran.
Compared with the prior art, the invention has the beneficial effects that:
1, the T7 expression system of the invention is different from other systems applied to bacillus, and the invention uses GFP and a high-efficiency synthetic promoter P43 as a control to verify the recombinant production of foreign proteins based on a T7 promoter.
2, the T7 expression system designed by the invention can efficiently express foreign proteins in bacillus subtilis due to unique genome integration sites, high transformation efficiency of host cells and high expression efficiency of T7RNA polymerase; the protein can be efficiently expressed by taking cheap bran as an inducer, and the highest enzyme activity of the alpha-L-arabinofuranosidase can reach 194.8 +/-4.1U/mL in a fermentation experiment.
3, the bacillus subtilis expression system has good application prospect in the aspects of protein expression, biotransformation and the like.
Drawings
FIG. 1 is a schematic diagram of the construction of recombinant Bacillus subtilis 164T7P according to the present invention.
FIG. 2 is a schematic representation of plasmid pMK4-T7 of the present invention.
FIG. 3 is a graph showing the data of the results of expressing GFP in the xylose-induced T7 expression system and the P43 expression system, respectively, in example 2 of the present invention.
FIG. 4 is a schematic representation of plasmid pMK4-T7-arbf of the present invention.
FIG. 5 is a graph showing the temperature-dependent change in the activity of recombinant Arbf expressed by Bacillus subtilis T7-Arbf in example 3 of the present invention.
FIG. 6 is a graph showing the pH-dependent activity of recombinant Arbf expressed by Bacillus subtilis T7-Arbf in example 3 of the present invention.
FIG. 7 is a graph comparing the expression results of recombinant Arbf obtained by using xylose and bran of the present invention as inducers, respectively.
Detailed Description
The technical solution of the present invention will be described in detail with reference to examples. The operations under the conditions not specified in the examples were carried out under the conventional conditions or the conditions recommended by the manufacturer. The reagents and biomaterials used below were all commercial products unless otherwise specified.
The sources of biomaterial used in the following examples are as follows:
bacillus subtilis 164S is derived from a laboratory deposited species, Bacillus subtilis ATCC6051a (also known as A164): one copy of comk was integrated at the nprE site of B.subtilis A164. Bacillus subtilis ATCC6051a is a model strain of American type culture collection (American type culture collection), and 6051a is a collection number thereof and is commercially available from American ATCC (American type culture Collection).
Coli BL21(DE3) was purchased from Biotechnology engineering (Shanghai) GmbH. The pMK4-P43-gfp was constructed from the literature "cloning and validation of a Bacillus neutral protease promoter" (DOI: 10.13386/j. issn 1002-0306.2016.13.030). pMK4-T7 is a synthetic plasmid (sequence shown in SEQ ID NO: 2), the T7 promoter, multiple cloning site and T7 terminator are inserted into the Pst I and Nde I sites of pMK 4. DNA synthesis and sequencing annotation work was performed by Biotechnology engineering (Shanghai) Inc. pMD19T is a cloning plasmid of engineering bioengineering, Inc.
2X Phanta Master Mix (cat # P511-01) used in the examples,
Figure BDA0002738865490000041
II One Step Cloning Kit (cat # C115-01) available from Biotech Inc. of Nanjing Novowed Zan; the SDS-PAGE gel kit is purchased from Biotechnology engineering (Shanghai) GmbH, and the restriction enzyme is purchased from TaKaRa; erythromycin (cat # E808819), chloramphenicol (cat # C804169), and D-xylose (cat # D856756) were purchased from Shanghai Mike4-Nitrophenyl-alpha-L-arabinofuranoside (pNPA, 4-nitrophenyl alpha-L-arabinofuranoside, cat # 6892-58-6) was purchased from Kyoto Kaiseii, pharmaceutical science, Inc.
Example 1: construction of recombinant Bacillus subtilis 164T7P
Bacillus subtilis 164T7P is an integrated T7RNA polymerase expression sequence at the aprE site of Bacillus subtilis 164S. The aprE site of Bacillus subtilis 164S is a more desirable integration site because the gene expresses alkaline protease, and alternative integration of the gene can reduce degradation of foreign proteins by the host cell. The invention integrates a complete overexpression sequence (shown as SEQ ID NO: 1) containing T7RNA polymerase into the site, simultaneously knocks out the gene, and then obtains 164T7P by eliminating erythromycin resistance gene, and FIG. 1 is a construction schematic diagram of recombinant bacillus subtilis 164T 7P. The specific construction method of the bacillus subtilis 164T7P is as follows:
(1) construction of integration plasmid pMD19T-T7P
First, a T7RNA polymerase-encoding gene fragment (T7RNAP) was amplified using a primer set of F77-F (5'-atgaacacgattaacatcgctaagaacgac-3') (shown in SEQ ID NO: 5)/F77-R (5'-catgctgcagaaaagaagcaggtatggaggaacctgcttctttttactattacgcgaacg cgaagtccgactc-3') (shown in SEQ ID NO: 6) and using a template of E.coli BL21(DE3) genome. The xylose promoter PxylA was then amplified using the primer pair Fxy-F (5'-atcgctgcagctaacttataggggtaacacttaaaaaagaatc-3') (shown in SEQ ID NO: 7)/Fxy-R (5'-gtcgttcttagcgatgttaatcgtgttcatattatggcctcctttggatcccatttc-3') (shown in SEQ ID NO: 8) and using the genomic DNA of template Bacillus subtilis 6051 a.
The 2 DNA fragments (T7RNAP and PxylA) were amplified using 2X Phanta Master Mix, and the PCR method was performed using the method described in 2X Phanta Master Mix. After the amplified PCR product is treated by using Dpn I as a template, the AxyPrep PCR cleaning kit is adopted for cleaning and recovering DNA, and finally, the concentration of the cleaned DNA fragment is determined by Nanodrop.
The two fragments are connected by using a fusion PCR method, which comprises the following steps:
first, PCR was performed in a system of 10. mu.L 2 × Phanta Master Mix, 200ng each of 2 fragments, and ddH was added2O to system 20. mu.L. Performing a first round of PCR reaction under the conditions of pre-denaturation at 95 ℃ for 5min, denaturation at 95 ℃ for 15S, annealing at 60 ℃ for 15S, extension at 72 ℃ for 3min, and cycle number of 10.
Second, the PCR reaction configuration system was 25. mu.L of 2 XPphanta Master Mix, 2.5. mu.L of primer Fxy-F (10. mu.M), 2.5. mu.L of primer F77-R (10. mu.M), 1. mu.L of the first round PCR reaction product, 19. mu.L of ddH2And O. The PCR reaction conditions were pre-denaturation at 95 ℃ for 5min, followed by denaturation at 95 ℃ for 15S, annealing at 55 ℃ for 15S, extension at 72 ℃ for 3min, and cycle number 30.
And (3) detecting by gel electrophoresis, amplifying 2 fragment fusion products by PCR in the second step, carrying out clean recovery on DNA by adopting an AxyPrep PCR clean kit, and determining the concentration by using Nanodrop. By using
Figure BDA0002738865490000051
II, constructing a One Step Cloning Kit by ligation, and connecting the PCR fusion product to XmaI and Kpn I sites of pMD19T, wherein the construction method is a Kit instruction method. The constructed plasmid is identified and verified by the production sequencing and is named as pMD 19T-T7P.
(2) Transformation and resistance to pMD19T-T7P
The plasmid pMD19T-T7P is treated by using restriction enzyme ApaL I to be linearized, then the linearized pMD19T-T7P is transformed into bacillus subtilis 164S, the bacillus subtilis 164S is evenly coated on a resistant plate containing 10 mu g/mL erythromycin, the resistant plate is placed in a 37 ℃ incubator for overnight culture, and a single colony grown out is identified by colony PCR, and a positive transformant is a strain which is successfully transformed. The resistance is eliminated through a Cre/lox system carried by a transformant and a passage method, the grown transformant is stamped on a 10 mu g/mL chloramphenicol resistant plate and a 10 mu g/mL erythromycin resistant plate at the same time, the grown transformant cannot grow on the two resistant plates, and a recombinant bacterium for knocking out an erythromycin resistance gene ermC is identified through colony PCR (polymerase chain reaction) to form the constructed bacillus subtilis 164T 7P.
Example 2 expression System of T7 expression GFP
(1) Construction of plasmid pMK4-T7-GFP and Bacillus subtilis T7-GFP
The plasmid pMK4-T7 was synthesized artificially, see FIG. 2, as a schematic representation of the plasmid pMK 4-T7. Carrying out enzyme digestion on the synthesized plasmid pMK4-T7 by using restriction enzymes BamH I and EcoR I to linearize the plasmid, and then cleaning and recovering DNA by adopting an AxyPrep PCR cleaning kit; meanwhile, gfp is amplified, a primer pair used for amplifying gfp is gfp-F (5'-gtttaactttaagaaaggaggatataccatgagtaaaggcgaagaacttttcac-3') (shown as SEQ ID NO: 9)/gfp-R (5'-gcttcctttcgggctttgttagcaggaattcttatttgtatagttcatccatgcc-3') (shown as SEQ ID NO: 10), a template is used for amplifying plasmid pMK4-P43-gfp, and after an amplification product is treated by using restriction enzyme Dpn I as a template, an AxyPrep PCR cleaning kit is adopted for cleaning and recovering DNA; then, a cloning technology based on fusion PCR is used for constructing a plasmid pMK4-T7-gfp, and the specific operation is as follows:
and (3) PCR reaction system: gfp fragment 200ng, linearized plasmid pMK 4-T7500 ng, 2 × Phanta Master Mix25 μ L, addition of ddH2O to the reaction system was 50. mu.L. The PCR reaction conditions were pre-denaturation at 95 ℃ for 5min, followed by denaturation at 95 ℃ for 15S, annealing at 55 ℃ for 15S, extension at 72 ℃ for 4min, and cycle number 30.
And finally, transforming the bacillus subtilis 164T7P with a 10 mu LPCR reaction product, uniformly coating the incubated product on a resistant plate containing 10 mu g/mL chloramphenicol, placing the resistant plate in a thermostat at 37 ℃ for overnight culture, identifying a grown single colony through colony PCR (polymerase chain reaction), wherein a positive transformant is a successfully transformed strain, randomly selecting a single clone to extract a plasmid, transferring the plasmid to a biological company for sequencing, identifying a completely correct plasmid as the plasmid pMK4-T7-GFP, and naming the corresponding recombinant bacterium as the bacillus subtilis T7-GFP.
(2) Construction of Bacillus subtilis P43-GFP
10 mu L of plasmid pMK4-P43-GFP is taken to transform bacillus subtilis 164T7P, after incubation, the bacillus subtilis is evenly coated on a resistant plate containing 10 mu g/mL chloramphenicol, the plate is placed in a thermostat at 37 ℃ for overnight culture, and a single grown colony is identified by colony PCR, and a positive transformant is a successfully transformed strain and is named as bacillus subtilis P43-GFP.
(3) Determination of GFP (green fluorescent protein) expression by fermentation of bacillus subtilis
Unless otherwise specified, the following media all contained 10. mu.g/mL chloramphenicol. Shake flask fermentation experiments were performed using Bacillus subtilis T7-GFP and P43-GFP: firstly, selecting a single clone to be cultured in a test tube filled with 3mL of LB culture medium (the formula is 10g/L peptone, 10g/L NaCl and 5g/L yeast powder), and shaking the test tube at the constant temperature of 200rpm and 37 ℃ for overnight culture; then transferring 300 mu L of culture into a 250mL shake flask filled with 30mL LB culture medium, and carrying out shake culture at constant temperature of 37 ℃ at 200 rpm; to grow for 4h or OD600Adding xylose with the final concentration of 1% (m/V) into the culture medium for induction when the concentration is about 1 percent; sampling every 12h, and determining OD by use of enzyme-labeling instrument600And fluorescence intensity.
The experimental results are shown in FIG. 3, which is a graph comparing the data of the expression of GFP in the xylose-induced T7 expression system and the P43 expression system, respectively. The results in FIG. 3 show that: the T7 expression system has more than 10 times higher efficiency than promoter P43 in Bacillus subtilis, and has great application potential.
Example 3 expression of alpha-L-arabinofuranosidase with xylose as inducer
(1) Construction of plasmid pMK4-T7-Arbf and Bacillus subtilis T7-Arbf
arbf encodes a bacterial type temperature resistance, the sequence of which is obtained by sequence alignment analysis using bioinformatics tools, the amino acid sequence is shown as SEQ ID NO. 4, and then is obtained by gene synthesis. The function of the sequence before exogenous expression of the gene is not well defined. Through whole genome sequencing and annotation, the gene arbf is found, and the energy of the gene arbf is presumed.
Chemically synthesized DNA coding for alpha-L-arabinofuranosidase is used as a template, PCR amplification of linear DNA is carried out, primers F used are arbf-F (5'-taattttgtttaactttaagaaaggaggatataccatgactgtacacaaagcgaagatg-3') (shown as SEQ ID NO: 11)/arbf-R and arbf-R (5'-gccaactcagcttcctttcgggctttgttagcaggaattcttattgtttcttcattctgatcacattcc-3') (shown as SEQ ID NO: 12), and the amplification product is subjected to template elimination treatment by restriction enzyme Dpn I and then is subjected to DNA cleaning recovery by adopting an AxyPrep PCR cleaning kit. The DNA fragments of the plasmid pMK4-T7 and the gene arbf were linearized, and the plasmid pMK4-T7-arbf was constructed by the cloning technique of fusion PCR, which was performed in the same manner as in example 2. See FIG. 4 for a schematic representation of plasmid pMK 4-T7-arbf.
10 mu L of plasmid pMK4-T7-Arbf is taken to transform bacillus subtilis 164T7P, after incubation, the bacillus subtilis is evenly coated on a resistant plate containing 10 mu g/mL chloramphenicol, the plate is placed in a thermostat at 37 ℃ for overnight culture, and a positive transformant is a successfully transformed strain through colony PCR identification on a single grown colony, which is named as bacillus subtilis T7-Arbf.
(2) Fermentation experiment of Bacillus subtilis T7-Arbf
Unless otherwise specified, the following media all contained 10. mu.g/mL chloramphenicol. The shake flask fermentation experiment was performed using Bacillus subtilis T7-Arbf: firstly, picking a single clone into a test tube filled with 3mL of LB culture medium, and culturing the single clone in a constant temperature shaking table at 200rpm and 37 ℃ overnight; then transferring 300 mu L of culture into a 250mL shake flask filled with 30mL LB culture medium, and carrying out shake culture at constant temperature of 37 ℃ at 200 rpm; to grow for 4h or OD600Adding xylose with the final concentration of 1% (m/V) into the culture medium for induction when the concentration is about 1 percent; sampling every 12h, determining OD600And the activity and the characterization of the alpha-L-arabinofuranosidase.
The method for measuring the activity of the alpha-L-arabinofuranosidase comprises the following steps: alpha-L-arabinofuranosidase hydrolyze one molecule of pNPA (4-nitrophenyl alpha-L-arabinofuranoside) to produce one molecule of p-nitrophenol (4-nitrophenol), and the amount of enzyme required to hydrolyze the substrate per minute to produce 1. mu. mol of p-nitrophenol is defined as 1 activity unit. The enzyme activity was calculated by measuring the production of the product. Firstly, 50 mul of pNPA solution is taken, 100 mul of diluted enzyme solution is added, and the mixture is incubated for 5min in water bath at 40 ℃; then 150. mu.l of 10% Na was added2CO3The reaction was stopped in solution and the absorbance was measured at 410nm (note: dilution of enzyme to control the final OD measured)410Between 0.2 and 0.8). And (3) measuring the temperature and pH curves of the recombinant Arbf enzyme, wherein the temperature range is 25-65 ℃, and the pH range is 3.5-9.0. And simultaneously determining the enzymological characteristic parameters of the recombinant Arbf.
The fermentation results show that: the recombinant Arbf enzyme may be secreted extracellularly, as shown in FIGS. 5 and 6, expressedAnd (3) a graph of the activity of the recombinant Arbf enzyme along with the change of temperature and pH. As can be seen from fig. 5 and 6: the optimum temperature is 45 ℃ and the optimum pH is 6.5. The Km value of the recombinant Arbf enzyme is 1.4 +/-0.1 mM, and the kcat is 139.4s-1. The highest enzyme activity of the recombinant alpha-L-arabinofuranosidase expressed by the fermentation of the bacillus subtilis T7-Arbf in an LB culture medium under the induction of xylose is 141.4 +/-4.8U/mL.
Example 4 expression of alpha-L-arabinofuranosidase Using bran as inducer
The bran is a byproduct of wheat processing, and is rich in arabinoxylan. Through experiments, the following results are found: the bacillus subtilis can hydrolyze xylose residues in the bran by XynA and XynC per se. This section differs from the fermentation process of example 3 only in that the inducer xylose is replaced by cheap bran and the other process steps are the same. The specific fermentation method comprises the following steps:
unless otherwise specified, the following media all contained 10. mu.g/mL chloramphenicol. The shake flask fermentation experiment was performed using Bacillus subtilis T7-Arbf: firstly, picking a single clone into a test tube filled with 3mL of LB culture medium, and culturing the single clone in a constant temperature shaking table at 200rpm and 37 ℃ overnight; then transferring 300 μ L of the culture into a 250mL shake flask containing 30mL LB + 3% bran (m/V) medium, culturing at 200rpm and 37 deg.C in a constant temperature shaking table, sampling every 12h, and determining OD600And the activity and the characterization of the alpha-L-arabinofuranosidase.
Referring to fig. 7, a graph comparing the expression results of recombinant Arbf obtained for xylose and bran as inducers, respectively. When xylose is used as an inducer, the highest enzyme activity of the Arbf enzyme expressed by the fermentation of the bacillus subtilis T7-Arbf in LB culture medium is 141.4 +/-4.8U/mL. When bran is used as an inducer, the highest enzyme activity of the fermented and expressed Arbf enzyme is 194.8 +/-4.1U/mL, which is 1.4 times of that of xylose used as the inducer.
The above description is only a part of the preferred embodiments of the present invention, and the present invention is not limited to the contents of the embodiments. It will be apparent to those skilled in the art that various changes and modifications can be made within the spirit of the invention, and any changes and modifications made are within the scope of the invention.
Sequence listing
<110> Shanghai higher research institute of Chinese academy of sciences
<120> Bacillus subtilis expression system and method for producing alpha-L-AFs by using same
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 6647
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 1
caaatgcgct gaatgcctat gttacaggaa ttggggccaa taaacggatt gtattgtggg 60
atacgacgct gaacaaactt gacgattcag aaattctgtt tattatgggc cacgaaatgg 120
gccattatgt catgaagcac gtttacatcg gtctggctgg ctatttgctc gtgtcgctcg 180
ccggatttta tgtcattgat aagctttaca agcggacggt tcgcctaacc cgcagcatgt 240
ttcatttaga agggcggcat gatcttgcgg cacttccgct gttattgctt ttgttttctg 300
ttttgagctt tgcggttacg cctttttcta atgctgtctc gcgttatcag gagaataagg 360
ctgaccagta tgggatcgag ttgacagaga acagagaagc cgctgttaaa acgtttcagg 420
atttggccgt gacggggctg agccaggttg atcctccggt gcttgtgaag attttcagag 480
gcagccatcc gtcgatcatg gaacggattc aacatgcgga gaaagaagag aatgcgccgg 540
aacatcagga tgctgacaaa taaaaagaag caggtatgga ggaacctgct tctttttact 600
attattgtgc agctgcttgc ctgcactgca gggatccaag cttgcggccg ctaccgttcg 660
tatagcatac attatacgaa gttatttaaa ccgtgtgctc tacgaccaaa actataaaac 720
ctttaagaac tttctttttt tacaagaaaa aagaaattag ataaatctct catatctttt 780
attcaataat cgcatccgat tgcagtataa atttaacgat cactcatcat gttcatattt 840
atcagagctc gtgctataat tatactaatt ttataaggag gaaaaaatat gggcattttt 900
agtatttttg taatcagcac agttcattat caaccaaaca aaaaataagt ggttataatg 960
aatcgttaat aagcaaaatt catataacca aattaaggag ggaaataatg aacgagaaaa 1020
atataaaaca cagtcaaaac tttattactt caaaacataa tatagataaa ataatgacaa 1080
atataagatt aaatgaacat gataatatct ttgaaatcgg ctcaggaaaa ggccatttta 1140
cccttgaatt agtaaagagg tgtaatttcg taactgccat tgaaatagac cataaattat 1200
gcaaaactac agaaaataaa cttgttgatc acgataattt ccaagtttta aacaaggata 1260
tattgcagtt taaatttcct aaaaaccaat cctataaaat atatggtaat ataccttata 1320
acataagtac ggatataata cgcaaaattg tttttgatag tatagctaat gagatttatt 1380
taatcgtgga atacgggttt gctaaaagat tattaaatac aaaacgctca ttggcattac 1440
ttttaatggc agaagttgat atttctatat taagtatggt tccaagagaa tattttcatc 1500
ctaaacctaa agtgaatagc tcacttatca gattaagtag aaaaaaatca agaatatcac 1560
acaaagataa acaaaagtat aattatttcg ttatgaaatg ggttaacaaa gaatacaaga 1620
aaatatttac aaaaaatcaa tttaacaatt ccttaaaaca tgcaggaatt gacgatttaa 1680
acaatattag ctttgaacaa ttcttatctc ttttcaatag ctataaatta tttaataagt 1740
aagttaaggg atgcataaac tgcatccctt aacttgtttt tcgtgtgcct attttttgtg 1800
aattgattat cgatcttttg cgccatggat aacttcgtat agcatacatt atacgaacgg 1860
tacatatgcc cgggctaact tataggggta acacttaaaa aagaatcaat aacgatagaa 1920
accgctccta aagcaggtgc attttttcct aacgaagaag gcaatagttc acatttattg 1980
tctaaatgag aatggactct agaagaaact tcgtttttaa tcgtatttaa aacaatggga 2040
tgagattcaa ttatatgatt tctcaagata acagcttcta tatcaaatgt attaaggata 2100
ttggttaatc caattccgat ataaaagcca aagttttgaa gtgcatttaa catttctaca 2160
tcatttttat ttgcgcgttc cacaatctct tttcgagaaa tattcttttc ttctttagag 2220
agcgaagcca gtaacgcttt ttcagaagca tataattccc aacagcctcg atttccacag 2280
ctgcatttgg gtccattaaa atctatcgtc atatgaccca tttccccaga aaaaccctga 2340
acacctttat acaattcgtt gttaataaca agtccagttc caattccgat attaatactg 2400
atgtaaacga tgttttcata gttttttgtc ataccaaata ctttttcacc gtatgctcct 2460
gcattagctt cattttcaac aaaaaccgga acattaaact cactctcaat taaaaactgc 2520
aaatctttga tattccaatt taagttaggc atgaaaataa tttgctgatg acgatctaca 2580
aggcctggaa cacaaattcc tattccgact agaccataag gggactcagg catatgggtt 2640
acaaaaccat gaataagtgc aaataaaatc tcttttactt cactagcgga agaactagac 2700
aagtcagaag tcttctcgag aataatattt ccttctaagt cggttagaat tccgttaaga 2760
tagtcgactc ctatatcaat accaatcgag tagcctgcat tcttattaaa aacaagcatt 2820
acaggtcttc tgccgcctct agattgccct gccccaattt caaaaataaa atctttttca 2880
agcagtgtat ttacttgaga ggagacagta gacttgttta atcctgtaat ctcagagaga 2940
gttgccctgg agacagggga gttcttcaaa atttcatcta atattaattt ttgattcatt 3000
ttttttacta aagcttgatc tgcaatttga ataataacca ctcctttgtt tatccaccga 3060
actaagttgg tgttttttga agcttgaatt agatatttaa aagtatcata tctaatatta 3120
taactaaatt ttctaaaaaa aacattgaaa taaacattta ttttgtatat gatgagataa 3180
agttagttta ttggataaac aaactaactc aattaagata gttgatggat aaacttgttc 3240
acttaaatca aagggggaaa tgacaaatgg tccaaactag tgatatctaa aaatcaaagg 3300
gggaaatggg atccaaagga ggccataata tgaacacgat taacatcgct aagaacgact 3360
tctctgacat cgaactggct gctatcccgt tcaacactct ggctgaccat tacggtgagc 3420
gtttagctcg cgaacagttg gcccttgagc atgagtctta cgagatgggt gaagcacgct 3480
tccgcaagat gtttgagcgt caacttaaag ctggtgaggt tgcggataac gctgccgcca 3540
agcctctcat cactacccta ctccctaaga tgattgcacg catcaacgac tggtttgagg 3600
aagtgaaagc taagcgcggc aagcgcccga cagccttcca gttcctgcaa gaaatcaagc 3660
cggaagccgt agcgtacatc accattaaga ccactctggc ttgcctaacc agtgctgaca 3720
atacaaccgt tcaggctgta gcaagcgcaa tcggtcgggc cattgaggac gaggctcgct 3780
tcggtcgtat ccgtgacctt gaagctaagc acttcaagaa aaacgttgag gaacaactca 3840
acaagcgcgt agggcacgtc tacaagaaag catttatgca agttgtcgag gctgacatgc 3900
tctctaaggg tctactcggt ggcgaggcgt ggtcttcgtg gcataaggaa gactctattc 3960
atgtaggagt acgctgcatc gagatgctca ttgagtcaac cggaatggtt agcttacacc 4020
gccaaaatgc tggcgtagta ggtcaagact ctgagactat cgaactcgca cctgaatacg 4080
ctgaggctat cgcaacccgt gcaggtgcgc tggctggcat ctctccgatg ttccaacctt 4140
gcgtagttcc tcctaagccg tggactggca ttactggtgg tggctattgg gctaacggtc 4200
gtcgtcctct ggcgctggtg cgtactcaca gtaagaaagc actgatgcgc tacgaagacg 4260
tttacatgcc tgaggtgtac aaagcgatta acattgcgca aaacaccgca tggaaaatca 4320
acaagaaagt cctagcggtc gccaacgtaa tcaccaagtg gaagcattgt ccggtcgagg 4380
acatccctgc gattgagcgt gaagaactcc cgatgaaacc ggaagacatc gacatgaatc 4440
ctgaggctct caccgcgtgg aaacgtgctg ccgctgctgt gtaccgcaag gacaaggctc 4500
gcaagtctcg ccgtatcagc cttgagttca tgcttgagca agccaataag tttgctaacc 4560
ataaggccat ctggttccct tacaacatgg actggcgcgg tcgtgtttac gctgtgtcaa 4620
tgttcaaccc gcaaggtaac gatatgacca aaggactgct tacgctggcg aaaggtaaac 4680
caatcggtaa ggaaggttac tactggctga aaatccacgg tgcaaactgt gcgggtgtcg 4740
ataaggttcc gttccctgag cgcatcaagt tcattgagga aaaccacgag aacatcatgg 4800
cttgcgctaa gtctccactg gagaacactt ggtgggctga gcaagattct ccgttctgct 4860
tccttgcgtt ctgctttgag tacgctgggg tacagcacca cggcctgagc tataactgct 4920
cccttccgct ggcgtttgac gggtcttgct ctggcatcca gcacttctcc gcgatgctcc 4980
gagatgaggt aggtggtcgc gcggttaact tgcttcctag tgaaaccgtt caggacatct 5040
acgggattgt tgctaagaaa gtcaacgaga ttctacaagc agacgcaatc aatgggaccg 5100
ataacgaagt agttaccgtg accgatgaga acactggtga aatctctgag aaagtcaagc 5160
tgggcactaa ggcactggct ggtcaatggc tggcttacgg tgttactcgc agtgtgacta 5220
agcgttcagt catgacgctg gcttacgggt ccaaagagtt cggcttccgt caacaagtgc 5280
tggaagatac cattcagcca gctattgatt ccggcaaggg tctgatgttc actcagccga 5340
atcaggctgc tggatacatg gctaagctga tttgggaatc tgtgagcgtg acggtggtag 5400
ctgcggttga agcaatgaac tggcttaagt ctgctgctaa gctgctggct gctgaggtca 5460
aagataagaa gactggagag attcttcgca agcgttgcgc tgtgcattgg gtaactcctg 5520
atggtttccc tgtgtggcag gaatacaaga agcctattca gacgcgcttg aacctgatgt 5580
tcctcggtca gttccgctta cagcctacca ttaacaccaa caaagatagc gagattgatg 5640
cacacaaaca ggagtctggt atcgctccta actttgtaca cagccaagac ggtagccacc 5700
ttcgtaagac tgtagtgtgg gcacacgaga agtacggaat cgaatctttt gcactgattc 5760
acgactcctt cggtaccatt ccggctgacg ctgcgaacct gttcaaagca gtgcgcgaaa 5820
ctatggttga cacatatgag tcttgtgatg tactggctga tttctacgac cagttcgctg 5880
accagttgca cgagtctcaa ttggacaaaa tgccagcact tccggctaaa ggtaacttga 5940
acctccgtga catcttagag tcggacttcg cgttcgcgta atagtaaaaa gaagcaggtt 6000
cctccatacc tgcttctttt gaattccctg ctggtcgcca ttttggctct ttaccctctc 6060
cttttaaaaa aattcagagt agacttactt aaaagactat tctgtgaatt tattgtaata 6120
gatggaataa tattttagta gacccatttt tttgagatga ttttatctct atttaggtat 6180
atcatctctc gctatttccg tagagactcg aaataactat tttcatacag aaaagaacga 6240
aaatagacat gagtaaatgt tcattatgct gaaatgtcat gcttttttag gttaaatgct 6300
cctgagtccc ggcaaattcc tgtcgaaaaa attcgttcaa atgacctgcg tgtgcttccg 6360
tgagaacaat ggatattatc gtgatatttt ttcaaagcat gatgataaaa gtattctgaa 6420
aaataaactt tacagaaaag ggatagaatg aaaaaattat tgagagggag gaagaaataa 6480
gatgaacatt cgccaagcaa agacatcaga tgcggccgcc attgcgccgc tgtttaacca 6540
atatcgggaa ttttatagac aggcatccga tttgcaaggg gcagaggctt ttttgaaagc 6600
tcgtttggaa aatcacgagt ctgttatttt gatagcagaa gaaaatg 6647
<210> 2
<211> 5729
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca 60
cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaatg tgagttagct 120
cactcattag gcaccccagg ctttacactt tatgcttccg gctcgtatgt tgtgtggaat 180
tgtgagcgga taacaatttc acacaggaaa cagctatgac catgattacg ccaagcttgg 240
ctgcaggtgg cgagcccgat cttccccatc ggtgatgtcg gcgatatagg cgccagcaac 300
cgcacctgtg gcgccggtga tgccggccac gatgcgtccg gcgtagagga tcgagatcga 360
tctcgatccc gcgaaattaa tacgactcac tataggggaa ttgtgagcgg ataacaattc 420
ccctctagaa ataattttgt ttaactttaa gaaaggagga tataccggat cccccggggg 480
taccgaattc ctgctaacaa agcccgaaag gaagctgagt tggctgctgc caccgctgag 540
caataactag cataacccct tggggcctct aaacgggtct tgaggggttt tttgctgaaa 600
ggaggaacta tatccggatc atatggtgca ctctcagtac aatctgctct gatgccgcat 660
agttaagcca gccccgacac ccgccaacac ccgctgacgc gccctgacgg gcttgtctgc 720
tcccggcatc cgcttacaga caagctgtga ccgtctccgg gagctgcatg tgtcagaggt 780
tttcaccgtc atcaccgaaa cgcgcgagac gaaagggcct cgtgatacgc ctatttttat 840
aggttaatgt catgataata atggtttctt agacgtcagg tggcactttt cggggaaatg 900
tgcgcggaac ccctatttgt ttatttttct aaatacattc aaatatgtat ccgctcatga 960
gacaataacc ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac 1020
atttccgtgt cgcccttatt cccttttttg cggcattttg ccttcctgtt tttgctcacc 1080
cagaaacgct ggtgaaagta aaagatgctg aagatcagtt gggtgcacga gtgggttaca 1140
tcgaactgga tctcaacagc ggtaagatcc ttgagagttt tcgccccgaa gaacgttttc 1200
caatgatgag cacttttaaa gttctgctat gtggcgcggt attatcccgt attgacgccg 1260
ggcaagagca actcggtcgc cgcatacact attctcagaa tgacttggtt gagtactcac 1320
cagtcacaga aaagcatctt acggatggca tgacagtaag agaattatgc agtgctgcca 1380
taaccatgag tgataacact gcggccaact tacttctgac aacgatcgga ggaccgaagg 1440
agctaaccgc ttttttgcac aacatggggg atcatgtaac tcgccttgat cgttgggaac 1500
cggagctgaa tgaagccata ccaaacgacg agcgtgacac cacgatgcct gtagcaatgg 1560
caacaacgtt gcgcaaacta ttaactggcg aactacttac tctagcttcc cggcaacaat 1620
taatagactg gatggaggcg gataaagttg caggaccact tctgcgctcg gcccttccgg 1680
ctggctggtt tattgctgat aaatctggag ccggtgagcg tgggtctcgc ggtatcattg 1740
cagcactggg gccagatggt aagccctccc gtatcgtagt tatctacacg acggggagtc 1800
aggcaactat ggatgaacga aatagacaga tcgctgagat aggtgcctca ctgattaagc 1860
attggtaact gtcagaccaa gtttactcat atatacttta gattgattta aaacttcatt 1920
tttaatttaa aaggatctag gtgaagatcc atatccttct ttttctgaac cgacttctcc 1980
tttttcgctt ctttattcca attgctttat tgacgttgag cctcggaacc cttaacaatc 2040
ccaaaacttg tcgaatggtc ggcttaatag ctcacgctat gccgacattc gtctgcaagt 2100
ttagttaagg gttcttctca acgcacaata aattttctcg gcataaatgc gtggtctaat 2160
ttttattttt aataaccttg atagcaaaaa atgccattcc aatacaaaac cacataccta 2220
taatcgataa ccacataaca gtcataaaac cactcctttt taacaaactt tatcacaaga 2280
aatatttaaa ttttaaatgc ctttattttg aattttaagg ggcattttaa agatttaggg 2340
gtaaatcata tagttttatg cctaaaaacc tacagaagct tttaaaaagc aaatatgagc 2400
caaataaata tattctaatt ctacaaacaa aaatttgagc aaattcagtg tcgatttttt 2460
aagacactgc ccagttacat gcaaattaaa attttcatga ttttttatag ttcctaacag 2520
ggttaaaatt tgtataacga aagtataatg tttatataac gttagtataa taaagcattt 2580
taacattata cttttgataa tcgtttatcg tcgtcatcac aataactttt aaaatactcg 2640
tgcataattc aacagctgac ctcccaataa ctacatggtg ttatcgggag gtcagctgtt 2700
agcacttata ttttgttatt gttcttcctc gatttcgtct atcattttgt gattaatttc 2760
tcttttttct tgttctgtta agtcataaag ttcactagct aaatactctt tttgtttcca 2820
aatataaaaa atttgataga tatattcggt tggatcaatt tcttttaagt aatctaaatc 2880
cccatttttt aatttctttt tagcctcttt aaataatcct gaataaacta atacctgttt 2940
acctttaagt gatttataaa atgcatcaaa gactttttga tttattaaat aatcactatc 3000
tttaccagaa tacttagcca tttcatataa ttctttatta ttattttgtc ttattttttg 3060
aacttgaact tgtgttattt ctgaaatgcc cgttacatca cgccataaat ctaaccattc 3120
ttgttggcta atataatatc ttttatctgt gaaatacgat ttatttactg caattaacac 3180
atgaaaatga ggattataat catctctttt tttattatat gtaatctcta acttacgaac 3240
atatcccttt ataacactac ctactttttt tctctttata agttttctaa aagaattatt 3300
ataacgtttt atttcatttt ctaattcatc actcattaca ttaggtgtag tcaaagttaa 3360
aaagataaac tcctttttct cttgctgctt aatatattgc atcatcaaag ataaacccaa 3420
tgcatctttt ctagcttttc tccaagcaca gacaggacaa aatcgatttt tacaagaatt 3480
agctttatat aatttctgtt tttctaaagt tttatcagct acaaaagaca gaaatgtatt 3540
gcaatcttca actaaatcca tttgattctc tccaatatga cgtttaataa atttctgaaa 3600
tacttgattt ctttgttttt tctcagtata cttttccatg ttataacaca taaaaacaac 3660
ttagttttca caaactatga caataaaaaa agttgctttt tcccctttct atgtatgttt 3720
tttactagtc atttaaaacg atacattaat aggtacgaaa aagcaacttt ttttgcgctt 3780
aaaaccagtc ataccaataa cttaagggta actagcctcg ccggcaatag ttacccttat 3840
tatcaagata agaaagaaaa ggatttttcg ctacgctcaa atcctttaaa aaaacacaaa 3900
agaccacatt ttttaatgtg gtcttttatt cttcaactaa agcacccatt agttcaacaa 3960
acgaaaattg gataaagtgg gatattttta aaatatatat ttatgttaca gtaatattga 4020
cttttaaaaa aggattgatt ctaatgaaga aagcagacaa gtaagcctcc taaattcact 4080
ttagataaaa atttaggagg catatcaaat gaactttaat aaaattgatt tagacaattg 4140
gaagagaaaa gagatattta atcattattt gaaccaacaa acgactttta gtataaccac 4200
agaaattgat attagtgttt tataccgaaa cataaaacaa gaaggatata aattttaccc 4260
tgcatttatt ttcttagtga caagggtgat aaactcaaat acagctttta gaactggtta 4320
caatagcgac ggagagttag gttattggga taagttagag ccactttata caatttttga 4380
tggtgtatct aaaacattct ctggtatttg gactcctgta aagaatgact tcaaagagtt 4440
ttatgattta tacctttctg atgtagagaa atataatggt tcggggaaat tgtttcccaa 4500
aacacctata cctgaaaatg ctttttctct ttctattatt ccatggactt catttactgg 4560
gtttaactta aatatcaata ataatagtaa ttaccttcta cccattatta cagcaggaaa 4620
attcattaat aaaggtaatt caatatattt accgctatct ttacaggtac atcattctgt 4680
ttgtgatggt tatcatgcag gattgtttat gaactctatt caggaattgt cagataggcc 4740
taatgactgg cttttataat atgagataat gccgactgta ctttttacag tcggttttct 4800
aatgtcacta acctgccccg ttagttgaag aaggttttta tattacagct ccagatctag 4860
gtgaagatcc tttttgataa tctcatgacc aaaatccctt aacgtgagtt ttcgttccac 4920
tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatccttt ttttctgcgc 4980
gtaatctgct gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg tttgccggat 5040
caagagctac caactctttt tccgaaggta actggcttca gcagagcgca gataccaaat 5100
actgttcttc tagtgtagcc gtagttaggc caccacttca agaactctgt agcaccgcct 5160
acatacctcg ctctgctaat cctgttacca gtggctgctg ccagtggcga taagtcgtgt 5220
cttaccgggt tggactcaag acgatagtta ccggataagg cgcagcggtc gggctgaacg 5280
gggggttcgt gcacacagcc cagcttggag cgaacgacct acaccgaact gagataccta 5340
cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga caggtatccg 5400
gtaagcggca gggtcggaac aggagagcgc acgagggagc ttccaggggg aaacgcctgg 5460
tatctttata gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt tttgtgatgc 5520
tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggccttttt acggttcctg 5580
gccttttgct ggccttttgc tcacatgttc tttcctgcgt tatcccctga ttctgtggat 5640
aaccgtatta ccgcctttga gtgagctgat accgctcgcc gcagccgaac gaccgagcgc 5700
agcgagtcag tgagcgagga agcggaaga 5729
<210> 3
<211> 7220
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca 60
cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaatg tgagttagct 120
cactcattag gcaccccagg ctttacactt tatgcttccg gctcgtatgt tgtgtggaat 180
tgtgagcgga taacaatttc acacaggaaa cagctatgac catgattacg ccaagcttgg 240
ctgcaggtgg cgagcccgat cttccccatc ggtgatgtcg gcgatatagg cgccagcaac 300
cgcacctgtg gcgccggtga tgccggccac gatgcgtccg gcgtagagga tcgagatcga 360
tctcgatccc gcgaaattaa tacgactcac tataggggaa ttgtgagcgg ataacaattc 420
ccctctagaa ataattttgt ttaactttaa gaaaggagga tataccatga ctgtacacaa 480
agcgaagatg acgattgaca aggaatataa ggtggcagag attgataagc gaatttacgg 540
ctcctttatc gagcatctcg gcagagccgt ttatgaaggc atttatgagc ctgatcatcc 600
tgaagctgac gaatcaggct ttcggaaaga tgtcattaaa ctagtcagag aactaaaggt 660
gccgtttatc aggtatcccg gcggaaactt tgtatctgga tataactggg aggatggagt 720
cggacctgtc gaacagcggc cgacaagact tgatttggcg tgggcgacaa ccgagccgaa 780
cttaatcggt acgaacgaat ttatggattg ggcaaagctt gtcggggcag aggtgaatat 840
ggccgtcaac ctcggaacga gaggaattga tgccgcacgc aacctagtag aatattgcaa 900
ccatccgtca ggatcgtact acagcgactt gagaaaatcc cacggatata aggaaccgca 960
taaaattaaa acatggtgcc tcggcaatga aatggacggt ccatggcaaa tcggccataa 1020
aacagcggcc gaatacggaa gacttgctgc tgaagccgcg aaggtgatga aatggacgga 1080
cccgtcgatc gagcttgtcg cctgcggaag ttcgggaagc ggaatgccga cattcatcga 1140
ctgggaaacg accgtgcttg accatacgta cgaacacgtc gagtacatct cgcttcactc 1200
gtattacggc aaccgcgaca atgatcttcc aaactatttg gcgagatcgc tagacatgga 1260
tcactttatc aaaacggtca tctcagtctg cgactatatg aaagcgaaaa agaaaagcaa 1320
gaaaacgatt cacctttcat atgatgagtg gaatgtctgg tatcactcga atgaaaaaga 1380
caaagaagct gaacgctggg cgaaagcgcc gcaccttctt gaagacatct acaactttga 1440
ggatgcgctt ctcgtcggct gtatgctgat tacgatgctc aagcatgccg accgcgtgaa 1500
aatcgcctgt ctggctcagc ttgtcaatgt catcgcgccg attatgacag acaaaggggg 1560
agaagcatgg cgtcagacca ttttctatcc gtttatgcac gcttccgtct acggcagagg 1620
aacggtactg cagacggcgg tatcgtctcc aaagtatgat gcgaaagact ttacggatgt 1680
gccgtacttg gagtccgtgt ctgttttcaa tgaagaagcc gaggaattaa ccgtttttgc 1740
cgtcaaccgc gcaacagacg ccggccttga aatggaagcc gatatgagaa gctttgaagg 1800
gtacagtgtc tctgagcaca tcgttctgga acacgaagat cataaagcga cgaatgaaaa 1860
agaccgcaac aacgtcgttc cgcacagcgg cggagacgcc aaagtatgtg acggcaggct 1920
gacggctcac cttccgaaac tttcctggaa tgtgatcaga atgaagaaac aataagaatt 1980
cctgctaaca aagcccgaaa ggaagctgag ttggctgctg ccaccgctga gcaataacta 2040
gcataacccc ttggggcctc taaacgggtc ttgaggggtt ttttgctgaa aggaggaact 2100
atatccggat catatggtgc actctcagta caatctgctc tgatgccgca tagttaagcc 2160
agccccgaca cccgccaaca cccgctgacg cgccctgacg ggcttgtctg ctcccggcat 2220
ccgcttacag acaagctgtg accgtctccg ggagctgcat gtgtcagagg ttttcaccgt 2280
catcaccgaa acgcgcgaga cgaaagggcc tcgtgatacg cctattttta taggttaatg 2340
tcatgataat aatggtttct tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa 2400
cccctatttg tttatttttc taaatacatt caaatatgta tccgctcatg agacaataac 2460
cctgataaat gcttcaataa tattgaaaaa ggaagagtat gagtattcaa catttccgtg 2520
tcgcccttat tccctttttt gcggcatttt gccttcctgt ttttgctcac ccagaaacgc 2580
tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg agtgggttac atcgaactgg 2640
atctcaacag cggtaagatc cttgagagtt ttcgccccga agaacgtttt ccaatgatga 2700
gcacttttaa agttctgcta tgtggcgcgg tattatcccg tattgacgcc gggcaagagc 2760
aactcggtcg ccgcatacac tattctcaga atgacttggt tgagtactca ccagtcacag 2820
aaaagcatct tacggatggc atgacagtaa gagaattatg cagtgctgcc ataaccatga 2880
gtgataacac tgcggccaac ttacttctga caacgatcgg aggaccgaag gagctaaccg 2940
cttttttgca caacatgggg gatcatgtaa ctcgccttga tcgttgggaa ccggagctga 3000
atgaagccat accaaacgac gagcgtgaca ccacgatgcc tgtagcaatg gcaacaacgt 3060
tgcgcaaact attaactggc gaactactta ctctagcttc ccggcaacaa ttaatagact 3120
ggatggaggc ggataaagtt gcaggaccac ttctgcgctc ggcccttccg gctggctggt 3180
ttattgctga taaatctgga gccggtgagc gtgggtctcg cggtatcatt gcagcactgg 3240
ggccagatgg taagccctcc cgtatcgtag ttatctacac gacggggagt caggcaacta 3300
tggatgaacg aaatagacag atcgctgaga taggtgcctc actgattaag cattggtaac 3360
tgtcagacca agtttactca tatatacttt agattgattt aaaacttcat ttttaattta 3420
aaaggatcta ggtgaagatc catatccttc tttttctgaa ccgacttctc ctttttcgct 3480
tctttattcc aattgcttta ttgacgttga gcctcggaac ccttaacaat cccaaaactt 3540
gtcgaatggt cggcttaata gctcacgcta tgccgacatt cgtctgcaag tttagttaag 3600
ggttcttctc aacgcacaat aaattttctc ggcataaatg cgtggtctaa tttttatttt 3660
taataacctt gatagcaaaa aatgccattc caatacaaaa ccacatacct ataatcgata 3720
accacataac agtcataaaa ccactccttt ttaacaaact ttatcacaag aaatatttaa 3780
attttaaatg cctttatttt gaattttaag gggcatttta aagatttagg ggtaaatcat 3840
atagttttat gcctaaaaac ctacagaagc ttttaaaaag caaatatgag ccaaataaat 3900
atattctaat tctacaaaca aaaatttgag caaattcagt gtcgattttt taagacactg 3960
cccagttaca tgcaaattaa aattttcatg attttttata gttcctaaca gggttaaaat 4020
ttgtataacg aaagtataat gtttatataa cgttagtata ataaagcatt ttaacattat 4080
acttttgata atcgtttatc gtcgtcatca caataacttt taaaatactc gtgcataatt 4140
caacagctga cctcccaata actacatggt gttatcggga ggtcagctgt tagcacttat 4200
attttgttat tgttcttcct cgatttcgtc tatcattttg tgattaattt ctcttttttc 4260
ttgttctgtt aagtcataaa gttcactagc taaatactct ttttgtttcc aaatataaaa 4320
aatttgatag atatattcgg ttggatcaat ttcttttaag taatctaaat ccccattttt 4380
taatttcttt ttagcctctt taaataatcc tgaataaact aatacctgtt tacctttaag 4440
tgatttataa aatgcatcaa agactttttg atttattaaa taatcactat ctttaccaga 4500
atacttagcc atttcatata attctttatt attattttgt cttatttttt gaacttgaac 4560
ttgtgttatt tctgaaatgc ccgttacatc acgccataaa tctaaccatt cttgttggct 4620
aatataatat cttttatctg tgaaatacga tttatttact gcaattaaca catgaaaatg 4680
aggattataa tcatctcttt ttttattata tgtaatctct aacttacgaa catatccctt 4740
tataacacta cctacttttt ttctctttat aagttttcta aaagaattat tataacgttt 4800
tatttcattt tctaattcat cactcattac attaggtgta gtcaaagtta aaaagataaa 4860
ctcctttttc tcttgctgct taatatattg catcatcaaa gataaaccca atgcatcttt 4920
tctagctttt ctccaagcac agacaggaca aaatcgattt ttacaagaat tagctttata 4980
taatttctgt ttttctaaag ttttatcagc tacaaaagac agaaatgtat tgcaatcttc 5040
aactaaatcc atttgattct ctccaatatg acgtttaata aatttctgaa atacttgatt 5100
tctttgtttt ttctcagtat acttttccat gttataacac ataaaaacaa cttagttttc 5160
acaaactatg acaataaaaa aagttgcttt ttcccctttc tatgtatgtt ttttactagt 5220
catttaaaac gatacattaa taggtacgaa aaagcaactt tttttgcgct taaaaccagt 5280
cataccaata acttaagggt aactagcctc gccggcaata gttaccctta ttatcaagat 5340
aagaaagaaa aggatttttc gctacgctca aatcctttaa aaaaacacaa aagaccacat 5400
tttttaatgt ggtcttttat tcttcaacta aagcacccat tagttcaaca aacgaaaatt 5460
ggataaagtg ggatattttt aaaatatata tttatgttac agtaatattg acttttaaaa 5520
aaggattgat tctaatgaag aaagcagaca agtaagcctc ctaaattcac tttagataaa 5580
aatttaggag gcatatcaaa tgaactttaa taaaattgat ttagacaatt ggaagagaaa 5640
agagatattt aatcattatt tgaaccaaca aacgactttt agtataacca cagaaattga 5700
tattagtgtt ttataccgaa acataaaaca agaaggatat aaattttacc ctgcatttat 5760
tttcttagtg acaagggtga taaactcaaa tacagctttt agaactggtt acaatagcga 5820
cggagagtta ggttattggg ataagttaga gccactttat acaatttttg atggtgtatc 5880
taaaacattc tctggtattt ggactcctgt aaagaatgac ttcaaagagt tttatgattt 5940
atacctttct gatgtagaga aatataatgg ttcggggaaa ttgtttccca aaacacctat 6000
acctgaaaat gctttttctc tttctattat tccatggact tcatttactg ggtttaactt 6060
aaatatcaat aataatagta attaccttct acccattatt acagcaggaa aattcattaa 6120
taaaggtaat tcaatatatt taccgctatc tttacaggta catcattctg tttgtgatgg 6180
ttatcatgca ggattgttta tgaactctat tcaggaattg tcagataggc ctaatgactg 6240
gcttttataa tatgagataa tgccgactgt actttttaca gtcggttttc taatgtcact 6300
aacctgcccc gttagttgaa gaaggttttt atattacagc tccagatcta ggtgaagatc 6360
ctttttgata atctcatgac caaaatccct taacgtgagt tttcgttcca ctgagcgtca 6420
gaccccgtag aaaagatcaa aggatcttct tgagatcctt tttttctgcg cgtaatctgc 6480
tgcttgcaaa caaaaaaacc accgctacca gcggtggttt gtttgccgga tcaagagcta 6540
ccaactcttt ttccgaaggt aactggcttc agcagagcgc agataccaaa tactgttctt 6600
ctagtgtagc cgtagttagg ccaccacttc aagaactctg tagcaccgcc tacatacctc 6660
gctctgctaa tcctgttacc agtggctgct gccagtggcg ataagtcgtg tcttaccggg 6720
ttggactcaa gacgatagtt accggataag gcgcagcggt cgggctgaac ggggggttcg 6780
tgcacacagc ccagcttgga gcgaacgacc tacaccgaac tgagatacct acagcgtgag 6840
ctatgagaaa gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc 6900
agggtcggaa caggagagcg cacgagggag cttccagggg gaaacgcctg gtatctttat 6960
agtcctgtcg ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg 7020
gggcggagcc tatggaaaaa cgccagcaac gcggcctttt tacggttcct ggccttttgc 7080
tggccttttg ctcacatgtt ctttcctgcg ttatcccctg attctgtgga taaccgtatt 7140
accgcctttg agtgagctga taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca 7200
gtgagcgagg aagcggaaga 7220
<210> 4
<211> 502
<212> PRT
<213> Bacillus licheniformis (Bacillus licheniformis)
<400> 4
Met Thr Val His Lys Ala Lys Met Thr Ile Asp Lys Glu Tyr Lys Val
1 5 10 15
Ala Glu Ile Asp Lys Arg Ile Tyr Gly Ser Phe Ile Glu His Leu Gly
20 25 30
Arg Ala Val Tyr Glu Gly Ile Tyr Glu Pro Asp His Pro Glu Ala Asp
35 40 45
Glu Ser Gly Phe Arg Lys Asp Val Ile Lys Leu Val Arg Glu Leu Lys
50 55 60
Val Pro Phe Ile Arg Tyr Pro Gly Gly Asn Phe Val Ser Gly Tyr Asn
65 70 75 80
Trp Glu Asp Gly Val Gly Pro Val Glu Gln Arg Pro Thr Arg Leu Asp
85 90 95
Leu Ala Trp Ala Thr Thr Glu Pro Asn Leu Ile Gly Thr Asn Glu Phe
100 105 110
Met Asp Trp Ala Lys Leu Val Gly Ala Glu Val Asn Met Ala Val Asn
115 120 125
Leu Gly Thr Arg Gly Ile Asp Ala Ala Arg Asn Leu Val Glu Tyr Cys
130 135 140
Asn His Pro Ser Gly Ser Tyr Tyr Ser Asp Leu Arg Lys Ser His Gly
145 150 155 160
Tyr Lys Glu Pro His Lys Ile Lys Thr Trp Cys Leu Gly Asn Glu Met
165 170 175
Asp Gly Pro Trp Gln Ile Gly His Lys Thr Ala Ala Glu Tyr Gly Arg
180 185 190
Leu Ala Ala Glu Ala Ala Lys Val Met Lys Trp Thr Asp Pro Ser Ile
195 200 205
Glu Leu Val Ala Cys Gly Ser Ser Gly Ser Gly Met Pro Thr Phe Ile
210 215 220
Asp Trp Glu Thr Thr Val Leu Asp His Thr Tyr Glu His Val Glu Tyr
225 230 235 240
Ile Ser Leu His Ser Tyr Tyr Gly Asn Arg Asp Asn Asp Leu Pro Asn
245 250 255
Tyr Leu Ala Arg Ser Leu Asp Met Asp His Phe Ile Lys Thr Val Ile
260 265 270
Ser Val Cys Asp Tyr Met Lys Ala Lys Lys Lys Ser Lys Lys Thr Ile
275 280 285
His Leu Ser Tyr Asp Glu Trp Asn Val Trp Tyr His Ser Asn Glu Lys
290 295 300
Asp Lys Glu Ala Glu Arg Trp Ala Lys Ala Pro His Leu Leu Glu Asp
305 310 315 320
Ile Tyr Asn Phe Glu Asp Ala Leu Leu Val Gly Cys Met Leu Ile Thr
325 330 335
Met Leu Lys His Ala Asp Arg Val Lys Ile Ala Cys Leu Ala Gln Leu
340 345 350
Val Asn Val Ile Ala Pro Ile Met Thr Asp Lys Gly Gly Glu Ala Trp
355 360 365
Arg Gln Thr Ile Phe Tyr Pro Phe Met His Ala Ser Val Tyr Gly Arg
370 375 380
Gly Thr Val Leu Gln Thr Ala Val Ser Ser Pro Lys Tyr Asp Ala Lys
385 390 395 400
Asp Phe Thr Asp Val Pro Tyr Leu Glu Ser Val Ser Val Phe Asn Glu
405 410 415
Glu Ala Glu Glu Leu Thr Val Phe Ala Val Asn Arg Ala Thr Asp Ala
420 425 430
Gly Leu Glu Met Glu Ala Asp Met Arg Ser Phe Glu Gly Tyr Ser Val
435 440 445
Ser Glu His Ile Val Leu Glu His Glu Asp His Lys Ala Thr Asn Glu
450 455 460
Lys Asp Arg Asn Asn Val Val Pro His Ser Gly Gly Asp Ala Lys Val
465 470 475 480
Cys Asp Gly Arg Leu Thr Ala His Leu Pro Lys Leu Ser Trp Asn Val
485 490 495
Ile Arg Met Lys Lys Gln
500
<210> 5
<211> 30
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
atgaacacga ttaacatcgc taagaacgac 30
<210> 6
<211> 73
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
catgctgcag aaaagaagca ggtatggagg aacctgcttc tttttactat tacgcgaacg 60
cgaagtccga ctc 73
<210> 7
<211> 43
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
atcgctgcag ctaacttata ggggtaacac ttaaaaaaga atc 43
<210> 8
<211> 57
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
gtcgttctta gcgatgttaa tcgtgttcat attatggcct cctttggatc ccatttc 57
<210> 9
<211> 54
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
gtttaacttt aagaaaggag gatataccat gagtaaaggc gaagaacttt tcac 54
<210> 10
<211> 55
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
gcttcctttc gggctttgtt agcaggaatt cttatttgta tagttcatcc atgcc 55
<210> 11
<211> 59
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
taattttgtt taactttaag aaaggaggat ataccatgac tgtacacaaa gcgaagatg 59
<210> 12
<211> 69
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
gccaactcag cttcctttcg ggctttgtta gcaggaattc ttattgtttc ttcattctga 60
tcacattcc 69

Claims (10)

1. A bacillus subtilis expression system, comprising: the Bacillus subtilis expression system was established by inserting the xylose-induced T7RNA polymerase expression system at the aprE site of the Bacillus subtilis genome.
2. The Bacillus subtilis expression system of claim 1, wherein: the bacillus subtilis is a mutant strain 164S derived from industrial bacillus subtilis ATCC6051a, obtained by integrating one copy of the comk expression cassette at the nprE site of 6051 a.
3. The expression system of the industrial production strain Bacillus subtilis 164 of claim 1, wherein: the DNA sequence of the T7RNA polymerase expression system is shown as SEQ ID NO. 1.
4. Use of a bacillus subtilis expression system according to any one of claims 1-3 for bioconversion or expression of an enzyme protein.
5. The use of claim 4, wherein: the enzyme protein is alpha-L-arabinofuranosidase.
6. A method for producing alpha-L-arabinofuranosidase by a bacillus subtilis expression system comprises the following steps:
step 1, synthesizing a plasmid pMK4-T7 with a sequence shown as SEQ ID NO. 2, inserting an alpha-L-arabinofuranosidase encoding gene into the plasmid pMK4-T7 to obtain an expression plasmid pMK 4-T7-arbf;
step 2, transforming the expression plasmid pMK4-T7-arbf into the Bacillus subtilis expression system of claim 1 to obtain Bacillus subtilis T7-arbf;
and 3, fermenting, culturing and secreting the bacillus subtilis T7-arbf to produce the alpha-L-arabinofuranosidase.
7. The method of producing α -L-arabinofuranosidase using a bacillus subtilis expression system of claim 6, wherein: the DNA sequence of plasmid pMK4-T7-arbf in step 1 is shown in SEQ ID NO 3.
8. The method of producing α -L-arabinofuranosidase using a bacillus subtilis expression system of claim 6, wherein: the amino acid sequence of the alpha-L-arabinofuranosidase in the step 1 is shown as SEQ ID NO. 4.
9. The method of producing α -L-arabinofuranosidase using a bacillus subtilis expression system of claim 6, wherein: and in the step 3, the bacillus subtilis T7-arbf is subjected to fermentation culture in an LB culture medium under the induction of xylose, xylan or bran.
10. The method for producing alpha-L-arabinofuranosidase by using the Bacillus subtilis expression system of claim 6, wherein the Bacillus subtilis T7-arbf fermentation culture medium comprises: LB medium + 3% (m/V) bran.
CN202011143233.9A 2020-10-23 2020-10-23 Bacillus subtilis expression system and method for producing alpha-L-AFs by using same Withdrawn CN112226451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011143233.9A CN112226451A (en) 2020-10-23 2020-10-23 Bacillus subtilis expression system and method for producing alpha-L-AFs by using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011143233.9A CN112226451A (en) 2020-10-23 2020-10-23 Bacillus subtilis expression system and method for producing alpha-L-AFs by using same

Publications (1)

Publication Number Publication Date
CN112226451A true CN112226451A (en) 2021-01-15

Family

ID=74110505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011143233.9A Withdrawn CN112226451A (en) 2020-10-23 2020-10-23 Bacillus subtilis expression system and method for producing alpha-L-AFs by using same

Country Status (1)

Country Link
CN (1) CN112226451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699138A (en) * 2021-08-19 2021-11-26 邵阳学院 Alkaline protease gene, hybrid promoter, recombinant expression vector, recombinant expression engineering bacterium, alkaline protease, method and application
CN114410669A (en) * 2022-03-28 2022-04-29 佛山市玉凰生态环境科技有限公司 Production and immobilization method of recombinant nitrilase and application of recombinant nitrilase to degradation of acetonitrile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217580A (en) * 1999-01-29 2000-08-08 Godo Shusei Co Ltd Arabinofuranosidase
CN102051350A (en) * 2009-10-30 2011-05-11 复旦大学 Cryophilic xylosidase/arabinofuranosidase and preparation method and application thereof
US20110124046A1 (en) * 2009-11-25 2011-05-26 Alliance For Sustainable Energy, Llc Extracellular Secretion of Recombinant Proteins
CN103409393A (en) * 2013-07-09 2013-11-27 复旦大学 Alpha-L-arabinofuranosidase as well as encoding gene, preparation method and application thereof
CN105861405A (en) * 2016-05-06 2016-08-17 中国科学院上海高等研究院 High-conversion-rate bacillus subtilis and structuring method thereof
CN107058367A (en) * 2017-06-03 2017-08-18 白银赛诺生物科技有限公司 The construction method of the recombined bacillus subtilis of high yield Pullulanase

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217580A (en) * 1999-01-29 2000-08-08 Godo Shusei Co Ltd Arabinofuranosidase
CN102051350A (en) * 2009-10-30 2011-05-11 复旦大学 Cryophilic xylosidase/arabinofuranosidase and preparation method and application thereof
US20110124046A1 (en) * 2009-11-25 2011-05-26 Alliance For Sustainable Energy, Llc Extracellular Secretion of Recombinant Proteins
CN103409393A (en) * 2013-07-09 2013-11-27 复旦大学 Alpha-L-arabinofuranosidase as well as encoding gene, preparation method and application thereof
CN105861405A (en) * 2016-05-06 2016-08-17 中国科学院上海高等研究院 High-conversion-rate bacillus subtilis and structuring method thereof
CN107058367A (en) * 2017-06-03 2017-08-18 白银赛诺生物科技有限公司 The construction method of the recombined bacillus subtilis of high yield Pullulanase

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MINGHUA JI ET AL.: "A wheat bran inducible expression system for the effcient production of α-L-arabinofuranosidase in Bacillus subtilis", 《ENZYME AND MICROBIAL TECHNOLOGY》 *
MINGHUA JI ET AL.: "Development of an inducible T7 expression system in Bacillus subtilis ATCC 6051a for production of α-L-arabinofuranosidase", 《RESEARCH SQUARE》 *
纪明华 等: "一种芽孢杆菌中性蛋白酶启动子的克隆和验证", 《食品工业科技》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699138A (en) * 2021-08-19 2021-11-26 邵阳学院 Alkaline protease gene, hybrid promoter, recombinant expression vector, recombinant expression engineering bacterium, alkaline protease, method and application
CN113699138B (en) * 2021-08-19 2023-10-24 邵阳学院 Alkaline protease gene, hybrid promoter, recombinant expression vector, recombinant expression engineering bacterium, alkaline protease, method and application
CN114410669A (en) * 2022-03-28 2022-04-29 佛山市玉凰生态环境科技有限公司 Production and immobilization method of recombinant nitrilase and application of recombinant nitrilase to degradation of acetonitrile
CN114410669B (en) * 2022-03-28 2022-06-17 佛山市玉凰生态环境科技有限公司 Production and immobilization method of recombinant nitrilase and application of recombinant nitrilase to degradation of acetonitrile

Similar Documents

Publication Publication Date Title
CN111705006B (en) Oral recombinant yeast for expressing novel coronavirus S protein and preparation and application thereof
CN102414314A (en) Cells and method for producing acetone
CN112226451A (en) Bacillus subtilis expression system and method for producing alpha-L-AFs by using same
CN106591344A (en) Escherichia coli thermally-induced soluble protein expression vector fused with molecular chaperone label and application thereof
CN110004163B (en) Method for improving drought resistance of rice by multi-gene editing
CN102719471B (en) Integrative plasmid pOPHI and resistance screening marker-free self-luminescent mycobacterium
CN106011133B (en) A kind of small DNA molecular amount reference substance, reference substance plasmid and preparation method thereof
CN112553176B (en) Glutamine transaminase with improved thermal stability
CN101603023B (en) Recombinant escherichia coli of temperature-control coexpression exogenous gene and application thereof
CN112011471B (en) Yeast strain for brewing lemon-flavored beer, preparation method thereof and beer brewing method
CN102041267B (en) Method for eliminating glucose inhibition effect of clostridium acetobutylicum
CN102311954B (en) Transgenic papaya 55-1 transformation event specific PCR detection method
CN108714210B (en) Application of recombinant attenuated listeria in preparation of mesothelin high-expression cancer therapeutic vaccine
CN113073102B (en) Application of autophagy gene ATG9 in rice breeding and/or rice grain type mechanism research
KR101495276B1 (en) Light Inducible Promoter and Gene Expression System Comprising The Same
CN101220372B (en) Recombined bifidobacteria -hRV/VP7 expression vector and oral vaccine thereof
CN108118047A (en) A kind of preparation method of bifunctional enzyme and its application in trehalose production
KR20140094757A (en) A cassette comprising promoter sequences of a target gene and a method for gene manipulation using the same
CN113736676A (en) Preparation and application of oral recombinant saccharomyces cerevisiae for expressing porcine epidemic diarrhea virus S protein
KR102655938B1 (en) Composition for producing ginsenoside compound K comprising thermo satble alpha-L-arabinofuranosidase enzyme and preparation method of ginsenoside compound K
CN112553177B (en) Glutamine transaminase variant with improved heat stability
CN114085863B (en) Double ARS vector capable of free expression in candida glycerinogenes and application thereof
CN114317473B (en) Glutamine transaminase variants with improved catalytic activity and thermostability
CN113980883B (en) Recombinant escherichia coli for high-yield hydroxylation steroid bulk drug and application thereof
CN113817621B (en) Recombinant saccharomyces cerevisiae strain capable of simultaneously expressing IFNa14 protein and human hepatitis B virus S protein as well as preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210115