CN112218951B - Wheat blue grain gene and application thereof - Google Patents

Wheat blue grain gene and application thereof Download PDF

Info

Publication number
CN112218951B
CN112218951B CN201780054212.XA CN201780054212A CN112218951B CN 112218951 B CN112218951 B CN 112218951B CN 201780054212 A CN201780054212 A CN 201780054212A CN 112218951 B CN112218951 B CN 112218951B
Authority
CN
China
Prior art keywords
gene
blue
ser
wheat
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780054212.XA
Other languages
Chinese (zh)
Other versions
CN112218951A (en
Inventor
马力耕
王峥
陈卓
衡燕芳
邓兴旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhiyu Wheat Biotechnology Co ltd
Institute Of Modern Agriculture Peking University
Capital Normal University
Original Assignee
Beijing Zhiyu Wheat Biotechnology Co ltd
Institute Of Modern Agriculture Peking University
Capital Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Zhiyu Wheat Biotechnology Co ltd, Institute Of Modern Agriculture Peking University, Capital Normal University filed Critical Beijing Zhiyu Wheat Biotechnology Co ltd
Priority to CN202211123928.XA priority Critical patent/CN116064580A/en
Publication of CN112218951A publication Critical patent/CN112218951A/en
Application granted granted Critical
Publication of CN112218951B publication Critical patent/CN112218951B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Abstract

A wheat blue grain gene and application thereof belong to the fields of plant molecular biology, biochemistry, genetics and plant breeding. By utilizing the differential expression analysis of blue-grain and white-grain wheat, four genes for controlling the blue-grain character of the wheat are obtained: two MYB family transcription factors and two bHLH family transcription factors, and provides a plant recombinant expression vector of the genes and a method for regulating and controlling the synthesis of plant anthocyanin, and the two bHLH family transcription factors have important theoretical and practical significance for researching the synthetic route of aleurone layer pigment of the blue-grain wheat, serving as a screening marker in the process of plant transformation and improving the nutritive value of plants.

Description

Wheat blue grain gene and application thereof
Technical Field
The invention relates to the field of plant molecular biology, biochemistry, genetics and plant breeding, in particular to a gene for regulating and controlling the blue grain character of wheat. The invention provides nucleic acid molecules of four wheat blue grain character related genes, a plant recombinant vector and an application method of the genes or the vector.
Technical Field
There are two colors naturally found in common wheat grains: white or red grains, and very few blue or purple grains. Blue-grain or purple-grain wheat can be used as an important genetic marker to be applied to genetic breeding of wheat, particularly, in China, the application research of blue-grain wheat is relatively deep, for example, a 4E-ms hybrid wheat production system successfully utilizes blue-grain characteristics to effectively maintain wheat nuclear male sterility (Zhou et al, 2006).
The outer surface of the endosperm of the wheat grain is wrapped with three layers of tissues from outside to inside, which are respectively as follows: the color of the wheat seed is determined by different anthocyanidin accumulated in different tissues. Purple-grain wheat is derived from purple anthocyanin in the outermost pericarp, and the pericarp is developed by a female parent, so that the purple-grain shape presents a maternal inheritance pattern. Blue-grain wheat is derived from blue anthocyanin of aleurone layer, mainly generated by distant hybridization between common wheat and other species, and the sources of the blue-grain wheat are two: spike length couchWheat straw (Thinopyrum ponticum) and wild wheat (Triticum monococcum). In the sixties to the eighties of the last century, many scholars at home and abroad, such as Knott, sharman, lizhen and the like, obtain blue grain wheat from filial generations of elytrigia elongata and common wheat, and prove that the 4E (also named 4 Ag) chromosome of the elytrigia elongata carries blue grain genes. Plum tremolo et al, through genetic analysis, believe that the blue grain gene is genetically stable and independent, with significant dose effects, with its blue grain trait closely resembling genetic control of a pair of genes (plum tremolo et al, 1982). GISH and FISH experimental analysis of a series of different blue-grain translocation lines further mapped the blue-grain genes within the 0.71-0.80 segment of the long arm of the 4Ag chromosome (distance from the centromere) (Zheng et al, 2006). In 1990, keppenne named Blue aleurone (Ba) gene from a Blue aleurone layer gene of elytrigia repens, and foreign scholars thought that the Blue trait is controlled by two complementary genes together. Joppa et al in 1982 demonstrated that the Blaukom series derived from Triticum aestivum is formed by replacement of the 4A or 4B chromosome of Triticum aestivum by a pair of 4A chromosomes of Triticum aestivum, 4A from Triticum aestivum m The chromosomes are non-homologous to the 4A chromosome in tetraploid and hexaploid wheat. Kuspiral et al named the blue aleurone layer gene from wild one-grain wheat as Ba2 gene in 1989, and the Ba2 gene was located at 4A m Near the centromere of the long arm of the chromosome (Dubcovsky et al, 1996).
Genes controlling red grain and purple grain traits in wheat have been cloned, and there is no report on blue grain traits. In 2005, himi et AL reported that the red-grain-like major genes R1, R2 and R3 located on the 3AL, 3BL and 3DL chromosomes encode 3 highly homologous Myb family transcription factors (Himi et AL, 2005). Genetic analysis of Triticum aestivum showed that purple-grain trait is controlled by a Pp-1 (purple pericarp) site located on the short arm of chromosome 7 and a Pp3 site located on chromosome 2AL, wherein Pp-1 encodes a Myb family transcription factor and Pp3 encodes a Myc family transcription factor containing a bHLH (basic helix-loop-helix) domain (Khlestkina et AL,2013, shoeva et AL, 2014.
Anthocyanidin for determining wheat grain color is a water-soluble secondary metabolite-flavonoid compound, and is widely distributed in roots, stems, leaves, flowers, fruits and seeds of higher plants. Plant anthocyanin synthesis belongs to a branch of flavonoid synthesis pathway, and main synthetases in the pathway comprise chalcone synthetase (CHS), chalcone isomerase (CHI), flavanone-3-hydroxylase (F3H), dihydroflavonol-4-reductase (DFR) and the like (Gongkuai et al, 2011), and all the genes are structural genes for anthocyanin synthesis. The regulation and control of anthocyanin synthesis are mainly completed by three types of transcription factors: MYB, bHLH and WD40. Most of the anthocyanidins in the species are directly regulated and activated by a protein complex formed by compounding the three transcription factors, and a few anthocyanidins can be synthesized by only a single regulation factor.
The blue-grain wheat is an ideal morphological characteristic for wheat marker character and wheat cytogenetics research, and is also an important basic material in wheat chromosome engineering research. The invention utilizes the differential expression analysis of blue grain and white grain wheat to obtain 4 genes for controlling the blue grain character of wheat: two MYB family transcription factors and two bHLH family transcription factors. The invention is beneficial to researching the synthesis way of the blue-grain wheat aleurone layer pigment, can be used as a screening marker in the plant transformation process, and can increase the synthesis of anthocyanin by expressing the gene in the plant, thereby improving the nutritive value of the plant.
Disclosure of Invention
All references mentioned herein are incorporated herein by reference.
Unless defined to the contrary, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Unless indicated to the contrary, the techniques used or referred to herein are standard techniques well known to those of ordinary skill in the art. The materials, methods, and examples are illustrative only and not intended to be limiting.
The invention provides a blue grain gene with an anthocyanin synthesis regulation function, wherein the names of the blue grain genes are ThMYB1, thMYB2, thR 1and ThR2 respectively, and the blue grain gene can change tissues or organs at the expression part of the blue grain gene into blue. Wherein the genome nucleotide sequence from the start codon to the stop codon of the ThMYB1 gene is shown as SEQ ID NO. 1, the nucleotide sequence of a coding region (CDS) of the ThMYB1 gene is shown as SEQ ID NO. 2, and the amino acid sequence coded by the CDS is shown as SEQ ID NO. 3. Wherein the genome nucleotide sequence from the start codon to the stop codon of the ThMYB2 gene is shown as SEQ ID NO. 4, the nucleotide sequence of a coding region (CDS) of the ThMYB2 gene is shown as SEQ ID NO.5, and the amino acid sequence coded by the CDS is shown as SEQ ID NO. 6. Wherein the genome nucleotide sequence from the start codon to the stop codon of the ThR1 gene is shown as SEQ ID NO. 7, the nucleotide sequence of the coding region (CDS) thereof is shown as SEQ ID NO. 8, and the amino acid sequence coded by the CDS thereof is shown as SEQ ID NO. 9. Wherein the genome nucleotide sequence from the start codon to the stop codon of the ThR2 gene is shown as SEQ ID NO. 10, the nucleotide sequence of the coding region (CDS) thereof is shown as SEQ ID NO. 11, and the amino acid sequence coded by the CDS thereof is shown as SEQ ID NO. 12.
As will be appreciated by those skilled in the art, the locus coeruleus genes described herein also include nucleotide or protein sequences that are highly homologous to the nucleotide or protein sequences of the ThMYB1, thMYB2, thR 1and ThR2 genes and that have the same function of regulating plant anthocyanin synthesis. The homologous gene which is highly homologous and has the anthocyanin synthesis regulation function comprises a DNA sequence which can be hybridized with DNA with the sequence shown in SEQ ID NO. 1, 2, 4, 5, 7, 8, 10 or 11 under the strict condition. Or nucleotide sequence with 85% similarity between the coded amino acid sequence and the protein amino acid sequence shown in SEQ ID NO. 3, 6, 9 or 12. As used herein, "stringent conditions" are well known and include, for example, hybridization in a hybridization solution containing 400mM NaCl, 40mM PIPES (pH 6.4) and 1mM EDTA at a temperature of preferably 53 ℃ to 60 ℃ for a hybridization time of preferably 12 to 16 hours, followed by washing with a washing solution containing 0.5 XSSC, and 0.1% SDS at a washing temperature of preferably 62 ℃ to 68 ℃ for a washing time of 15 to 60 minutes.
The homologous gene also comprises a DNA sequence which has at least 80%, 85%, 90%, 95%, 98% or 99% sequence similarity with the full length of the sequence shown in SEQ ID NO. 1, 2, 4, 5, 7, 8, 10 or 11 and has the function of regulating the synthesis of plant anthocyanin, and can be separated from any plant. The percentage of sequence similarity can be obtained, among others, by well-known bioinformatics algorithms, including the algorithms of Myers and Miller, needleman-Wunsch global alignment, smith-Waterman local alignment, pearson and Lipman similarity search, karlin and Altschul. As is well known to those skilled in the art.
The invention also provides an expression cassette, which contains the DNA sequence of the blue grain gene disclosed by the invention, and the nucleotide sequence of the blue grain gene is selected from one of the following sequences:
(a) As shown in SEQ ID NO: 1. 2, 4, 5, 7, 8, 10 or 11;
(b) The coded amino acid sequence is shown as SEQ ID NO: 3. 6, 9 or 12;
(c) A DNA sequence capable of hybridizing to the DNA of the sequence of (a) or (b) under stringent conditions; or
(d) A DNA sequence having at least 80% (preferably at least 85%) sequence similarity to the sequences described in (a) to (c) and having anthocyanin synthesis-controlling function; or
(e) A DNA sequence complementary to any one of the sequences of (a) to (d).
Specifically, the blue-particle gene in the above expression cassette is also operably linked to a promoter capable of driving its expression, including but not limited to a constitutive promoter, an inducible promoter, a tissue-specific promoter, or a spatio-temporal specific expression promoter. The constitutive promoter has no tissue and time specificity in gene expression, and external factors hardly influence the exogenous gene expression started by the constitutive promoter. The constitutive promoter includes, but is not limited to, caMV35S, FMV35S, rice Actin (Actin 1) promoter, maize Ubiquitin (Ubiquitin) promoter, and the like. The tissue-specific promoter disclosed by the invention comprises due general promoter elements, and also has the characteristics of an enhancer and a silencer, and the promoter has the advantages that the expression of genes at a specific tissue part of a plant can be started, the unnecessary expression of exogenous genes is avoided, and the whole energy consumption of the plant is saved. The tissue-specific promoter includes, but is not limited to, LTP2 seed-specific expression promoter, END2 seed-specific expression promoter, aleurone layer-specific expression promoter, and the like. The inducible promoter of the present invention refers to a promoter that can greatly increase the transcription level of a gene under the stimulation of some specific physical or chemical signals, and the inducible promoters that have been isolated at present include, but are not limited to, stress inducible expression promoters, light inducible expression promoters, heat inducible expression promoters, wound inducible expression promoters, fungus inducible expression promoters, symbiotic bacteria inducible expression promoters, and the like.
The above expression cassette of the present invention may further comprise a screening gene, and the screening gene may be used to screen out plants, plant tissue cells or vectors containing the expression cassette. The screening gene includes but is not limited to antibiotic resistance gene, herbicide resistance gene, fluorescent protein gene, etc. Specifically, the screening genes include, but are not limited to: chloramphenicol resistance gene, hygromycin resistance gene, streptomycin resistance gene, spectinomycin resistance gene, sulfonamide resistance gene, glyphosate resistance gene, glufosinate resistance gene, bar gene, red fluorescent gene DsRED, mCherry gene, cyan fluorescent protein gene, yellow fluorescent protein gene, luciferase gene, green fluorescent protein gene, and the like.
The invention also discloses a method for improving the anthocyanin content of a plant, which can improve the anthocyanin content in the tissue organ of the plant by co-expressing the ThMYB1 or ThMYB2 gene provided by the invention and any bHLH transcription factor in the tissue organ of the plant.
The bHLH transcription factor can be isolated from any plant, including but not limited to the ThR 1and ThR2 genes provided by the invention, as well as the ZmR and ZmB genes from maize (Ahmed N, et al. Transmission expression of an anticancer in degrading maize by way of C1and B-peru regulatory genes for anticancer in synthesis. Breeding Sci.2003;53 (1): 29-34.).
The method for increasing the anthocyanin content of the plant can be used for increasing the anthocyanin content of any tissue or organ of the plant. Specifically, if one wants to increase the anthocyanin content in various tissues of a plant as a whole, the expression of both the ThMYB1 or ThMYB2 gene and the bHLH transcription factor can be promoted using a constitutive promoter. If only the anthocyanin content in a certain tissue or organ is to be increased, the ThMYB1 or ThMYB2 gene and the bHLH transcription factor can be promoted to be expressed by using a promoter specifically expressed in the tissue or organ.
The invention also discloses a method for improving the content of plant anthocyanin, and the method can improve the content of the plant anthocyanin in the plant tissue organ by co-expressing the ThR1 or ThR2 gene and any MYB transcription factor provided by the invention in the plant tissue organ.
The MYB transcription factor can be isolated from any plant, including but not limited to the ThMYB 1and ThMYB2 genes provided by the invention, and the ZmC1 gene from maize (Ahmed N, et al. Transmission expression of an anticancer in degrading maize B1 and B-peru regulation genes for anticancer in synthesis. Breeding Sci.2003;53 (1): 29-34.).
The method for increasing the anthocyanin content of the plant can be used for increasing the anthocyanin content of any tissue or organ of the plant. Specifically, if the anthocyanin content in each tissue of the plant is to be integrally increased, the ThR1 or ThR2 gene and the MYB transcription factor can be promoted to be expressed by using a constitutive promoter. If the anthocyanin content in a certain tissue or organ is only to be increased, the ThR1 or ThR2 gene and MYB transcription factors can be promoted to be expressed by using a promoter specifically expressed in the tissue or organ.
The present invention also provides a visual selection marker gene that produces a macroscopically blue selection marker in a tissue organ of a plant by co-expressing a ThMYB1 or ThMYB2 gene with either of the bHLH transcription factors. Or the ThR1 or ThR2 gene provided by the invention and any MYB transcription factor are co-expressed in the tissue organ of the plant, so that a macroscopic blue screening marker is generated in the tissue organ of the plant.
The screening marker gene disclosed by the invention can be used for distinguishing transgenic and non-transgenic materials.
Specifically, the screening marker gene provided by the invention can be used as a screening marker in the breeding process of a male sterile line, after the fertility restorer gene, the pollen inactivation gene and the screening marker gene provided by the invention are transferred into the male sterile line, the fertility restorer gene can restore the fertility of the male sterile line, the pollen inactivation gene can inactivate pollen containing a transformed exogenous gene, namely lose the insemination capability, the screening marker gene provided by the invention can be used for sorting transgenic seeds or tissues and non-transgenic seeds or tissues, the sorted non-transgenic seeds are used as sterile lines to produce hybrid seeds, and the transgenic seeds are used as maintainer lines to continuously and stably produce the sterile lines.
The screening marker gene provided by the invention can also be used as a screening marker in the reproduction process of a female sterile line, and the female fertility gene, the pollen inactivation gene and the screening marker gene provided by the invention are transferred into the female sterile line. The screening marker gene provided by the invention can be used for sorting transgenic seeds and non-transgenic seeds, the sorted non-transgenic seeds are used as female sterile lines to produce hybrid seeds, and the transgenic seeds are used as maintainer lines to continuously and stably produce female sterile lines and female sterile maintainer lines.
The invention also provides a promoter of the blue-grain gene, the promoter has the characteristic of aleurone layer specific expression, and the nucleotide sequence of the promoter is shown as SEQ ID NO. 13, 14, 15 or 16. 13, 14, 15 or 16 of SEQ ID NO. is connected with a reporter gene GUS, a vector is constructed to transform rice and wheat, the expression activity and the expression pattern of GUS in a transgenic plant are detected and analyzed, and the GUS staining analysis is carried out on roots, stems, leaves, flowers and seeds of the transgenic plant, so that the result shows that the promoter provided by the invention drives the GUS gene to express in an aleurone layer of plant seeds. The blue particle gene promoter SEQ ID NO 13, 14, 15 or 16 provided by the invention is a promoter for aleurone layer specific expression.
The aleurone layer specific expression promoter provided by the invention contains a nucleotide sequence shown as SEQ ID NO 13, 14, 15 or 16 in a sequence table, or contains a nucleotide sequence with more than 90% of similarity with the nucleotide sequence shown as SEQ ID NO 13, 14, 15 or 16, or contains 500 and more than 500 continuous nucleotide fragments from the SEQ ID NO 13, 14, 15 or 16 sequence, and can drive the nucleotide sequence operatively connected with the promoter to be expressed in an aleurone layer of a plant seed. Expression vector, transgenic cell line, host bacteria and the like containing the sequence all belong to the protection scope of the invention. Primer pairs for amplifying any nucleotide fragment of the promoter of SEQ ID NO. 13, 14, 15 or 16 disclosed by the invention are also within the protection scope of the invention.
A "promoter" as used herein refers to a DNA regulatory region which typically contains a TATA box which directs RNA polymerase II to initiate RNA synthesis at the appropriate transcription initiation site for a particular coding sequence. The promoter may also contain other recognition sequences, usually located upstream or 5' of the TATA box, often referred to as upstream promoter elements, which function to regulate transcription efficiency. It will be appreciated by those skilled in the art that while nucleotide sequences have been identified for the promoter regions disclosed herein, it is within the scope of the present invention to isolate and identify other regulatory elements in the region upstream of the TATA box of the particular promoter region identified herein. Thus, the promoter regions disclosed herein are typically further defined as comprising upstream regulatory elements, such as those used to regulate the function of tissue and temporal expression of coding sequences, enhancers, and the like. In the same manner, promoter elements that enable expression in a target tissue (e.g., male tissue) can be identified, isolated, and used with other core promoters to verify male tissue-preferred expression. Core promoter refers to the minimal sequence required to initiate transcription, such as the sequence known as the TATA box, which is commonly found in promoters of genes encoding proteins. Thus, the aleurone layer-specific expression promoters provided by the present invention may alternatively be used in association with their own or other source of core promoters. The core promoter may be any one of known core promoters, such as cauliflower mosaic virus 35S or 19S promoter (U.S. Pat. No.5,352,605), ubiquitin promoter (U.S. Pat. No.5,510,474), IN2 core promoter (U.S. Pat. No.5,364,780), or figwort mosaic virus promoter.
The function of the gene promoter of the invention can be analyzed by the following method: operably connecting a promoter sequence with a reporter gene to form a transformable vector, transferring the vector into a plant, and observing the expression condition of the reporter gene in each tissue organ of the plant to confirm the expression characteristic of the transgenic progeny; or subcloning the vector into an expression vector for transient expression experiment, and detecting the function of the promoter or the regulatory region thereof through the transient expression experiment.
The choice of an appropriate expression vector for testing the function of the promoter or regulatory region will depend on the host and the method of introducing the expression vector into the host, and such methods are well known to those of ordinary skill in the art. For eukaryotes, regions in the vector include regions that control transcription initiation and control processing. These regions are operably linked to a reporter gene comprising YFP, uid, GUS gene or luciferase. Expression vectors containing putative regulatory regions located in genomic fragments can be introduced into intact tissues, such as staged pollen, or into callus tissue for functional validation.
In addition, the nucleotide sequence of the aleurone layer-specific expression promoter provided by the present invention, or a fragment or variant thereof, may be assembled with a heterologous nucleotide sequence in an expression cassette for expression in a plant of interest, more specifically, in the seed of the plant. The expression cassette has appropriate restriction sites for insertion of the promoter and heterologous nucleotide sequence. These expression cassettes can be used to genetically manipulate any plant to obtain the desired corresponding phenotype.
The aleurone layer specific expression promoter disclosed by the invention can be used for driving the expression of genes, such as but not limited to genes related to yield increase, genes for improving the nutritional value of seeds, genes for improving the anthocyanin content, fluorescent protein genes and the like, so that transformed plants can obtain corresponding phenotypes.
The invention also provides an expression cassette, a vector or an engineering strain, wherein the expression cassette, the vector or the engineering strain comprises the aleurone layer specific expression promoter SEQ ID NO. 13, 14, 15 or 16 provided by the invention, or comprises 500 and more than 500 continuous nucleotide fragments derived from the SEQ ID NO. 13, 14, 15 or 16 sequence.
The aleurone layer specific expression promoter provided by the invention can be used for specific expression of an exogenous gene in seeds, so that adverse effects caused by continuous expression of the exogenous gene in other tissues of plants are avoided, and the aleurone layer specific expression promoter has an important application value in plant genetic engineering research.
The nucleotide sequence and promoter sequence or expression cassette of the blue-particle gene provided by the present invention can be inserted into a vector, plasmid, yeast artificial chromosome, bacterial artificial chromosome or any other vector suitable for transformation into a host cell. Preferred host cells are bacterial cells, in particular for cloning or storing polynucleotides, or for transforming plant cells, such as E.coli, agrobacterium tumefaciens and Agrobacterium rhizogenes. When the host cell is a plant cell, the expression cassette or vector may be inserted into the genome of the transformed plant cell. The insertions may be localized or random insertions.
The nucleotide sequence, the vector or the expression cassette is transferred into a plant or introduced into the plant or transformed into the plant, and the nucleotide sequence, the vector or the expression cassette is transferred into a receptor cell or a receptor plant by a conventional transgenic method. Any transgenic method known to those skilled in the art of plant biotechnology can be used to transform the recombinant expression vector into a plant cell to produce a transgenic plant of the invention. The transformation methods may include direct and indirect transformation methods. Suitable direct methods include polyethylene glycol-induced DNA uptake, liposome-mediated transformation, introduction using a gene gun, electroporation, and microinjection. The transformation method also includes Agrobacterium-mediated plant transformation methods and the like.
Compared with the prior art, the invention has the following beneficial effects: the invention provides a blue particle gene and a promoter thereof, wherein the blue particle gene can improve the content of anthocyanin in plants, and because the anthocyanin has an anti-oxidation function, the discovery of the anthocyanin synthesis related gene undoubtedly increases the nutritional value and medical value of edible parts of the plants in the times that people increasingly pursue healthy life due to aggravated environmental pollution. Meanwhile, the blue granule gene can be used as a screening marker while improving the anthocyanin content of the plant, so that the screening marker elimination process in the transgenic process is avoided, the time and steps of transgenic bioengineering are saved, and the blue granule gene has great application value in practical production application.
Reference to the literature
Zhou K,Wang S,Feng Y,Liu Z,Wang G.The 4E-system of producing hybrid wheat.Crop Sci.2006;46(1):250-255.
Plum tremble, mummy, blue grain single wheat study (one) [ J ]. Genetics report, 1982 (6): 15.
Zheng Q.,Li B.,Mu S.,Zhou H.,Li Z.(2006).Physical mapping of the blue-grained gene(s)from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat.Genome 49,1109-1114.
Dubcovsky,J.,Luo,M.C.,Zhong,G.Y.,Bransteitter,R.,Desai,A.,Kilian,A.,et al.(1996).Genetic map of diploid wheat,Triticum monococcum L.,and its comparison with maps of Hordeum vulgare L.Genetics 143,983-999.
Himi,E.,and Noda,K.(2005).Red grain colour gene(R)of wheat is a Myb-type transcription factor.Euphytica 143,239-242.
Khlestkina,E.K.Genes determining coloration of different organs in wheat.Russ.J.Genet.Appl.
Res.2013,3,54-65.
Shoeva,O.Y.,Gordeeva,E.L.,and Khlestkina,E.K.(2014).The regulation of anthocyanin synthesis in the wheat pericarp.Molecules 19,20266-20279.
"Gongxiao", xuejing, zhang Xiaodong "2011" research on regulatory genes in the synthetic pathway of plant anthocyanidin, progress of biotechnology 1 (6): 381-390
Ahmed N,Maekawa M,Utsugi S,Himi E,Ablet H,Rikiishi K,et al.Transient expression of anthocyanin in developing wheat coleoptile by maize C1and B-peru regulatory genes for anthocyanin synthesis.Breeding Sci.2003;53(1):29-34.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention and not to limit the invention.
Drawings
Fig. 1 is the kernel color of blue and white wheat. The left panel is the deep blue grain of blue grain wheat 3114BB, the right panel is the white grain of its parent white grain wheat 3114.
FIG. 2 is a genomic PCR used to verify the source of the four blue grain genes ThMYB1, thMYB2, thR 1and ThR2. The left panel is an agarose gel electrophoresis of the PCR products of the ThMYB 1and ThMYB2 genes, and the right panel is an agarose gel electrophoresis of the PCR products of the ThR 1and ThR2 genes. No expression of four genes could be detected in the genome of white grain wheat 3114, but in the genomes of blue grain wheat 3114BB and elytrigia elongata.
FIG. 3 is a graph demonstrating the source of four blue granule genes using semi-quantitative RT-PCR. Agarose gel electrophoresis of the PCR products showed that no expression of four genes could be detected in the cDNA of white grain wheat 3114, but four genes could be detected in the cDNA of blue grain wheat 3114BB, where ACTIN is the housekeeping protein gene.
FIG. 4 is a graph showing the expression pattern of four blue grain genes in blue grain wheat 3114BB by semi-quantitative RT-PCR. The left panel is agarose gel electrophoresis of the PCR products of the blue-particle gene in different plant organs or tissues, and the right panel is agarose gel electrophoresis of the PCR products of the blue-particle gene at various developmental stages of the aleurone layer, wherein ACTIN is the housekeeping protein gene. The expression of four genes can not be detected in cDNA of root, stem, leaf, embryo and endosperm, but high expression of four genes can be detected in aleurone layer, and the expression quantity of different blue granule genes in different development days of aleurone layer is not identical. DPA refers to days post anthesis, i.e. "days post anthesis".
FIG. 5 is a gene gun transient transformation experiment to verify that four blue grain genes can induce wheat coleoptile to produce red anthocyanin spots. Combining the blue grain genes pairwise, co-transforming the combined blue grain genes into wheat coleoptiles respectively, culturing the wheat coleoptiles in a light incubator for 16 hours, and observing the wheat coleoptiles by using a microscope to find that the combination of ThMYB1+ ThR 1and the combination of ThMYB2+ ThR1 can induce most cells to generate red anthocyanin spots, the combination of ThMYB1+ ThR2 can only induce a few cells to generate anthocyanin, and the combination of ThMYB2+ ThR2 can not induce the generation of anthocyanin.
FIG. 6 is a schematic diagram of the construction of plant transformation vectors for wheat transgenic experiments. Wherein LB and RB are the left and right borders of the T-DNA, respectively; the expression of the Bar resistance gene is driven by Ubip (the promoter of the Ubi gene), and is terminated by the Nos terminator; expression of the ThMYB 1and ThR1 genes is regulated by respective promoters and terminators.
FIG. 7 is T of ThMYB1+ ThR1 transgenic wheat in the background of the Agrobacterium-mediated obtention of wheat variety fielder 1 The seed color of the plant is substituted. The left panel shows white grains of the non-transgenic wheat variety fielder, the middle panel shows T 1 The right picture is T 1 And generating a strain with light blue grains in the transgenic plant.
Detailed Description
The following examples are given for the detailed implementation and the specific operation procedures, but the scope of the present invention is not limited to the following examples.
Example 1 cloning of blue-grain Gene
In order to clone the blue grain gene from the 4Ag chromosome of elytrigia elongata, the differential expression analysis of blue grain and white grain wheat is carried out (see figure 1), and theoretically, the differential expression genes of the blue grain and the white grain wheat comprise two types: 1) The gene expressed by the 4Ag chromosome of the elytrigia elongata comprises the blue grain gene which is wanted to be cloned by the invention; 2) Downstream gene changes caused by the expression of elytrigia elongata 4Ag chromosome, and the genes are from wheat genome. The present invention intends to obtain the blue granule gene described in 1) from the analysis thereof. The blue-kernel wheat 3114BB and the parent white-kernel wheat 3114 are selected as materials, because the aleurone layer of wheat grains is blue, the aleurone layer of the wheat grains is changed into blue after about 20 days of flowering, and the aleurone layer of the wheat grains is changed into blue after about 25 days, the aleurone layer of the wheat grains is stripped, the blue-kernel and white-kernel materials are respectively 2 parts which are respectively marked as blue 1, blue 2, white 1and white 2, RNA is extracted, high-throughput sequencing (PE 125) is carried out, and the data amount of 9G is respectively measured on each sample.
Since the published wheat reference genome only covers 61% of the whole wheat genome and the integrity of gene annotation and assembly sequences (scaffolds) are fragmented, direct sequence alignment and differential gene expression analysis cannot find the target gene. The invention uses a three-step elimination method, firstly eliminates a double-end sequence which is accurately compared to a wheat reference genome, secondly eliminates a high-expression gene in white-grain wheat in a residual double-end short-sequence recombinant gene, and finally eliminates a gene which is irrelevant to anthocyanin metabolism in a differential expression gene which meets the conditions.
Through the analysis, 139 differentially expressed genes on non-wheat reference genomes are obtained, wherein 35 genes are highly expressed in blue-grain wheat and hardly expressed in white-grain wheat, and only two target genes are used for respectively coding MYB protein and bHLH protein after gene function annotation analysis is carried out to exclude genes irrelevant to anthocyanin metabolism, and the genes are named as ThMYB 1and ThR1. Based on the known cDNA sequences, the coding region genome sequences of the two genes are obtained by PCR amplification, and in the process, the invention finds that whether ThMYB1 or ThR1 is used, another sequence which is highly homologous with the ThMYB1 or ThR1 is obtained by PCR amplification, so that the invention clones the two homologous sequences and respectively names ThMYB2 and ThR2. Through chromosome walking technology, the invention respectively obtains the promoter sequence and the terminator sequence of the 4 genes.
Wherein, the genome nucleotide sequence from the start codon to the stop codon of the ThMYB1 gene is shown as SEQ ID NO. 1, the nucleotide sequence of the coding region (CDS) is shown as SEQ ID NO. 2, the amino acid sequence coded by the CDS is shown as SEQ ID NO. 3, the promoter sequence is shown as SEQ ID NO. 13, and the terminator sequence is shown as SEQ ID NO. 17. Wherein the genome nucleotide sequence from the start codon to the stop codon of the ThMYB2 gene is shown as SEQ ID NO. 4, the nucleotide sequence of a coding region (CDS) of the ThMYB2 gene is shown as SEQ ID NO.5, the amino acid sequence coded by the CDS of the ThMYB2 gene is shown as SEQ ID NO. 6, the promoter sequence of the CDS of the ThMYB gene is shown as SEQ ID NO. 14, and the terminator sequence of the CDS of the ThMYB2 gene is shown as SEQ ID NO. 18. Wherein the genome nucleotide sequence from the start codon to the stop codon of the ThR1 gene is shown as SEQ ID NO. 7, the nucleotide sequence of the coding region (CDS) is shown as SEQ ID NO. 8, the amino acid sequence coded by the CDS is shown as SEQ ID NO. 9, the promoter sequence is shown as SEQ ID NO. 15, and the terminator sequence is shown as SEQ ID NO. 19. Wherein, the genome nucleotide sequence from the start codon to the stop codon of the ThR2 gene is shown as SEQ ID NO. 10, the nucleotide sequence of a coding region (CDS) thereof is shown as SEQ ID NO. 11, the amino acid sequence coded by the CDS thereof is shown as SEQ ID NO. 12, the promoter sequence thereof is shown as SEQ ID NO. 16, and the terminator sequence thereof is shown as SEQ ID NO. 20.
The invention verifies the source of the 4 genes through genome PCR and semi-quantitative RT-PCR. Genomic PCR showed that: in white-grain wheat 3114, the amplification was less than that of ThMYB1, thMYB2, thR 1and ThR2, while in blue-grain wheat 3114BB and Elytrigia elongata genomes, the amplification could be applied to these 4 genes, indicating that these four genes are indeed from Elytrigia elongata 4Ag chromosome rather than from common wheat (see FIG. 2). Semi-quantitative RT-PCR results in aleurone layer tissue cDNA 25 days after flowering also showed: thMYB1, thMYB2, thR1, and ThR2 are not expressed in the white grain wheat aleurone layer but expressed only in the blue grain wheat aleurone layer at high levels (see fig. 3). The results show that the four genes of ThMYB1, thMYB2, thR 1and ThR2 are all from the 4Ag chromosome of elytrigia elongata and are expressed in a high amount in the aleurone layer of the blue-grain wheat, and are probably the blue-grain genes searched by the invention.
Example 2 expression Pattern of the blue granule Gene
The invention verifies the expression pattern of the 4 genes by using semi-quantitative RT-PCR. The results are shown in FIG. 4. Firstly, the expression of 4 genes can not be detected in roots, stems and leaves of a blue-grain wheat 3114BB vegetative organ, and 4 genes can be specifically expressed in aleurone layer tissues in different tissues of seeds 20 days (20 DPA) after flowering, but can not be detected in embryo and endosperm tissues, which indicates that the 4 genes are all genes specifically expressed in aleurone layer tissues, and promoters of the genes are all promoters for driving the genes to be specifically expressed in aleurone layers. Further, the expression patterns of ThMYB1, thMYB2, thR 1and ThR2 in the aleurone layer of the blue-grain wheat seeds on different days after flowering are analyzed, and the expression patterns of 2 MYB genes and 2 bHLH genes are different: thMYB 1and ThMYB2 were expressed at very low levels in the aleurone layers of 10DPA and 15DPA, with a sudden high expression at 20DPA, and thereafter gradually decreased at 25DPA and 30 DPA; thR 1and ThR2 were not detected in the 10DPA and 15DPA aleurone layers, and were expressed in high amounts starting from 20DPA to 30 DPA. The above results show that ThMYB1, thMYB2, thR1, and ThR2 are all wheat aleurone layer-specific expression genes, and their expression is spatiotemporal specific.
The promoter sequences SEQ ID NO 13, 14, 15 and 16 of the 4 genes drive GUS genes to perform function verification in plants such as rice, corn and the like, and the results show that the promoters drive GUS to be specifically expressed in an aleurone layer, so that the promoters provided by the invention are aleurone layer specific expression promoters.
Example 3 Gene gun transient transformation of wheat coleoptile experiment
In previous studies, maize MYB family transcription factor C1and bHLH family transcription factor B1 were co-transiently transformed into wheat coleoptiles using particle gun bombardment, which induced red anthocyanin spots in wheat coleoptiles (Ahmed N, maekawa M, utsugi S, himi E, ablet H, rikishi K, et al. Transmission expression of antisense in transforming wheat coleoptile by domain C1and B-expert regulated genes for antisense in synthesis. Breeding Sci.2003;53 (1): 29-34). In order to verify whether the 2 MYB genes and the 2 bHLH genes obtained by the invention have the same functions, the 4 genes are used for constructing a gene gun transient transformation vector. Firstly, cloning an NOS terminator into pEASY-T1simple (all-purpose gold company) vectors, then inserting coding frames of 4 genes of ThMYB1, thMYB2, thR 1and ThR2 before NOS, and finally inserting a Ubi (Ubiquitin) promoter from corn before the coding frame of the gene by using an in-fusion method to drive the gene expression to form four vectors of Ubi:: thMYB1, ubi:: thMYB2, ubi:: thR 1and Ubi:: thR2. Experimental reference (Ahmed et al, 2003), the transformation vectors for MYB and bHLH genes were combined in pairs, i.e., four combinations of ThMYB1+ ThR1, thMYB1+ ThR2, thMYB2+ ThR 1and ThMYB2+ ThR2 were co-transformed into wheat coleoptiles, and after 16 hours of culture in a light incubator, observed under a microscope and photographed, the results are shown in FIG. 5: the combination of ThMYB1+ ThR 1and ThMYB2+ ThR1 is capable of inducing the production of red anthocyanins, and the combination of ThMYB1+ ThR2 is also capable of inducing the production of anthocyanins by cells.
Example 4 construction of plant expression vectors
In order to further verify that ThMYB1, thMYB2, thR 1and ThR2 are blue grain genes, the stable transformation vector is constructed by selecting the ThMYB1 gene and the ThR1 gene and is used for a wheat transgenic experiment. A binary expression vector pCAMBIA1300 is taken as a framework, and a hygromycin resistance expression frame driven by a plant resistance screening gene 35S promoter on the pCAMBIA1300 is replaced by a Bar resistance gene expression frame driven by a Ubi promoter on a pAHC20 vector. On the basis, the present invention inserts a 3215bp ThMYB1 genomic sequence (comprising 1952bp promoter sequence, 822bp genomic sequence and 441bp terminator sequence) and a 4422bp ThR1 genomic sequence (comprising 2084bp promoter sequence, 1720bp CDS sequence and 618bp terminator sequence) into a multiple cloning site, thereby forming a plant expression vector (see fig. 6).
Example 5 obtaining of transgenic blue-grain wheat
The plant expression vector constructed in example 4 was transformed into Agrobacterium strain C58C1 by the electroporation method. Transferring the vector into wheat variety fielder by utilizing an agrobacterium-mediated wheat transformation system to obtain 96 transgenic positive T 0 And (5) plant generation. T is 0 Plant generation plantThe color of wheat grains is observed during seed harvest, and some strains have deep blue grain separation and some strains have light blue grain separation (about 34 percent), and the specific results are shown in a figure 7. The transgenic result shows that the ThMYB 1and ThR1 genes are co-expressed in a plant, the anthocyanin content in the plant can be increased, and the ThMYB1, thMYB2, thR 1and ThR2 provided by the invention are blue grain genes in wheat.
Example 6 functional verification of blue-grain genes in Rice, arabidopsis, maize plants
The ThMYB1 or ThMYB2 gene provided by the invention, the ThR1, thR2, zmR and ZmB genes are combined in pairs in a mode of adding one MYB gene and one HLH gene, and the combined gene is transferred into plants such as rice, arabidopsis thaliana and corn for co-expression, so that the same function of improving the anthocyanin content in the plants is found.
Sequence listing
<110> university of capital education
Unknown Xingwang System Crop Design Frontier Laboratory (Beijing) Co., Ltd.
<120> wheat blue grain gene and application thereof
<160> 20
<170> SIPOSequenceListing 1.0
<210> 1
<211> 822
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 1
atggcgaagg aaggggtgaa gagaggggca tggactggca aggaggacga aaccttggct 60
tcctacgtca aggcgcatgg cgaaggcaga tggaacgaag tccctcagag agctggtaag 120
tccctagcta ggtaaacaga atcaatctag agaatggagt gctaaacgta atttacaggt 180
cttcggcggt gcggcaagag ctgtcggctg cggtggctga actacctccg gccgaacatc 240
aagcggggaa acatatccaa tgatgaggag gagatcatcg tcaggctcca cgctctcctt 300
ggcaacaggt ggtcgctcat cgctggcagg ttgcctggcc gaacagacaa cgaaatcaag 360
aactactgga acagcaccct tggccggaag gtgcttcccg caccacattc cgccaccagg 420
atggttgcca cgccagacac ctccgccggc tccggatctt acaaagaggc gtcggcaagt 480
ctgtcaagct ctggacctgg tacaagcgac aaggctgcga cgccgtcgcc gctgccggcc 540
acgctgtggg cgccaaagcc tgtgaggcac acggggcacc ccttcttcct ccgggatagg 600
ccgccgccct tgccggttgc ggagacgcga accgtggcca acggggatgc ctgcagcggc 660
agcagctcgg tgacatcgga gttcccggct gtaccgccct cgttaggcag cgacgactgg 720
atggacgaag tgagagcctt ggaatcgttt ctcgagtccg acgaagactg ggtaaactct 780
gtggagatgc caacgcccaa ctctcacaca tcatcgagtt aa 822
<210> 2
<211> 759
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 2
atggcgaagg aaggggtgaa gagaggggca tggactggca aggaggacga aaccttggct 60
tcctacgtca aggcgcatgg cgaaggcaga tggaacgaag tccctcagag agctggtctt 120
cggcggtgcg gcaagagctg tcggctgcgg tggctgaact acctccggcc gaacatcaag 180
cggggaaaca tatccaatga tgaggaggag atcatcgtca ggctccacgc tctccttggc 240
aacaggtggt cgctcatcgc tggcaggttg cctggccgaa cagacaacga aatcaagaac 300
tactggaaca gcacccttgg ccggaaggtg cttcccgcac cacattccgc caccaggatg 360
gttgccacgc cagacacctc cgccggctcc ggatcttaca aagaggcgtc ggcaagtctg 420
tcaagctctg gacctggtac aagcgacaag gctgcgacgc cgtcgccgct gccggccacg 480
ctgtgggcgc caaagcctgt gaggcacacg gggcacccct tcttcctccg ggataggccg 540
ccgcccttgc cggttgcgga gacgcgaacc gtggccaacg gggatgcctg cagcggcagc 600
agctcggtga catcggagtt cccggctgta ccgccctcgt taggcagcga cgactggatg 660
gacgaagtga gagccttgga atcgtttctc gagtccgacg aagactgggt aaactctgtg 720
gagatgccaa cgcccaactc tcacacatca tcgagttaa 759
<210> 3
<211> 252
<212> PRT
<213> Elytrigia elongata (Elytrigia elongata)
<400> 3
Met Ala Lys Glu Gly Val Lys Arg Gly Ala Trp Thr Gly Lys Glu Asp
1 5 10 15
Glu Thr Leu Ala Ser Tyr Val Lys Ala His Gly Glu Gly Arg Trp Asn
20 25 30
Glu Val Pro Gln Arg Ala Gly Leu Arg Arg Cys Gly Lys Ser Cys Arg
35 40 45
Leu Arg Trp Leu Asn Tyr Leu Arg Pro Asn Ile Lys Arg Gly Asn Ile
50 55 60
Ser Asn Asp Glu Glu Glu Ile Ile Val Arg Leu His Ala Leu Leu Gly
65 70 75 80
Asn Arg Trp Ser Leu Ile Ala Gly Arg Leu Pro Gly Arg Thr Asp Asn
85 90 95
Glu Ile Lys Asn Tyr Trp Asn Ser Thr Leu Gly Arg Lys Val Leu Pro
100 105 110
Ala Pro His Ser Ala Thr Arg Met Val Ala Thr Pro Asp Thr Ser Ala
115 120 125
Gly Ser Gly Ser Tyr Lys Glu Ala Ser Ala Ser Leu Ser Ser Ser Gly
130 135 140
Pro Gly Thr Ser Asp Lys Ala Ala Thr Pro Ser Pro Leu Pro Ala Thr
145 150 155 160
Leu Trp Ala Pro Lys Pro Val Arg His Thr Gly His Pro Phe Phe Leu
165 170 175
Arg Asp Arg Pro Pro Pro Leu Pro Val Ala Glu Thr Arg Thr Val Ala
180 185 190
Asn Gly Asp Ala Cys Ser Gly Ser Ser Ser Val Thr Ser Glu Phe Pro
195 200 205
Ala Val Pro Pro Ser Leu Gly Ser Asp Asp Trp Met Asp Glu Val Arg
210 215 220
Ala Leu Glu Ser Phe Leu Glu Ser Asp Glu Asp Trp Val Asn Ser Val
225 230 235 240
Glu Met Pro Thr Pro Asn Ser His Thr Ser Ser Ser
245 250
<210> 4
<211> 798
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 4
atggcgaagg aagtggtgaa gagaggggca tggactggca aggaggacga aaccttggct 60
tcctacgtca aggcgcatgg cgaaggcaga tggaacgaag tcccccaaag agctggtaag 120
tccctagctg ggtaaacaga atcaatctag acaatggagt gctaaacgta atttacaggt 180
cttcggcggc gcggcaagag ctgtcggctg cggtggctga actacctccg gccgaacatc 240
aagcggggaa acatatcaaa cgatgaggag gagatcatcg tcaggctcca cgctctcctt 300
ggcaacaggt ggtcgctcat cgctggcagg ttgcccggcc gaacagacaa cgaaatcaag 360
aactactgga acagcaccct tggccggaag gtgcttcccg caccacattc cgccaccagg 420
atggttgcca cgccagacac ctccgccgcc tccggatctt acacagaggc gtcggcaagt 480
ctatctagct ctggacctgg tacaagcgac aaggctgcga cgccgtcgcc gctcccggcc 540
acgctgtggg cgccaaagcc tgtgaggtac acgggccacc ccttcttcct ccgggatagg 600
ccgcggccct tgccggttgc ggagacgcga accgtggcca acggggatgc ctacagcggc 660
agcagctcgg tgacatcgga gttcccggct gtcccgccct cgttaggcag tgacgactgg 720
atggacgaag taagagcctt ggaatcgttt ctcgagtccg acgaagactg ggtaaactct 780
gtggagatgc cggattaa 798
<210> 5
<211> 735
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 5
atggcgaagg aagtggtgaa gagaggggca tggactggca aggaggacga aaccttggct 60
tcctacgtca aggcgcatgg cgaaggcaga tggaacgaag tcccccaaag agctggtctt 120
cggcggcgcg gcaagagctg tcggctgcgg tggctgaact acctccggcc gaacatcaag 180
cggggaaaca tatcaaacga tgaggaggag atcatcgtca ggctccacgc tctccttggc 240
aacaggtggt cgctcatcgc tggcaggttg cccggccgaa cagacaacga aatcaagaac 300
tactggaaca gcacccttgg ccggaaggtg cttcccgcac cacattccgc caccaggatg 360
gttgccacgc cagacacctc cgccgcctcc ggatcttaca cagaggcgtc ggcaagtcta 420
tctagctctg gacctggtac aagcgacaag gctgcgacgc cgtcgccgct cccggccacg 480
ctgtgggcgc caaagcctgt gaggtacacg ggccacccct tcttcctccg ggataggccg 540
cggcccttgc cggttgcgga gacgcgaacc gtggccaacg gggatgccta cagcggcagc 600
agctcggtga catcggagtt cccggctgtc ccgccctcgt taggcagtga cgactggatg 660
gacgaagtaa gagccttgga atcgtttctc gagtccgacg aagactgggt aaactctgtg 720
gagatgccgg attaa 735
<210> 6
<211> 244
<212> PRT
<213> Elytrigia elongata (Elytrigia elongata)
<400> 6
Met Ala Lys Glu Val Val Lys Arg Gly Ala Trp Thr Gly Lys Glu Asp
1 5 10 15
Glu Thr Leu Ala Ser Tyr Val Lys Ala His Gly Glu Gly Arg Trp Asn
20 25 30
Glu Val Pro Gln Arg Ala Gly Leu Arg Arg Arg Gly Lys Ser Cys Arg
35 40 45
Leu Arg Trp Leu Asn Tyr Leu Arg Pro Asn Ile Lys Arg Gly Asn Ile
50 55 60
Ser Asn Asp Glu Glu Glu Ile Ile Val Arg Leu His Ala Leu Leu Gly
65 70 75 80
Asn Arg Trp Ser Leu Ile Ala Gly Arg Leu Pro Gly Arg Thr Asp Asn
85 90 95
Glu Ile Lys Asn Tyr Trp Asn Ser Thr Leu Gly Arg Lys Val Leu Pro
100 105 110
Ala Pro His Ser Ala Thr Arg Met Val Ala Thr Pro Asp Thr Ser Ala
115 120 125
Ala Ser Gly Ser Tyr Thr Glu Ala Ser Ala Ser Leu Ser Ser Ser Gly
130 135 140
Pro Gly Thr Ser Asp Lys Ala Ala Thr Pro Ser Pro Leu Pro Ala Thr
145 150 155 160
Leu Trp Ala Pro Lys Pro Val Arg Tyr Thr Gly His Pro Phe Phe Leu
165 170 175
Arg Asp Arg Pro Arg Pro Leu Pro Val Ala Glu Thr Arg Thr Val Ala
180 185 190
Asn Gly Asp Ala Tyr Ser Gly Ser Ser Ser Val Thr Ser Glu Phe Pro
195 200 205
Ala Val Pro Pro Ser Leu Gly Ser Asp Asp Trp Met Asp Glu Val Arg
210 215 220
Ala Leu Glu Ser Phe Leu Glu Ser Asp Glu Asp Trp Val Asn Ser Val
225 230 235 240
Glu Met Pro Asp
<210> 7
<211> 12351
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 7
atggcgctat cagctcctcc cagtcaggaa cagccgtcgg ggaagcaatt cggctaccag 60
ctcgctgctg ctgtgaggag catcaactgg acttatggca tattttggtc catttccgcc 120
agcccgcgcc caggccactc ctcgtaatga ataaatgacc actctctatc tctatattat 180
gtatcatatt tgggtttgta gcaaacccac aaaattccta cttttcatat atatagtgtc 240
cgtcgtcgac gccgccggtt cgttttgcag agttctggcg tggaaggatg ggttctacaa 300
cggcgagata aagactagaa agattaccgg ctcgaccact acggagctta cagcggacga 360
gcgcgtcatg cacagaagca agcaactgag ggagctctac gaatcgctct tgcccggcaa 420
ctccaacaac cgggcaaggc gaccaaccgc ctcactgtca ccggaggatc tcggggacgg 480
cgagtggtat tacaccataa gcatgactta caccttccac cctaatcaag ggtacgtact 540
tatcaaccat gatggatgtg atatatgtgc ctgccatgtt tcataccgtc catattttta 600
tatacgggta catttttttt tttgcgggtt tatatacggg tacatgacaa agacaatttt 660
tgcggttagt tatcttgtta atatatactg tcatgttgcc gccaggaaaa gatcacttca 720
agaaaattat aaacaaacat atataatacg tccaattatt ttcagccttt tccttttttt 780
aaattaaata catagagtcc aagcttcaaa tcctgcactt aaacctcaag ctaatctgtt 840
acactccctt gcagctagtc tcttactagt attatctctt cttctttttt tagaaaaact 900
ttcgatctat tcatcatgac agtaaaaaaa aaacactaga aataacaaaa attacattca 960
tatttataga acacctagcg acgattgcaa acattcaact gtgcgccgaa ggcgcactac 1020
actcatcgcc ccttcctggt tggagttggg caaacttcat tgtagtagac ggtaggaaag 1080
tctttgtgct aaggccttaa aggaccagca caccatgaca acaaccatca tcattaaaga 1140
aaagcatagg tcgaaaggat tcaacaagta gacacataac acaggaaaac taaggccgaa 1200
tccaggtata tccattgaag tcaaacactg accgaatccc gcgagattca ccgacatgcc 1260
ctccgacaat gctagatgca tcaacgggat agggactttt ttttagaaag gaggattacc 1320
cccggcttct gcatctggga gatgcatgca gccattgtat taattattca caaagacctt 1380
acaaaatagt acatcaggta gtctgaagcc atcatcttat caacaactgt cgctactcct 1440
atccacttga tgaaatggtg ccgatagtcc gagcctaata ccagacagac atcgcaccaa 1500
agcctaacat ctaaagccga gggcccaacc aaacgggata gggacttggc agggtgaacc 1560
ttattttatc ttcagagagc agagcgttgc ctcacggcct catcttcctg agcagcacac 1620
aaacactaaa taaaactaaa aaaactctta aaatgaagta ggagccctct cgccggcaag 1680
agccgggatc catcatacct ccatggccct aaagccgaag gaggcgagga agctcgacgg 1740
cagcgtcggt gggaggcgaa aagccctcgt ttcctgggag ttcgctcgtg gagcactaat 1800
actatcttga tactagctac cgtagactgc agtgttaaga tgtacatact gaagtgattt 1860
ttttctgtcg gcgtgaatgt acttactgcc aggttgccag gcaaaagctt tgcgagcaat 1920
caacatgttt ggctgtacaa cgctcaatac gcaaacacca gagttttccc ccgcgcgctc 1980
ttagcaaagg tatatctatt ctacagtact tatctattat gtgtgtatag caatgatgcg 2040
ggtcgggttt tcaacctcct tttctgaaat aagaaaacat cgtttggtct ttaactaata 2100
ataataatac tccaaaacgt gcatgatgtt gcccacacat ccgatggtca aatcagactg 2160
cttctattca ggtcagcaca ttacttccta ttatagatag atgggataca tacatttttc 2220
gtccttaaat tcttgtgaaa gtttacaaat cgtccctcaa ctcaaaacca tcaaaattca 2280
aaactcagtc cctcaactat taaaaccgga tatttttcgt ccttgataac gcttcaggcg 2340
gttttagtct gacatggaca ccggttttga ctaatatcgg ccacgtggcc tgggtttgac 2400
catcacgtca gtcagttaag tgactaaagg acctcctgtc gaagagaata aagggcagta 2460
tggcgcaggg ccatgcagct tcaggttcga tccaggtcac ctagttcttg tcatagatga 2520
cgttcgagca gtccaccagc gtagggaagc acgactgcgc cgccagcggg tgcagaagtc 2580
gaagggcgac ttgggccgcg gctgccgcag ggtctgacgt tagtcggtag caagtgctcg 2640
aagtcgaagg gcggcaggag gaaaccgatg ccggcgccgt cgccgacctg ccactcggcc 2700
ttggcgctgg tgaggacgga ggcatgcacc aagctcagga ggacggaggc gtccatggcg 2760
cctagcccat gtcacggtgc gccatggccg cgagctcggc cggcctcctg caccacagcc 2820
gtgtatgccc aaggccgcag cctcgcttgt gcgcgctcgt gcagccccac gcgcttcctc 2880
ctcgtccgct cccccatgcc cggccgtgct ccgagcgagc acccaccgcg ccctggccct 2940
gtcccgtgcc tgcgcaaccg cgtgttgacc ggccattgcc aggtgggccg accagtttac 3000
ttagctgatg gttttgacca ccagactaaa accgggccac atcggcagca tttgtcaaaa 3060
ccgggtatcc atgtcagact aaaaccgccc aaaactttac gaaggacgaa aaatattcag 3120
ttttaatagt tgagggactg agttttgatg gttttaaagt tgagggataa tttataaact 3180
ttgacagaag tttaaggacg aaaaatatac ttatccctag atagatacat agacgcacac 3240
atatacacat ctctgatctc aaaccgttca catttttcca gacaatcgtt tgcattccct 3300
tcatgggcgg tgtgcttgag ctcggaacgt cggatcaggt cggtgcacat gagtttcaat 3360
ttatgttctc agtaactctc agcatgtttc tccgacttgc cgacgggttc aacggtaacc 3420
ttttaatatt aggggtagct attttgtgtg ccaatacatg ctactagcta tttttgtatg 3480
tgttgtccca gtctaccatt ctgccccttt gcatttatgg cgttattcct ttctagtaca 3540
ttaatttaca ctagtcttcc actgcgtttt tctactacta cgtattttat actatacttg 3600
tgattatctt tagagcaagt ataatagagt gatgtaggca ggctataaga gatgtcacat 3660
cagattatgc ctagttggag gagagagaaa atgagagaga aaagaagcag gttacaagct 3720
tacggtcggc tgtagcacga gactcaacaa cctttgtgtg tgagagaggt gggccatata 3780
ttaattgtat gacaaactag tatgactagc tattgtacga gtgggctatt aggctgacta 3840
taagtgacat gacaactcta tatagacggc tcttggctat actattaacc atgctcttac 3900
ctctctcccg ccgccatgat gagagcctca ccggccctgt tactgggtca agggagacca 3960
acgcccaccg agcccgacca atcttgcagc ccacaccact acgtcaccct agcaactccg 4020
ctagtagccc gtcacctagg cacaatgact tcaacacctc gagagcaagc gccctgtcgc 4080
ggagccaccg tgctcgcaca tgtcgggatc tctcccacct tcgaagaggc aagggggcgc 4140
aacccatcat aatcctacgg cggcagcggc ggccaggttg ggcattggag ggggtgctgc 4200
ttagcatcgg agacatggtg tcgcctagtg gtacgacacg acccggagag gaaaacagaa 4260
aacattgcga gcgcaagttc gccacgagtg ttgcgtgtta tttttactaa ataacccttg 4320
aggatcttat ttttgtccac tgcccccaaa acgtatttcg tggcctgacc cctacgacca 4380
cgccaaataa tctggcgttt tagatacact agatgccacc ggtcaatctg acagcaataa 4440
attcaatgtg acagtggcgc ctacatgaca agaaaagtca aaagccaaat ttgaaggcct 4500
atatcatccg ataaaatctc cggttagtat ggcggggcat gctgcttcct tcttcctctg 4560
cacgaaccct gcgaggccac cggccaccgc caccgctggt agcagccggc tccagccacg 4620
gtagaggggc cctgcggtgg aggaagtcga cgggccggtg catgctctcc gccactgccg 4680
tgaccaccag catgaccgcc tcctcgtcct cgtccaccgc cgcgaccggc gtcgagcacg 4740
gggccgacgc gtcgtctgac gtattcccgc gcctctggaa ctctgaggtt ggggccacct 4800
tccgccgcac gtccgtggac ccggcggcac gcgacgagtc cgcggcacgg gaaggggcac 4860
tctcagcagc ggcgccattt ccaccgcatg gggacgactc atcggtggtg aggtcgccgc 4920
cggcacgctt cgacgcaagc agctcgagcg tcgagtccac attaacgcca ttgcacgaat 4980
ctgtagacgg tccctccacg ccgagtccga gcgcgcgccc gtcagccctt ccgcccgacc 5040
ccgtccaagt ccccattggt ggggcaagca actgcttggc cggtgctccc aacagcgagg 5100
atgacctcca cctagctcgg acgcgacgtc gccggccacc actgtaagat atggccgggg 5160
aagtagctgc cttatcgaag gagcccgcgg cggaccagtg gcagtgtggt gcaccgggac 5220
caacagaggg gggcagataa ccaaataagt tttttgagga gttagtgcac gaaataagat 5280
cctttagagt caattagtaa attaacacat tgttaatttt attaattctc gtattaattt 5340
tactaattga cacgagtgtc ttcctaaaaa aaaaatttaa cacgagtgtt gcaccgcgac 5400
gtgcaaccaa ccgtttgatt gcttctcgtt gccgtgagta tgcttgtgaa cgtcgctcgt 5460
aacgtgccac gggctaacgt ttgcactcca ccatctgtta acctttgatt accatttttt 5520
acggggtaaa acattgcatt actcaagagg aataagttct tcgctgcaga gagtagtagg 5580
gtcgtttaca agacctgaac atatgtgtgc tgtcatgcaa cactttattt attaggttgt 5640
agacttatct tgtcttgata tgtgtgatgt tacaataact agctatgtta caacatgccc 5700
ctctttcctc attaattagt cgccacatca tctgttttgc ctacagatgt gtgatgttac 5760
cacctatgtt actcccacta tgggtagtct tattgtgatt agcaccggtg tgccaacact 5820
tagtcccttt ccatgaggaa cccctcccag acggcctcat tgaaggatat ttgtccgtct 5880
tgtactcaat ggtgacgggc cctgctcaag ccgtacacca acaaggccta tccgcgggat 5940
gttcaggccg gaaatcacat tcataagtaa tttcgaatct ctcccgtgga ttaaaataaa 6000
aaagagcaca caatgttagg catcgccata tagtgttatg cacaaaaaaa aggaatacta 6060
aaaaacgtac catagcatgt gtgacgatgt ttgtcttagt caaaaggtgc ataaagggca 6120
cccccgtgta gtcatcagcg ggtgatagga tgtcgaagag attggtggtc tcatctcagt 6180
aagcatcttc attctttcag agaaatatgc agaatataat ggatcatcct tctgatgctc 6240
gttgatatac ataatccttg atctagggac ttccttcaag aaaaaacata tatcctatcc 6300
gccgatgagc ccattgtttg aaaggaactt atcccatcct tggactttga atggccgctc 6360
atcagcattc ttaaagagca gagtgtcaca tgttgcatcg ttgaactcca ccctaacgtt 6420
gcatgggata cactatgcaa caatagagaa aaatgcagta aataattatt ggtaaagata 6480
ctaaaataag tgcaattgtg tgctaaagtt aaagaatatt accacggatt attcgaattc 6540
ctcattcaag taaagaccgg atgacactcc agataacatg ctgtttgcgc ggtcagattt 6600
ctagatttgg cacatcatcc tgttacgttt tctttagagg aggatcatcc ccggcctctg 6660
catctgatcg atgcatgcat ccattttatt aattattcac caaagacctt acaaagaaat 6720
acaacaataa gtctcaagtc atcgtctatg cgacaactgt cgctactcct atccagctga 6780
tgaagggatg ctgatagtcc gggcctaata ccacagacct cgcagacaag cctaacatct 6840
aagacctgag gccccaacca agccacttgc cgggtatggg cacacaccgg tccggcgcgc 6900
tctcagatgc cgccgccgcc aactgccact actccatctt cagagctgta ctgacgcatc 6960
attcttgccc ggtctagctg tcgtcaacgc caccacgacg cccaatggca ccaccaccct 7020
gtgcgcaaac tgctgagcac gtcgcggtcg ccgccggtac acctcagcac catgccgcca 7080
agtaccatca gtcgacacag cttgaagtct ctgggagatc tgtcatgcgt agcacctgcc 7140
aaccatgcat gacaaagcgt agtagtgtta cgtgcatgac ttattttatc cctacgaaca 7200
ttttcccaaa atttattcac gtgtagctta aaacaacata atttctaagt atttgcctct 7260
atacaatcaa tatcaccaac acctatcaag caaaagtcaa acttgacgtt gcaagtgcac 7320
ccctgcagta aatatttgac atactagttt atcaaattaa tatttgagaa catctaagct 7380
cgcagcgaag aggccgagga cataaaaagg tcttcgccag aaaaaatcag catggttttt 7440
gctaaaaagt tgaacatatt gagtgccaaa aaagttgtcg aaagagaaat taatcacatt 7500
ttgcctgaac attcatgaat ccctgaattt ttgaaaatgg aagaattctg aatacctaca 7560
ctatttaatc caaaggggtc aattaagacc tacattgcta aacgaaccaa tacatatata 7620
tcagacacaa acttgatttt tatgtaatag aaaggtccat gcgaacctta aactcgactt 7680
gtaacagaaa cttcccagcg aggttttgac cctaaccctc tccaggactt gtgtgtcgta 7740
gacgacacat ccacaggtga ggaaattaaa cgcctggctt ctggattcta catggaaatg 7800
tgatcatcta tggtgatata cgaatgcgtg cagtgtgcgt gaacggggtg gtgtgcaagg 7860
aaccgaagac catggtggtg ggaaacgtct tctttgtcag cgaggacagg cccggcaacg 7920
cggacaaaaa ccgctatgtg ttcttggtgc tgaacatgca gagcccaggc ttgaacacgc 7980
tactcctggt ggcggcgcgg ttcatacatc tagcgagaga caggacgagc agcaagggga 8040
gagggacggg tggcttatgt accaacgatt aagtaggaac taaggcagat ccggcgacgg 8100
gcgcctgcgg tggagcgacg gtgcggtccg atggcgaagg atttggatgg gtccagggtt 8160
tggatttggg gggtaatgtt caggaatgac gaagggttat gcctgcacgc caagacttag 8220
aagtcgcagc ctcccatgcg acatcacagg ccctccagtt atgcatattc acagtgtcgg 8280
gcaattttag gtgcctgcca caactaatat tttgccaatt tctggtaata atcttaaatt 8340
ttttctttat tttaggacta tatttctgtt ctcctttctt tgtggggttt aaagtaactt 8400
cttagaaact cccatgcccg aatttgggac taatctattt tttctttgtt atttttaaag 8460
cattaaatga gtttctagcc actaaaatga gcaaaatgct cattgcttcg aaaaaagagg 8520
caaatgagca ctgaaaagga tgaaccttgg catgtgttca ttatatgact cctatagggt 8580
gtgctaaaaa tctgagaacg ttatgggcaa aacgtgatgc acttcattta caaactgaac 8640
actcttggat aaagtatcag gctttcggat ggaaaccctt gcctcccata gagaattctt 8700
tctccttcga acttttttac ttcatttccc cttgaacgtt ttcgatgtca aaacatacac 8760
aactgcaagt ctcatgctca aatttgagac tactctaggt tggtttgcta attttaaagc 8820
attaactgca tttctaacca cttaaatgag caaaattctc ttcgattcat aaccacatac 8880
acatgagtta taaaaatgat gaaacttgga atgggttcat tatatgattt ctacaaggtg 8940
tggtataaat tttagagcgt tacgggagaa acatgatgca ctttgtgtac aaactgaact 9000
ctctcaaatg aagtatcgga ttttcaaacg gaaacgttgg acttccacat agaacttaat 9060
tcttgtgcat catttccctt caaacttttt ctatatttaa tatacatagt taaaagtctc 9120
atgatcaaaa tggggactat tcttggttga tttgctattt ttaaagtatt aaatgatttt 9180
ctagctatta aaaggagcaa aatgctctta cattcaaaat aaggtgcaaa taagctttaa 9240
aaaggataaa tgtggcaagg attcattata tgacacatat aggcagtggt aaaattttga 9300
aagcgttacg ggataaactt aatgcacttc ttctacaaaa tgaacactct ccgaagaagc 9360
atcagggttc tgaacggaaa ccttggactt caacaaagaa ctcaattttg ttaaatcatt 9420
tcccttttaa acctttttat atgtttaata cacacagtta aaagtctcat gatcaaatgt 9480
ggtactattc tgggttgatt tgctattttt aaggcattaa gggccagtta tttttggcgg 9540
tttagaaaag taagttgact ctccccagct taaataataa gtcatcttct aaatttgtaa 9600
ggcttctaaa acaagttatc ccataactag tgtagaagcc ccaacgaata agagaggtgg 9660
ttatgaaaaa agctggggaa aaggtggctt attttctatg ttgccgtcaa ttattttcta 9720
cccattaaga ggttcagaat gccctttgat tcaaaataat atgaaatgag ctctaaaagc 9780
gatgaaactt ggcatggttc ataatatgac cccctacagg gtgtgcggac aaaaataatt 9840
aagagcgtta cgcgaaaaac ttgatgcact tcgtgtataa actgaacact ctgtgacgaa 9900
gtatcaggat ttcgaacgca aatctttgac ttactcatag aattcaattt ttttatatca 9960
tttccacttc aaactgtatg tttaatatac acaactgaaa ctcccatgct caaatttggg 10020
actattctgg gttaattaat atgatttttt ttcaaaaaat ttccttactt attagatcta 10080
cggtgggatc ctttttgtgc cagccgctgc tatcttttga attttttaga aaattttgac 10140
gtcgcttagc gaaatattgc taaggtgggc accttactgc ccgtcattgg tatttcacaa 10200
accaatgacg gaccgtagtt tgttgcccat cactgctgtt tttgtttcac gactaatttt 10260
gcaaaactgt acgagtggcg cgtgtccaat ttgcccacca ctgatgttcg tatagcatgg 10320
caggccacgt ttatcacccg ccactcgtac tataccaaaa tagcaatgac gggttccaga 10380
cctcaccttc cactaaagtg accccaccta tatataagcc ttttaaccag tagtgtatct 10440
ggctctcaca cacacatact ctaggttcct cttaacacaa aatctctctt cctccctaca 10500
cacagtctat ccatctctct ctagatgtat gcccacatag gtgggtgact gccgtcgtcg 10560
acgcggatag ggtttgggat tgacatctca cgggagagag acaaggggga caagatattt 10620
acaccactgg ccgggaatcc actagtttta tttgagagtt gagactattc gatgacgagt 10680
gtgtccagtg ggctttctgg cagtgcctgc ttttctctct ttcccgtccc atgtataact 10740
ctattctgag ttgtattttt gttatcagta acgggaaggg tatacccggt taaaagaaaa 10800
ggctgtattt ggtgaggtat atgtttgtat agtgggaaaa tgataatata tgggtagcgg 10860
ccggacgcat cttgagttct tgacgacaga ttccttacca gtacctacta ccgttagcgg 10920
taaaaatgcc tttgcgagta gctaccacgt taacacttgg cccagtcttt cctttcgtcg 10980
tcgtcagtcc acgtaaaaga aatgctattg aaaattgaca aagtgttatc cctgtatttc 11040
caaggtgttg gaggacccga gcatggtgaa gcggatcagc acgtctttct gggagctgca 11100
cttgccgtca tccttggagt cgaaggatcc gagctccagc acatcagcaa acgataccag 11160
ggaggccacc gacatcatct tgttcgagga tttcgaccac aacgacacag ttgagggggt 11220
gatctctgag caaagggagg tccagtgccc gtccaacgtc aatctggagc gcctcacaaa 11280
gcagatggac gagttccaca gccttctcgg tggactggac gtgcatcctc tcgaagacag 11340
atggatcatg gacgagccct ttgagtttac gttttcccca gaagtggcgc cggctatgga 11400
tatgccgagc accgacgatg tcatcgtcac tttaagtagg tccgaaggct ctcgtccatc 11460
ctgcttcaca gcgtggaagg gatcatccga gtcgaaatac gtggctggcc aggtcgttgg 11520
ggagtcacag aagttgctga ataaagttgt ggctggtggt gcatgggcga gcaattatgg 11580
cggtcgcacc atggtgagag ctcagggaat taacagcaac acccatgtca tgacagagag 11640
aagacgccgg gagaaactca acgagatgtt cctggttctc aagtcactgg tcccgtccat 11700
tcacaaggta gtaatatgta aagtccatgt acctttagca aactgcacac gttgtttttc 11760
atagcttttt tactgttgga ttgcaggtag acaaagcatc catcctcaca gaaacgatag 11820
gttatcttag agaactgaag caaagggtag atcagctaga atccagccgg tcaccgtctc 11880
acccaaaaga aacaacagga ccgagcagaa gccatgtcgt cggcgctagg aagaagatag 11940
tctcggccgg atccaagagg aaggcgccag ggctggagag cccgagcaat gtcgtgaacg 12000
tgacgatgct ggacaaggtg gtgctgttgg aggtgcagtg cccgtggaag gagctgctga 12060
tgacacaagt gtttgacgcc atcaagagcc tctgtctgga cgttgtctcc gtgcaggcat 12120
ccacatcagg tggccgtctt gacctcaaga tacgagctaa tcagcaggta tatatagatc 12180
gcactaattt ctacgaccga tctggcagta tataaggaaa tgtatagcct gacttaagga 12240
tccatgatta ccgtctcatt cactgacatt gctggattgt tgcagcttgc ggtcggttct 12300
gctatggtgg cacctggggc aatcaccgaa acacttcaga aagctatata g 12351
<210> 8
<211> 1683
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 8
atggcgctat cagctcctcc cagtcaggaa cagccgtcgg ggaagcaatt cggctaccag 60
ctcgctgctg ctgtgaggag catcaactgg acttatggca tattttggtc catttccgcc 120
agcccgcgcc caggccactc ctcagttctg gcgtggaagg atgggttcta caacggcgag 180
ataaagacta gaaagattac cggctcgacc actacggagc ttacagcgga cgagcgcgtc 240
atgcacagaa gcaagcaact gagggagctc tacgaatcgc tcttgcccgg caactccaac 300
aaccgggcaa ggcgaccaac cgcctcactg tcaccggagg atctcgggga cggcgagtgg 360
tattacacca taagcatgac ttacaccttc caccctaatc aagggttgcc aggcaaaagc 420
tttgcgagca atcaacatgt ttggctgtac aacgctcaat acgcaaacac cagagttttc 480
ccccgcgcgc tcttagcaaa gactgcttct attcagacaa tcgtttgcat tcccttcatg 540
ggcggtgtgc ttgagctcgg aacgtcggat caggtgttgg aggacccgag catggtgaag 600
cggatcagca cgtctttctg ggagctgcac ttgccgtcat ccttggagtc gaaggatccg 660
agctccagca catcagcaaa cgataccagg gaggccaccg acatcatctt gttcgaggat 720
ttcgaccaca acgacacagt tgagggggtg atctctgagc aaagggaggt ccagtgcccg 780
tccaacgtca atctggagcg cctcacaaag cagatggacg agttccacag ccttctcggt 840
ggactggacg tgcatcctct cgaagacaga tggatcatgg acgagccctt tgagtttacg 900
ttttccccag aagtggcgcc ggctatggat atgccgagca ccgacgatgt catcgtcact 960
ttaagtaggt ccgaaggctc tcgtccatcc tgcttcacag cgtggaaggg atcatccgag 1020
tcgaaatacg tggctggcca ggtcgttggg gagtcacaga agttgctgaa taaagttgtg 1080
gctggtggtg catgggcgag caattatggc ggtcgcacca tggtgagagc tcagggaatt 1140
aacagcaaca cccatgtcat gacagagaga agacgccggg agaaactcaa cgagatgttc 1200
ctggttctca agtcactggt cccgtccatt cacaaggtag acaaagcatc catcctcaca 1260
gaaacgatag gttatcttag agaactgaag caaagggtag atcagctaga atccagccgg 1320
tcaccgtctc acccaaaaga aacaacagga ccgagcagaa gccatgtcgt cggcgctagg 1380
aagaagatag tctcggccgg atccaagagg aaggcgccag ggctggagag cccgagcaat 1440
gtcgtgaacg tgacgatgct ggacaaggtg gtgctgttgg aggtgcagtg cccgtggaag 1500
gagctgctga tgacacaagt gtttgacgcc atcaagagcc tctgtctgga cgttgtctcc 1560
gtgcaggcat ccacatcagg tggccgtctt gacctcaaga tacgagctaa tcagcagctt 1620
gcggtcggtt ctgctatggt ggcacctggg gcaatcaccg aaacacttca gaaagctata 1680
tag 1683
<210> 9
<211> 560
<212> PRT
<213> Elytrigia elongata (Elytrigia elongata)
<400> 9
Met Ala Leu Ser Ala Pro Pro Ser Gln Glu Gln Pro Ser Gly Lys Gln
1 5 10 15
Phe Gly Tyr Gln Leu Ala Ala Ala Val Arg Ser Ile Asn Trp Thr Tyr
20 25 30
Gly Ile Phe Trp Ser Ile Ser Ala Ser Pro Arg Pro Gly His Ser Ser
35 40 45
Val Leu Ala Trp Lys Asp Gly Phe Tyr Asn Gly Glu Ile Lys Thr Arg
50 55 60
Lys Ile Thr Gly Ser Thr Thr Thr Glu Leu Thr Ala Asp Glu Arg Val
65 70 75 80
Met His Arg Ser Lys Gln Leu Arg Glu Leu Tyr Glu Ser Leu Leu Pro
85 90 95
Gly Asn Ser Asn Asn Arg Ala Arg Arg Pro Thr Ala Ser Leu Ser Pro
100 105 110
Glu Asp Leu Gly Asp Gly Glu Trp Tyr Tyr Thr Ile Ser Met Thr Tyr
115 120 125
Thr Phe His Pro Asn Gln Gly Leu Pro Gly Lys Ser Phe Ala Ser Asn
130 135 140
Gln His Val Trp Leu Tyr Asn Ala Gln Tyr Ala Asn Thr Arg Val Phe
145 150 155 160
Pro Arg Ala Leu Leu Ala Lys Thr Ala Ser Ile Gln Thr Ile Val Cys
165 170 175
Ile Pro Phe Met Gly Gly Val Leu Glu Leu Gly Thr Ser Asp Gln Val
180 185 190
Leu Glu Asp Pro Ser Met Val Lys Arg Ile Ser Thr Ser Phe Trp Glu
195 200 205
Leu His Leu Pro Ser Ser Leu Glu Ser Lys Asp Pro Ser Ser Ser Thr
210 215 220
Ser Ala Asn Asp Thr Arg Glu Ala Thr Asp Ile Ile Leu Phe Glu Asp
225 230 235 240
Phe Asp His Asn Asp Thr Val Glu Gly Val Ile Ser Glu Gln Arg Glu
245 250 255
Val Gln Cys Pro Ser Asn Val Asn Leu Glu Arg Leu Thr Lys Gln Met
260 265 270
Asp Glu Phe His Ser Leu Leu Gly Gly Leu Asp Val His Pro Leu Glu
275 280 285
Asp Arg Trp Ile Met Asp Glu Pro Phe Glu Phe Thr Phe Ser Pro Glu
290 295 300
Val Ala Pro Ala Met Asp Met Pro Ser Thr Asp Asp Val Ile Val Thr
305 310 315 320
Leu Ser Arg Ser Glu Gly Ser Arg Pro Ser Cys Phe Thr Ala Trp Lys
325 330 335
Gly Ser Ser Glu Ser Lys Tyr Val Ala Gly Gln Val Val Gly Glu Ser
340 345 350
Gln Lys Leu Leu Asn Lys Val Val Ala Gly Gly Ala Trp Ala Ser Asn
355 360 365
Tyr Gly Gly Arg Thr Met Val Arg Ala Gln Gly Ile Asn Ser Asn Thr
370 375 380
His Val Met Thr Glu Arg Arg Arg Arg Glu Lys Leu Asn Glu Met Phe
385 390 395 400
Leu Val Leu Lys Ser Leu Val Pro Ser Ile His Lys Val Asp Lys Ala
405 410 415
Ser Ile Leu Thr Glu Thr Ile Gly Tyr Leu Arg Glu Leu Lys Gln Arg
420 425 430
Val Asp Gln Leu Glu Ser Ser Arg Ser Pro Ser His Pro Lys Glu Thr
435 440 445
Thr Gly Pro Ser Arg Ser His Val Val Gly Ala Arg Lys Lys Ile Val
450 455 460
Ser Ala Gly Ser Lys Arg Lys Ala Pro Gly Leu Glu Ser Pro Ser Asn
465 470 475 480
Val Val Asn Val Thr Met Leu Asp Lys Val Val Leu Leu Glu Val Gln
485 490 495
Cys Pro Trp Lys Glu Leu Leu Met Thr Gln Val Phe Asp Ala Ile Lys
500 505 510
Ser Leu Cys Leu Asp Val Val Ser Val Gln Ala Ser Thr Ser Gly Gly
515 520 525
Arg Leu Asp Leu Lys Ile Arg Ala Asn Gln Gln Leu Ala Val Gly Ser
530 535 540
Ala Met Val Ala Pro Gly Ala Ile Thr Glu Thr Leu Gln Lys Ala Ile
545 550 555 560
<210> 10
<211> 4003
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 10
atggcgctat cagctcctcc cagtcaggaa cagccgtcgg ggaagcaatt cggctaccag 60
ctcgctgctg ctgtgaggag catcaactgg acgtatgcca tattttggtc catttccgcc 120
agcccgcgcc caggccactc ctcgtaatga ataaatgacc actctctatc tctatatgta 180
tcaatagata tcatatttgg gtttgtagca aacccacaaa gttcgtactt ttcatatata 240
tagtgtccgg cgtcgacgcc gtcggttcgt ttcgcagagt tctggcgtgg aaggatgggt 300
tctacaacgg cgagataaag acaagaaaga ttaccggctc gaccactacg gagcttacag 360
cggacgagcg cgtcatgcac agaagcaagc aactgaggga gctctacgaa tcgctcttgc 420
ccggcaactc caacaatcgg gcaaggcgac ctgccgcctc actgtcaccg gaggatctag 480
gggacggcga gtggtattac accataagca tgacttacac cttccaccct aatcaagggt 540
acgtagttat caaccatgat gtatgcgata tatgtgcctg ccatgattca tgccgtccat 600
atttttatat acgggtacat gacaaagaca aattttgcgg ttatgaaaat agtcacaaac 660
atgcactatt ttttgttaca aattacatat taatttgtac cttttttagt agttatcttg 720
ttaatatata ctggcatgtt gttgccagga aaagatcact tcaagaaaat tataaacaag 780
catatataat acgtccatac atatgtccaa ttattttcag ccttttcctt tttctaaatt 840
aaatacatag agtccaagct tcaaatcctg cacttaaacc tcaagctaat ctgttacact 900
cccttgcagc tagtctctta ctagtattat ctgttctttt tttgaaggaa aaactttcga 960
tctattcgtc atcatcacag taaaaaaaac actagaagta acataaatta cattcatgtc 1020
tgtagaacac cttgcgacga ttgcaaacat tggtgtgcat gccgaaggcg cgctacactc 1080
atcgcccctc cctcattgga gcttggcaaa cttaattgta gtagacggta gggaagtctt 1140
tatgctataa ggccttaaag gaccagcgca ccagaacaac aaccgtgacc attaaagaaa 1200
agcaaaaaga aaagaaaagc atagatggaa aagattcaac atgtagacat ataacacagc 1260
aaaactaagg ccgaatccaa gtatatccac taaactcaaa cactgactga atcccgcgag 1320
attcaccgac aatgccctcc gacaatgtta gatgcatcat tgggataggg acttggcagg 1380
gtgaacctta ttctgtcttc agatagcaga tgtcgcctca ccttcctaag cagcacacaa 1440
acactaaata aaacttgaaa aacacttaaa atgaagtagg agcactctca ctggcaagag 1500
ccacgatcca ttatgcctcc atggccctaa agccggagga agatcgatgg cagcatcggg 1560
gggaggcgag gaagccctcg tttcctggga gttcgcttgt ggagcactaa tactatcttg 1620
atactagcta ccatagactg cagtggtaag atgtacatac tgaagtgatt tttttttctg 1680
tcggcgtgaa tgtacttact accaggttgc caggcaaaag ctttgcgagc aatcaacatg 1740
tttggctgta caacgctcag aacgcaaaca ccagagtttt cccccgcgcg ctcttagcaa 1800
aggtatatct cttctactta tctcatatta tgtgtgtata gcaatgatgc gggtcgggtt 1860
ttcaaccccc ttacataaga aaacatcgtt tggtctttaa ctaataataa tactccaaaa 1920
cgtgcatgat gtcttcctac accatccgat ggtcaaatca gaccgcttct attcaggtca 1980
gcacattact tcctactata gatagataga tagacgcaca catatacaca tctctgatct 2040
caaaccgttc acatatttcc agacaatcgt ttgcattccc ttcatgggcg gtgtgctgga 2100
gctcggaacg tcggatcagg tcggtgcaca tgagtttcaa tttatgttct cagtaactct 2160
cagcatgttc ttccgacttg ccgacgggtt caacggtaac cttttaatat taggggtagc 2220
tattttgttt gccaatacat gctagctatt tttgtatgtg ttgtcccagt ctaccattct 2280
gccccttttg catttatgcg ttattccttt ttagtacatt aatttacact agtcttccac 2340
tgcgttttcc tactactatg tattttatat tatatttgtg attatcttta gagcaagtac 2400
aatagagtga tgtaggcggg ctacaagaga tggcacatca cttttatgcc tagttgaagg 2460
agagaggaga ggagagaaga gaagcgggtt acaaacttac agcaaaagtg accccaccta 2520
tatataaggc ttttaatcag tagtgtctgc ctcacacaca cagatactct aggttcctct 2580
taacacacca tctccctctg ttcgactgtc cctacacaca gtctctatcc atctctctct 2640
agatgtatgc ccccatagga gggtgactgc cgtcgacgtg gatagtgatt gggattgaga 2700
tctcatggca agggggacca gatatttaca ccactggcga gggatccact agttgtattt 2760
gagagttgag actatcgatg acggatgcgt tcaatgggtt tttggcagtg cgtgaacttg 2820
cttttctctc tttcccgtcc cccgtataac tctattctga gttgtattat tgttatcagt 2880
aacgaaaagg gtatacccga ttaaaagaaa aggctgtatt tgaggtactc atgtatatat 2940
gttttgtata gtgggaaaaa tgataatata tgtgtagcgg ccgcacgcat cttgaggaca 3000
gattccttac cagtacgtac caccatagcg gtaaaaatgc ctttgcgagt agctaccaca 3060
ttaacacttg gccaagtttt tcctttcgtc gtcgtccgtc cacgtaaagc aaatgctatt 3120
gacgattgac aaagtgtatc ctatatttcc aaggttttgg aggaccccgg catggtgaag 3180
cggatcagca cgtctttctg ggagctgcac ttgccgtcat ccttggagtc gaaggatgcg 3240
agctccagca catcagcgaa cgataccagg gaggccaccg acatcatctt gttcgaggac 3300
ttcgaccaca acgacacagt tgagggggtc acctctgagc aaagggaggt ccagtgcctg 3360
tccaacgtca atctggagcg cctcacaaag cagatggacg agttccacag ccttctcggt 3420
ggactggacg tgcatcctct cgaagacaga tggatcatgg acgagccctt tgagtttacg 3480
ttttccccgg aactggcgtc ggctatggat atgccgagca ccgacgatgt catcgtcact 3540
ttaagtaggt ctgaaggctc tcgtccatcc tgcttcacgg cgtggaaggg atcatccgag 3600
ttgaaatacg tgcctggcca ggtcgttggg gagtcacaga agttgctgac taaagttgtg 3660
gctggtggtg catgggcgag caattatggc ggtcgcacca cggtgagagc tcaggaaatt 3720
aacaacaaca cccatgtcat gacagagaga agacgccggg agaaactcaa cgagatgttc 3780
ctggttctca agtcactagt cccgtccatt cacaaggtag taatatgtag agtccattta 3840
ccatcagcaa attgcacacg ttgtttttca tagttttttt actgctggat tgcaggtgga 3900
caaagcatcc atcctcacag aaacgatagg ttatcttaga gaactgaagc aacgggtaga 3960
tcagctagaa tccagccggt caccgtcttg ttggatatta tga 4003
<210> 11
<211> 1344
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 11
atggcgctat cagctcctcc cagtcaggaa cagccgtcgg ggaagcaatt cggctaccag 60
ctcgctgctg ctgtgaggag catcaactgg acgtatgcca tattttggtc catttccgcc 120
agcccgcgcc caggccactc ctcagttctg gcgtggaagg atgggttcta caacggcgag 180
ataaagacaa gaaagattac cggctcgacc actacggagc ttacagcgga cgagcgcgtc 240
atgcacagaa gcaagcaact gagggagctc tacgaatcgc tcttgcccgg caactccaac 300
aatcgggcaa ggcgacctgc cgcctcactg tcaccggagg atctagggga cggcgagtgg 360
tattacacca taagcatgac ttacaccttc caccctaatc aagggttgcc aggcaaaagc 420
tttgcgagca atcaacatgt ttggctgtac aacgctcaga acgcaaacac cagagttttc 480
ccccgcgcgc tcttagcaaa gaccgcttct attcagacaa tcgtttgcat tcccttcatg 540
ggcggtgtgc tggagctcgg aacgtcggat caggttttgg aggaccccgg catggtgaag 600
cggatcagca cgtctttctg ggagctgcac ttgccgtcat ccttggagtc gaaggatgcg 660
agctccagca catcagcgaa cgataccagg gaggccaccg acatcatctt gttcgaggac 720
ttcgaccaca acgacacagt tgagggggtc acctctgagc aaagggaggt ccagtgcctg 780
tccaacgtca atctggagcg cctcacaaag cagatggacg agttccacag ccttctcggt 840
ggactggacg tgcatcctct cgaagacaga tggatcatgg acgagccctt tgagtttacg 900
ttttccccgg aactggcgtc ggctatggat atgccgagca ccgacgatgt catcgtcact 960
ttaagtaggt ctgaaggctc tcgtccatcc tgcttcacgg cgtggaaggg atcatccgag 1020
ttgaaatacg tgcctggcca ggtcgttggg gagtcacaga agttgctgac taaagttgtg 1080
gctggtggtg catgggcgag caattatggc ggtcgcacca cggtgagagc tcaggaaatt 1140
aacaacaaca cccatgtcat gacagagaga agacgccggg agaaactcaa cgagatgttc 1200
ctggttctca agtcactagt cccgtccatt cacaaggtgg acaaagcatc catcctcaca 1260
gaaacgatag gttatcttag agaactgaag caacgggtag atcagctaga atccagccgg 1320
tcaccgtctt gttggatatt atga 1344
<210> 12
<211> 447
<212> PRT
<213> Elytrigia elongata (Elytrigia elongata)
<400> 12
Met Ala Leu Ser Ala Pro Pro Ser Gln Glu Gln Pro Ser Gly Lys Gln
1 5 10 15
Phe Gly Tyr Gln Leu Ala Ala Ala Val Arg Ser Ile Asn Trp Thr Tyr
20 25 30
Ala Ile Phe Trp Ser Ile Ser Ala Ser Pro Arg Pro Gly His Ser Ser
35 40 45
Val Leu Ala Trp Lys Asp Gly Phe Tyr Asn Gly Glu Ile Lys Thr Arg
50 55 60
Lys Ile Thr Gly Ser Thr Thr Thr Glu Leu Thr Ala Asp Glu Arg Val
65 70 75 80
Met His Arg Ser Lys Gln Leu Arg Glu Leu Tyr Glu Ser Leu Leu Pro
85 90 95
Gly Asn Ser Asn Asn Arg Ala Arg Arg Pro Ala Ala Ser Leu Ser Pro
100 105 110
Glu Asp Leu Gly Asp Gly Glu Trp Tyr Tyr Thr Ile Ser Met Thr Tyr
115 120 125
Thr Phe His Pro Asn Gln Gly Leu Pro Gly Lys Ser Phe Ala Ser Asn
130 135 140
Gln His Val Trp Leu Tyr Asn Ala Gln Asn Ala Asn Thr Arg Val Phe
145 150 155 160
Pro Arg Ala Leu Leu Ala Lys Thr Ala Ser Ile Gln Thr Ile Val Cys
165 170 175
Ile Pro Phe Met Gly Gly Val Leu Glu Leu Gly Thr Ser Asp Gln Val
180 185 190
Leu Glu Asp Pro Gly Met Val Lys Arg Ile Ser Thr Ser Phe Trp Glu
195 200 205
Leu His Leu Pro Ser Ser Leu Glu Ser Lys Asp Ala Ser Ser Ser Thr
210 215 220
Ser Ala Asn Asp Thr Arg Glu Ala Thr Asp Ile Ile Leu Phe Glu Asp
225 230 235 240
Phe Asp His Asn Asp Thr Val Glu Gly Val Thr Ser Glu Gln Arg Glu
245 250 255
Val Gln Cys Leu Ser Asn Val Asn Leu Glu Arg Leu Thr Lys Gln Met
260 265 270
Asp Glu Phe His Ser Leu Leu Gly Gly Leu Asp Val His Pro Leu Glu
275 280 285
Asp Arg Trp Ile Met Asp Glu Pro Phe Glu Phe Thr Phe Ser Pro Glu
290 295 300
Leu Ala Ser Ala Met Asp Met Pro Ser Thr Asp Asp Val Ile Val Thr
305 310 315 320
Leu Ser Arg Ser Glu Gly Ser Arg Pro Ser Cys Phe Thr Ala Trp Lys
325 330 335
Gly Ser Ser Glu Leu Lys Tyr Val Pro Gly Gln Val Val Gly Glu Ser
340 345 350
Gln Lys Leu Leu Thr Lys Val Val Ala Gly Gly Ala Trp Ala Ser Asn
355 360 365
Tyr Gly Gly Arg Thr Thr Val Arg Ala Gln Glu Ile Asn Asn Asn Thr
370 375 380
His Val Met Thr Glu Arg Arg Arg Arg Glu Lys Leu Asn Glu Met Phe
385 390 395 400
Leu Val Leu Lys Ser Leu Val Pro Ser Ile His Lys Val Asp Lys Ala
405 410 415
Ser Ile Leu Thr Glu Thr Ile Gly Tyr Leu Arg Glu Leu Lys Gln Arg
420 425 430
Val Asp Gln Leu Glu Ser Ser Arg Ser Pro Ser Cys Trp Ile Leu
435 440 445
<210> 13
<211> 1952
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 13
ctccgctatg tctatggcac tatggatctt ggcgtcacgc ttcacgcctc cgccgacacc 60
gccctcaccg cctactccga tgcagactgg gcgggctacc ctgacactca tcgctccacc 120
tcgggctatt gtgtctacct tggaccctca cttatttcgt ggtcgtccaa gcggcagcct 180
acggtctctc gttccagtgc tgaggctgag tatcgtgcgg tggccaacgc cgtcgccgag 240
tgttcgtggc ttcgccagct gcttcaggag ctttcctgcc ctgttgactg tgccacggtg 300
gtctactgcg acaacgtctc ggcggtctac ctctccgcta acccggtgca tcatcgacgg 360
accaagcata ttgagttgga tattcatttt gttcgggaac aggtggccct tggtcatatt 420
cgtgttttac accaggggcg gaactgggcc tggggcaact ggggctatag ccccaggcat 480
ggcccatcta gtaggctacc cagcaggaat tttcccatat attagtacac ttgtagaggc 540
ccagccccag gcctcagccc acagagctct ccagtttgga cgatcgctcc aaagaatcac 600
cagcagccac gatgcaagag cgctccgatc ctcacgcttc gtctcggtag atcgaccgaa 660
aagtctcacg ctgcgccgcc aactctctcg actgctcgac tccagcagac gctcgcccag 720
gcggccggcg ctcggaaccg cggatctatc gcgccgtttg aataaagcaa tctccatgcc 780
tgatctcctg tgatccacac ccgattgaaa aggtaatgct aaatacctag gtttgtcgta 840
tcatctaata tttcccccta gttccttttt atcagctgaa atcaatgaat tggtgatgtt 900
aaattgtatt gctttagtca attttattcc atcgttcttt gttaacaggg gaaaaataga 960
aatccaagat gaagtggacc cggacagttt ttcgtgatca tggtataata ttttcttgct 1020
tcccaaaatt tcatatgaac aataacttgt ctatgtctag ttcttgattt taaatactca 1080
actttatgtt tacagctccg ggtcctagct actattgctt gtgaagaaac gatggcctca 1140
agtgagacaa gccttcatta atttggtacg actgtttgta atgatgcact ttgttatatt 1200
gatgagatat ttattaaatt tgctcttatg gtaataagta attcatattc tattcttaat 1260
ctgaatgtgt ggtgtacttc taacatgcat tggtacgtag agtatttggc attttatttc 1320
ctttaggttg tgatatttgg cgttatttgt agtggtttag ctttagtcct aggcttcgag 1380
aaatcctggc tccgcctctg ttttacacgt tcctactttt caacaatttg cagatattat 1440
gaccaaaggc ttgcctacgg cgtcatttaa ggagttccgg tccagtcttt gcgtcagccg 1500
cggtgccgct tcgactgcgg ggggtgttga gtacatgtgt tatgtgtata ttgtgtattg 1560
ggtccgtctc ctagttcttt gtatagttga ggtctatggc ccaccgttgt acatcatata 1620
tacgtgccta tgcacgagag caatacatca tgcaatcata gtctcataca ctagcgatct 1680
gaagctttac accaggttat aggttttctt cctcgacttt ggacggatat catcatcggt 1740
gccgccggtg agatgtatag gcggcggaac ggcggtgctg aacgtccgtg ttcattgcac 1800
agatggatcc tttgctagcc gtttggtgta cctaactcgg acttaggtgt tgcttgcggt 1860
gaccacatgg tgtattaata aagcacaacg gccttctgcc cacggatcaa acacagtaca 1920
cacgggcagt tgggaaaaag ataacgggga gg 1952
<210> 14
<211> 2013
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 14
ggtcaccaaa acacataact cataatacaa atcatcatcg aacgctaagc gtgtggaccc 60
tacgggttcg agaactatgt agacatgacc gagacagatc tccggtcaat aaccaatagc 120
ggaacctgga tgctcatatt ggctcctaca tattctacga agatctttat cggtcaagcc 180
gcataacaac atacgtcatt ccctttgtca tcggtatgtt acttgcccga gattcgatcg 240
tcggtgtcat catacctagt tcaatctcgt taccggcaag tctctttact cgttccgtaa 300
tgcatcatcc cgcaactaac tcattagtca cattgcttgc aaggcttata gtgatgtgca 360
ttaccgagag ggcccagaga tacctctccg atacacggag tgacaaatcc taatctcgat 420
ctatgccaac tcaacaaaca ccatcggaga cacctgtaga gcatctttat aatcacccag 480
ttacgttgtg atgtttgata gcacacaaag tgttcctttg gtattcggga gttgcataat 540
ctcatagtca gaggaatatg tataagtcat gaagaaagca atagcaataa aactaaacga 600
tcataatgct aagctaatgg atgggtcttg tccatcacat cattctctaa tgatgtgatc 660
ccgttcttca aatgacaaca catgtctatg gtcaggaaac ttaaccatct ttgattaacg 720
agctagttaa gtagaggcat actagggcca ctctatttgt ctatgtattg acacatgtac 780
taagtttccg gttaatacaa ttctagcatg aataataaac atttatcatg atataaggaa 840
atataaataa caactttatt attgtctcta gggcatattt ccttcagtat gaaggccgac 900
tgatctgggt gggtgatgcg gttggccaaa ggagtcaccc tattgacgta cccctttgcc 960
aagatgcggg agatcacatt gatcacggta atcaccctgt tgcttttgta aagaatggag 1020
ttatgagaat aggtgaaata tgctttgtgg gacgaaattg actacgcatt ttgtgtataa 1080
tcagggttta gaagtccatt gtgtgtgcat gtttgatacg agatatgttg ctcgtatgaa 1140
aagaactata tctgcaaagc tatatttagt tcaaattaag atttgagcta cattattgca 1200
ctcgttcatt ttattgagat aattatggcc taactaggat gactgagaat tttttctatg 1260
attatacgtg caacgcacgt gcatacttac tagtaaaaat gaaaatctaa cgcaataagt 1320
gaaaaacggg gcggcatagt gcaacacttt gctctacagg gccaacatcc tcgttgaaca 1380
tgcactacaa atactccctc cgtaaagaaa tataagagcg ttagcgatcc tcttatattt 1440
ttattacgga gggagtacta gctaggaata tcgcaaagca gtcgtcgtct ctggctccgg 1500
tcaaaaccag agcaagactt tcgtctcgtc tttctctcgg gcgcccactg cacggcagga 1560
gcgtatctgg gactgggaca gggaggccaa ccacgcgtag tagtagcgga gcaccagctc 1620
atggcccgca atgcatgcaa gatgtaaccc acagtcccgg tcctgcgccc gacaggctac 1680
gcctggagga gtcgccactg ccatctgtcc acgccaggtg tgagagatcg gagtgggcct 1740
agcgatctga agttttacac caggttttct tcctcgactt tggacggata tcatcatcgg 1800
tgccgccagt gagatgtata ggcggcggaa cggcggtgct gaacgtccgt gttcattgca 1860
cagatggatc ctttgctagc cgtttggtgt acctaactcg gacttaggtg ttgcttgcgg 1920
tgaccacatg gtgtattaat aaagcacaac ggccttctgc ccacggatca aacacagtac 1980
acacgggcag ttgggaaaat gataatgggg agg 2013
<210> 15
<211> 2084
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 15
tttcttaggg cattatgatg atgacttggc atcactagtg cggagttact gtagcatgat 60
tctcggggtg tcacaacagt acatcctaga gatcttggat cgcgccaata tgaccaactg 120
taaccccact gctactcctg tcgacaccaa atccaaacta tccgctactg acagtccacc 180
agttcccgat cctactctat gtcgtagcat tgctggagcc ttccagtgcc tcacccgcac 240
tcaccccgat atctcctatg cggtacagca ggcctgccta tttatgcacg atcctcgcgc 300
ccccaccttc agttcgtcaa aaggatctta cgctatctca aggccacatc acattatgga 360
ctgcagctta ccacttctcc tggacatgat ctcgtggctt attccgacgc agattgggcc 420
ggctgtcccg ctacactgaa gtccacctct ggtttctgtg tgttccttgg ccccaacttg 480
gtatcttggt cctccaaacg ccaacacacc gtctcttgat cgagcgccga agctgagtat 540
agggcggttg caaattgcgt cgctgaatcc tgctggcttc gccagcttct acaggagcta 600
catcaacctt cgtctagcgc cacaatcgtt tacactgaca acatcagtgg gacgtacctc 660
tcctccaacc ccgtctagca ccaacgcacc aagcacgtca agatcgactt gcattttgtc 720
cgagatcggg tggcacttgg agaggctcgg atcctgcacg tttcgtccaa ctcccaattt 780
gcggacgtgt tcaccaaggg cctgcctaca tccatcttcc atgagtcttg ttccagtctg 840
aacatccacc gtgtggagct ccgactgcgg ggtgctgtta aagtgtgttg taatattgta 900
catagacttg tcacgttgag gcctgcatgc ccatctgttg aaactacctc cacctctctg 960
ggatcacgat cccccttctc aatttttttt ttgaacacag tacagacgca agcactcata 1020
tacacgcgca tacactcacc cctatgaacg cacacacgca caccctaccc ctatgagcac 1080
ccccgaaaga ctgagccagc atatcatctt gaaatttacg aaatcaccgt agtcacctcg 1140
tcgtcgacgg gaacgtctcc tcccactgaa tgcacatcgc cggaaatcct gaaatgaatc 1200
caggaataaa tgcgagcacc aggatttgaa ccctggtggg ttggggatac cacagtccct 1260
ctaaccatcc aaccacaggt tggttcgcat cccccttctc agttgatggc ctgcgtgcct 1320
acttcttcgg cagtagttgc agctctcaat atatgtactc tgactcccct aaaatatata 1380
tatatatact ctgaccactg gttgtaatgt aacacgaaca cacagtgagg aattccaaac 1440
cataacttgg ttgtggggtg accattccac agcgttttat gcaacgtggc ggcagactag 1500
gttattcaca caaaaaagat ccatgcaagt ttccacgtgc tgctgcttcc aacgttgaag 1560
tgttttctgt gtcgtgcgtc gatcgtattt ggatcttctc agcaacgata gcggcgagat 1620
ttcgttgtat ctatgtcttc agagcggttc gagtagattt tttccttcat ttttcggact 1680
gaagaaaaag aggaaatgct accttccatc gttcgtactg tgtagttgtt ggtgcaacag 1740
cccgcgcatt tgcataaggt gccttgtata tatgtggaaa cgttcagttg ctacgtacct 1800
cttcgtggtc tgcacacgca tacagtctgc acactgatac cttaaagtaa gctttaattt 1860
tgcttcagtt tacttctcca gttcttggct agctgaatct cgacttctag tttggtcgga 1920
atttatataa ctttcctgcg tgtacagtac acagcgtatg taccatgcat ataactttat 1980
atacctttct tgatttcttt tgctgcttgt ttcctcgacc tagcgtctca ccttgtgagt 2040
tgtgcatgcg ggaaatagct actcagcggt gtggtaatcg atca 2084
<210> 16
<211> 2022
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 16
caacccaagc atctcttttc tgtcaccacc accatggaca tttctcccat accttctacc 60
tataaatctg ccttaaaaaa tccccattgg tacaatgtaa tgcttgaaga atttaatgct 120
ttgtagaatg atacatggtg tttggttcct cgacctgcag gtgtcaacat ggtcaccgag 180
aaatggatct ttaggcacaa atttcattcg gacggctccc tagctcgcta caaggcccat 240
tgggttctcc gtggattcac tcagcaggag ggcgtcgact acactgagat attttgtccg 300
gttataaaac cggccacagt tcgggtgctt ctcagcctcg ccaccactca ttcttggccc 360
attcatcaaa tggatctcaa gaacgccttc ctccatggca ctctcggtga aaccgtttac 420
tgcaatcaac cggctgggtt cattgattca tctcaccgca cccatgtttg tcttctcaag 480
aaatctttat attggttaaa acaggctcct cgcacatggt ttatctgttt ccaggccttc 540
atcctttcct tgggatttgt tgcttctaag tgcgactctt cactgttcat tcttcatcgt 600
ggctcggcca ttgcctatct tctcctttat gttgatgata ttatcctcac tgttaacacc 660
accgccacct tacactccat catcttctcg ctcaagcccg agttatctat gtttgacttc 720
ggtgacatac atcatttcct tggtgttaat gttacccgtt ccccacgtgg cctcttttta 780
tctcaagaat agtacatctt agagatcttg gattgcgcca atatgaccaa ctgtaacccc 840
attgctactc ctgtcaacac caaatccaaa ctatccgcta ctgacagtcc accagttccc 900
gatcctactc tataccgtag cattactgga gccctccagt acctcaccct cactcgcccc 960
gatatctcct atgcgttaca gcaggcctgc ctatttatgc acgatcctag cgcctcccac 1020
cttcagtttg tcaaaaggat cttacgctat ctcaaggcca catcagatta tggactgcag 1080
cttaccactt ctcctggaca tgatctcatg gcttattccg atgcagattg ggccggctgt 1140
cccgctacac tgaagtccac ctccggtttc tgtgtgttcc ttgaacccaa cttggtctct 1200
tggtcctccg agcggcaaca cactgtctct tgatcgagcg ccgaagctga gtataggggg 1260
cagttgcaaa ttgcgtcgct gaatcctgct ggcttcgcca gcttctacag gagctacatc 1320
aaccttcgtc tagtgtcacc attgtttcct gtgacaacat cagggcgacg tacctctcct 1380
ccaaccccgt ccagcaccaa cgcaccattc cacaacgttt tatgcaacgt ggcggcagac 1440
tagtttattc acacaaaaaa gatccatgca agtttccacg tgctgctgct tccaacgttg 1500
aagcgtttct tgtgtcgtac gtcgatcgta tttggatctt ctcagaaacg atagcggcga 1560
catgtcgttg tatctatgtc ttcagagcgg ttcgagtaga ttttttcctt catttttcgg 1620
actgaaaaaa agaggaaatg ctaccttcca tcgctggtac tatgtagttg ttggtgcaac 1680
agcccgcgca tttgcataag gtgccttgta tatatgtgga aacgttcggt tgctacgcgc 1740
gtacctcttc gtggtctgca cacggatacc ttaagtaagc tttaattttg cttcagttgg 1800
aagccagcca gtttacttcc cccgttcttg gctagctgaa tctcgacttc tagtttggtc 1860
ggaatttata taactttccg gcgtgtacac agcgtacgaa ccatgcatat aactttatat 1920
acctttctcg atttcttttg ctgcttgttt gctcgaccta gcgtctcacc ttgtgagttg 1980
tgcatgcggg aaatagctac tcagcagtgt ggtaatcgat ca 2022
<210> 17
<211> 441
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 17
gtacccagta taaccgtaca tgcacccaac caactatata gtgtaaggaa taaaacgacg 60
tcattagcac tggagggctg ccacgtcggc cggcggatct ttggctcgcg agtcgttgga 120
tgtggcacaa ttcagcagct caacgtctcc ctctacttcg caacagagtt tttgtttttt 180
atttgcgctg gtaaaggagt tttattccat atgcataggg ttacaatcaa gaggcaggag 240
atcctccaca cacggcggac ctcgaccaag ccatacagca gtagtgctct ctgtacgact 300
atacagggcc aaacgatctg ctaccctatt ctgcagacga ctaattttca tgggaataaa 360
aactctatct accataagat gacgaatctc agcaactata tgtccatagg ctgatctggt 420
taaactgtca ccagacaaag c 441
<210> 18
<211> 163
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 18
ctctcacaca tcatcgagtt aagtacccag tataaccgta catgcaccca accaactata 60
taatgtaagg aataaaacga cgtcattagc actggggggc tgccgcgtcg gcgatgtgac 120
acaattcagc agctcaacgt ctccctctac ttcgcaacag aga 163
<210> 19
<211> 618
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 19
gcaagacttt tttgacacta gtgtattgtt aaaaacgtct tatattacga gacgaaggga 60
gtacttaaca actcaatcta caaaaaatca tgagttgggc tctatagtct gcttcgccca 120
acaaccaggt cggactagtg tgaattactg tacaccaaaa aaattctgaa ataattactg 180
aacacgtcat gacgtgtcta cttccctcca aaagtatttc agatctacat tccgcctgtc 240
aattaagcac gaaatttgaa gccgattgtg ctgcccggcc ctactcacca ctacagaaat 300
gcctagctag cggtggcggc actaccgttc ggattctttc cagcttcctg aaatagccag 360
cttcccgcga tgccagccgc agccagcttc tgacgggagt agcgattcgt tcggcagcag 420
agagtagctc tagacaccgt acgaacttga aatagcccag gaaggaagcc ggcgtgaggg 480
agggagctag gaggagtgag ctctctggcg tggatacggc ggcaagctcg atggagcagg 540
tcgaccaggt gccgacggcg agcaacagag gaagttgagg cagggtcggg cgtccgggtg 600
cgctgaggat gggccatg 618
<210> 20
<211> 741
<212> DNA
<213> Elytrigia elongata (Elytrigia elongata)
<400> 20
tcttaaagac taaattgtag ccattatgtt ttaataataa agataaagct taagtgcaaa 60
atatctgatg tgctacagtg acaaacagta ggtcggtgct acagtgccca cctactctga 120
tgagctgccc tgatcagggg tagctcatca gccaactcat ggtgtgggcc ccttggtgca 180
cagtgctatt catatgaaga taaaggagaa gagaatagag cagctaagtg agttagttct 240
ggctgctgct gctctgagcc tattcctctc tcttccccac acaaaacact aaaggaaagg 300
gctactgatc aagcctgcac tggagcactg ggaaggacct ctcacagcca tcagattgag 360
ttcttggtgg tgttgagcta aagaaaggag atggcaggac ctgcaggtca aggtatgttt 420
atctcctaac caagtttgtg gctcaaactt gtgctaaatg atcctggagc aatccaacaa 480
tggtatcaga gcccaatagc atcatgtttg agccctataa gtaataaatc agacttggtc 540
tgttgcaatt aagttaaagt atcaagctgc tcttcctaaa gatcaaggtt tgatcttatt 600
tgagccctta tgagcaatag atcatgtctg atctgttata tataagttaa gtttttgatt 660
aagctcatgt tgttcttcct atttaagtca aggaagtcct cgaacaagat gatgtcgcct 720
atcttttcta ctactacttt g 741

Claims (9)

1. The blue grain gene for improving the content of the wheat anthocyanin is characterized in that the nucleotide sequence of the gene is one of the following sequences:
(a) As shown in SEQ ID NO: 1;
(b) The coded amino acid sequence is shown as SEQ ID NO: 3.
2. The blue grain gene according to claim 1, characterized in that the amino acid sequence of the blue grain gene is as set forth in SEQ ID NO:2, respectively.
3. An expression cassette comprising a blue-granulocyte gene, wherein the nucleotide sequence of the blue-granulocyte gene is selected from the group consisting of seq id no:
(a) As shown in SEQ ID NO: 1;
(b) The coded amino acid sequence is shown as SEQ ID NO: 3.
4. The expression cassette of claim 3, wherein the nucleotide sequence of the blue granule gene is as set forth in SEQ ID NO:2, respectively.
5. The expression cassette of claim 3, wherein the blue-granule gene is further operably linked to a promoter capable of driving expression thereof, wherein the promoter is a constitutive promoter, an inducible promoter, a tissue-specific promoter, or a spatiotemporal-specific expression promoter.
6. Use of the blue grain gene of claim 1 or 2 or the expression cassette of claim 3 or 4 for increasing the anthocyanin content of wheat.
7. A method of increasing anthocyanin levels in wheat tissues or organs, the method comprising the step of co-expressing a MYB-like transcription factor and a bHLH transcription factor in tissue organs of plants, wherein the MYB-like transcription factor is a ThMYB1 gene having a nucleotide sequence selected from one of the following groups:
(a) As shown in SEQ ID NO: 1;
(b) The coded amino acid sequence is shown as SEQ ID NO: 3;
and the bHLH transcription factor is a ThR1 gene, and the nucleotide sequence of the bHLH transcription factor is one of the following sequences:
(a) As shown in SEQ ID NO: 7;
(b) The coded amino acid sequence is shown as SEQ ID NO:9, or a nucleotide sequence shown in the specification.
8. The method of claim 7, wherein the nucleotide sequence of the ThMYB1 gene is set forth in SEQ ID NO:2 and the nucleotide sequence of the ThR1 gene is shown as SEQ ID NO: shown in fig. 8.
9. Use of the method of claim 7 to increase the anthocyanin content of a wheat tissue or organ.
CN201780054212.XA 2017-11-08 2017-11-08 Wheat blue grain gene and application thereof Active CN112218951B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211123928.XA CN116064580A (en) 2017-11-08 2017-11-08 Wheat blue grain gene and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109818 WO2019090496A1 (en) 2017-11-08 2017-11-08 Genes of blue-grained wheat and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202211123928.XA Division CN116064580A (en) 2017-11-08 2017-11-08 Wheat blue grain gene and application thereof

Publications (2)

Publication Number Publication Date
CN112218951A CN112218951A (en) 2021-01-12
CN112218951B true CN112218951B (en) 2022-11-15

Family

ID=66437412

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780054212.XA Active CN112218951B (en) 2017-11-08 2017-11-08 Wheat blue grain gene and application thereof
CN202211123928.XA Pending CN116064580A (en) 2017-11-08 2017-11-08 Wheat blue grain gene and application thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202211123928.XA Pending CN116064580A (en) 2017-11-08 2017-11-08 Wheat blue grain gene and application thereof

Country Status (4)

Country Link
US (1) US11390877B2 (en)
CN (2) CN112218951B (en)
CA (1) CA3080642A1 (en)
WO (1) WO2019090496A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996198B (en) * 2020-08-26 2022-06-24 山东农业大学 Anthocyanin regulatory gene SmbHLH1 in eggplant stem and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935663A (en) * 2010-04-28 2011-01-05 中国科学院遗传与发育生物学研究所 New wheat gene TaMYB3 for regulating synthetization and metabolization of anthocyanin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009061214A1 (en) * 2007-11-05 2009-05-14 The New Zealand Institute For Plant And Food Research Limited Compositions and methods for modulating pigment production in plants
CN103695460B (en) * 2013-12-06 2016-01-06 中国科学院西北高原生物研究所 A kind of method obtaining plant height anthocyanidin content hairly root
CN104774251B (en) * 2015-03-25 2017-11-14 浙江大学 Participate in the myb transcription factor of anthocyanin biosynthetic controlling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935663A (en) * 2010-04-28 2011-01-05 中国科学院遗传与发育生物学研究所 New wheat gene TaMYB3 for regulating synthetization and metabolization of anthocyanin

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MYC4E [Thinopyrum obtusiflorum];佚名;《NCBI》;20170723;ASL69970.1 *
PREDICTED: Aegilops tauschii subsp. tauschii anthocyanin regulatory R-S protein-like (LOC109740362), mRNA;佚名;《GenBank》;20170224;XM_020299413.1 *
PREDICTED: Aegilops tauschii subsp. tauschii transcription factor MYB114-like (LOC109740355), mRNA;佚名;《GenBank》;20170224;XM_020299403.1 *
Thinopyrum ponticum MYC4E (MYC4E) mRNA, complete cds;佚名;《GenBank》;20170723;KX914905.1 *
ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum;Na Li等;《PLOS ONE》;20170713;第1-13页 *
transcription factor MYB114-like [Aegilops tauschii subsp. tauschii];佚名;《NCBI》;20170224;XP_020154992 *

Also Published As

Publication number Publication date
CN116064580A (en) 2023-05-05
WO2019090496A1 (en) 2019-05-16
CN112218951A (en) 2021-01-12
US11390877B2 (en) 2022-07-19
CA3080642A1 (en) 2019-05-16
US20210180075A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
Grützner et al. High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns
CN108368517B (en) Methods and compositions for rapid plant transformation
AU2021225142B2 (en) Generation of haploid plants
CN107630031B (en) Method and system for regulating and controlling plant fertility
US20030131386A1 (en) Stress-induced polynucleotides
CN107686840A (en) Pears transcription factor PyERF3 and its recombinant expression carrier and application
CN107304428A (en) Wheat restoring gene and its application
CN108034671B (en) Plasmid vector and method for establishing plant population by using same
CN112424365A (en) Nucleic acid constructs and methods of use thereof
CN114106130B (en) Purple sweet potato anthocyanin synthesis regulation factor IbJOX4 and application thereof
CN110295177B (en) Application of MYB43 of over-expression cabbage type rape and parent species thereof in improving plant type and increasing yield
CN113845578B (en) MYB transcription factor for regulating and controlling synthesis of plant procyanidine, and coding gene and application thereof
CN109913473B (en) Gene for improving size and quality of seeds and application thereof
CN112457380A (en) Protein for regulating and controlling content of fruit shape and/or fruit juice of plant, related biological material and application thereof
CN113801891A (en) Construction method and application of beet BvCENH3 gene haploid induction line
CN112218951B (en) Wheat blue grain gene and application thereof
CN107446031B (en) Plant glutelin transport and storage related protein OsVHA-E1, and coding gene and application thereof
CN105316333B (en) The identification and application of plant anther specific expression promoter pTaASG005
CN108440658B (en) Rice chloroplast ribosomal protein coding gene OsWGL2 and application thereof
CN112239762A (en) Plant pollen tube growth gene and application
CN105039338B (en) The identification and application of plant anther specific expression promoter pTaASG004
CN109811005A (en) The application of plant type GAP-associated protein GAP OsSLA1 and its encoding gene in adjusting and controlling rice Leaf inclination
CN104975024B (en) The identification and application of plant anther specific expression promoter pTaASG042
CN112458105B (en) Common wild rice grain related coding gene and application thereof
CN112143744B (en) Application of OsPLDdelta 3 gene in controlling drought resistance of rice

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210420

Address after: 100048 No. 105 West Third Ring Road North, Beijing, Haidian District

Applicant after: Capital Normal University

Applicant after: Beijing Zhiyu wheat Biotechnology Co.,Ltd.

Applicant after: Institute of Modern Agriculture, Peking University

Address before: 100048 No. 105 West Third Ring Road North, Beijing, Haidian District

Applicant before: Capital Normal University

Applicant before: FRONTIER LABORATORIES OF SYSTEMS CROP DESIGN Co.,Ltd.

Applicant before: Institute of Modern Agriculture, Peking University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant