CN112216833A - 一种WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法 - Google Patents
一种WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法 Download PDFInfo
- Publication number
- CN112216833A CN112216833A CN202011256824.7A CN202011256824A CN112216833A CN 112216833 A CN112216833 A CN 112216833A CN 202011256824 A CN202011256824 A CN 202011256824A CN 112216833 A CN112216833 A CN 112216833A
- Authority
- CN
- China
- Prior art keywords
- tio
- nitrogen
- doped graphene
- preparation
- steps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 61
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title abstract description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 49
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 23
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000002360 preparation method Methods 0.000 claims abstract description 19
- YOUIDGQAIILFBW-UHFFFAOYSA-J tetrachlorotungsten Chemical compound Cl[W](Cl)(Cl)Cl YOUIDGQAIILFBW-UHFFFAOYSA-J 0.000 claims abstract description 15
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims abstract description 12
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 claims abstract description 11
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 claims abstract description 11
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims abstract description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 9
- 238000009210 therapy by ultrasound Methods 0.000 claims description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 9
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 9
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 2
- 239000007773 negative electrode material Substances 0.000 abstract description 2
- 229920000767 polyaniline Polymers 0.000 abstract description 2
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000000725 suspension Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- 239000004408 titanium dioxide Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- -1 transition metal chalcogenide compound Chemical class 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法,该复合材料是以氧化石墨烯、苯胺、过硫酸铵、十二烷基硫酸钠、氯化钨、硫代乙酰胺、TiO2为原料,先将氧化石墨烯在水中分散均匀,然后通过苯胺形成聚苯胺小球撑开石墨烯片层结构增加材料的比表面积,最后通过水热法制备成WS2/TiO2/氮掺杂石墨烯纳米复合材料。本发明制备方法简单,成本低廉,所制备的WS2/TiO2/氮掺杂石墨烯纳米复合材料为二维片状结构,薄片状WS2和颗粒状TiO2均匀分散于氮掺杂石墨烯上,比容量高、倍率好,可应用于锂离子电池负极材料中。
Description
技术领域
本发明属于材料制备技术领域,具体涉及一种WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法。
背景技术
可充放电的锂离子电池已经大量应用在电子器件以及混合动力汽车上,但是,它们的性能还是落后于新兴领域对它们的要求。先进的锂离子电极材料必须具备高的比容量,并且还具有安全性高以循环寿命长等特点,这些是高性能锂离子电池的基本要求。二氧化钛具有高的理论容量,并且,在嵌锂/脱锂过程中,二氧化钛的体积膨胀很小(3-4%),因此二氧化钛是一种具有应用潜质的锂离子电池负极材料。然而,二氧化钛的导电性差,锂离子扩散速率慢,且二氧化钛颗粒容易团聚。所以,二氧化钛的电化学性能一直没有达到理想水平。
二硫化钨是一类典型的过渡金属硫族化合物,它属于六方晶系,层内是很强的S-W-S共价键,层间是较弱的范德华力,单层厚度约为0.65nm。单层的二硫化钨纳米片层可以用胶带剥离或者锂离子插层的方法得到。研究表明,二硫化钨暴露的活性边缘具有析氢催化活性,因此在电化学催化领域具有广泛应用。但是,纯二硫化钨易于团聚,并且其优先生长惰性的内层结构,而非活性片层边缘,大量的团聚体也进一步抑制了活性边缘的暴露,再加上其较差的导电性,纯二硫化钨的优异性能将无法得到充分利用。因此,将二硫化钨与其它高导电性的基底材料复合具有重要意义。
石墨烯是一种准一维碳基纳米材料,它具有许多优异的物理化学性能,如较高的导电性、优异的力学性能、特殊的边缘效应和良好的化学稳定性等。这些特殊性质使其在能量转换与储存、电子传感器、高分子纳米复合材料等领域都具有极为广阔的应用前景,成为碳纳米材料领域中的研究热点之一。
发明内容
本发明的目的是提供一种高容量、高倍率的WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法。
针对上述目的,本发明所采用的制备方法是:将氧化石墨烯超声均匀分散于水中,再加入苯胺和十二烷基硫酸钠,继续超声20~40分钟,然后加入过硫酸铵的盐酸溶液,在冰浴条件下搅拌12~24小时,再加入氯化钨和硫代乙酰胺、TiO2,混合均匀后放入水热釜中,在密闭条件下220~260℃反应10~24小时,沉淀物用去离子水和乙醇反复洗涤后,真空干燥,得到WS2/TiO2/氮掺杂石墨烯纳米复合材料。
上述制备方法中,所述的氧化石墨烯与水的质量-体积比为1mg:1~2mL,苯胺与水的体积比为1:80~150;所述十二烷基硫酸钠与氧化石墨烯、过硫酸铵的质量比为1:1~5:60~90;所述氧化石墨烯与氯化钨、TiO2的质量比为1:1~10:1~10,优选氧化石墨烯与氯化钨、TiO2的质量比为1:3~7:2~5,其中所述TiO2的粒径为10~100nm;所述氯化钨和硫代乙酰胺的摩尔比为1:2~10,优选氯化钨和硫代乙酰胺的摩尔比为1:3~6。
上述制备方法中,优选在密闭条件下240~250℃反应12小时。
本发明的有益效果如下:
1、本发明以氧化石墨烯、苯胺、过硫酸铵、十二烷基硫酸钠、氯化钨、硫代乙酰胺、TiO2为原料,先将氧化石墨烯在水中分散均匀,然后通过苯胺形成聚苯胺小球撑开石墨烯片层结构增加材料的比表面积,最后通过水热法制备成WS2/TiO2/氮掺杂石墨烯纳米复合材料。本发明制备方法简单,成本低廉,操作性强、重复性好,所制备的WS2/TiO2/氮掺杂石墨烯纳米复合材料为二维片状结构,薄片状WS2和颗粒状TiO2均匀分散于氮掺杂石墨烯上。
2、本发明制备的WS2/TiO2/氮掺杂石墨烯纳米复合材料比容量高、倍率好,可应用于锂离子电池负极材料。
具体实施方式
下面结合实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
将0.06g氧化石墨烯加入到80mL水中超声1小时,制得分散均匀的氧化石墨烯悬浊液;然后向氧化石墨烯悬浊液中加入0.02g十二烷基硫酸钠和0.6mL苯胺,继续超声30分钟,再滴入过硫酸铵的盐酸溶液(1.4g过硫酸铵溶于20mL 1mol/L盐酸溶液),在冰浴条件下搅拌24小时,再加入0.40g(1mmol)氯化钨和0.27g(3.5mmol)硫代乙酰胺、0.3g粒径为50nm的TiO2,搅拌均匀后加入水热釜中,密封反应釜,在250℃下反应12小时,反应完后沉淀物用去离子水和乙醇反复洗涤,然后在60℃下真空干燥5小时,得到WS2/TiO2/氮掺杂石墨烯纳米复合材料。
实施例2
将0.06g氧化石墨烯加入到80mL水中超声1小时,制得分散均匀的氧化石墨烯悬浊液;然后向氧化石墨烯悬浊液中加入0.02g十二烷基硫酸钠和0.6mL苯胺,继续超声30分钟,再滴入过硫酸铵的盐酸溶液(1.4g过硫酸铵溶于20mL 1mol/L盐酸溶液),在冰浴条件下搅拌24小时,再加入0.40g(1mmol)氯化钨和0.54g(7mmol)硫代乙酰胺、0.15g粒径为50nm的TiO2,搅拌均匀后加入水热釜中,密封反应釜,在250℃下反应12小时,反应完后沉淀物用去离子水和乙醇反复洗涤,然后在60℃下真空干燥5小时,得到WS2/TiO2/氮掺杂石墨烯纳米复合材料。
实施例3
将0.06g氧化石墨烯加入到80mL水中超声1小时,制得分散均匀的氧化石墨烯悬浊液;然后向氧化石墨烯悬浊液中加入0.02g十二烷基硫酸钠和0.6mL苯胺,继续超声30分钟,再滴入过硫酸铵的盐酸溶液(1.4g过硫酸铵溶于20mL 1mol/L盐酸溶液),在冰浴条件下搅拌24小时,再加入0.20g(0.5mmol)氯化钨和0.19g(2.5mmol)硫代乙酰胺、0.4g粒径为50nm的TiO2,搅拌均匀后加入水热釜中,密封反应釜,在250℃下反应12小时,反应完后沉淀物用去离子水和乙醇反复洗涤,然后在60℃下真空干燥5小时,得到WS2/TiO2/氮掺杂石墨烯纳米复合材料。
分别将上述实施例1~3制备的WS2/TiO2/氮掺杂石墨烯纳米复合材料与导电碳黑、粘结剂聚偏氯乙烯(PVDF)按质量比8∶1∶1混合,再加入适量N-甲基吡咯烷酮(NMP)搅拌均匀,涂布到铜箔上,在真空烘箱中于90℃下烘干,在冲片机上剪片得WS2/TiO2/氮掺杂石墨烯纳米复合材料电极片。将所得电极做正极,金属锂片为负极,电解液为含有1M LiPF6/(EC+DMC)(体积比为1∶1)混合体系,隔膜为微孔聚丙烯膜(Celgard2400),在充满氩气(Ar)的手套箱内组装成2025型扣式电池。采用型号为CT-3008W的BTS51800电池测试系统在0.01~3.0V电压范围内进行电化学测试。
试验结果显示,实施例1制备的WS2/TiO2/氮掺杂石墨烯纳米复合材料在0.01~3.0V,0.1C电流密度下首次放电比容量达到426mAh/g,不同电流密度下的倍率循环性能很好,在1.0C电流密度下,放电比容量达到324mAh/g,经过5.0C、10C、20C、50C倍率循环后,在1.0C电流密度下,放电比容量达到302mAh/g;实施例2制备的WS2/TiO2/氮掺杂石墨烯纳米复合材料在0.01~3.0V,不同电流密度下的倍率循环性能很好,在1.0C电流密度下,放电比容量达到289mAh/g,经过5.0C、10C、20C、50C倍率循环后,在1.0C电流密度下,放电比容量达到256mAh/g;实施例3制备的WS2/TiO2/氮掺杂石墨烯纳米复合材料在0.01~3.0V,不同电流密度下的倍率循环性能很好,在1.0C电流密度下,放电比容量达到257mAh/g,经过5.0C、10C、20C、50C倍率循环后,在1.0C电流密度下,放电比容量达到223mAh/g。
通过上述数据可以得出,采用本发明方法制备的WS2/TiO2/氮掺杂石墨烯纳米复合材料制备的锂离子电池,在不同电密度下倍率循环性能优异。
Claims (10)
1.一种WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:将氧化石墨烯超声均匀分散于水中,再加入苯胺和十二烷基硫酸钠,继续超声20~40分钟,然后加入过硫酸铵的盐酸溶液,在冰浴条件下搅拌12~24小时,再加入氯化钨和硫代乙酰胺、TiO2,混合均匀后加入水热釜中,在密闭条件下220~260℃反应10~24小时,沉淀物用去离子水和乙醇反复洗涤后,真空干燥,得到WS2/TiO2/氮掺杂石墨烯纳米复合材料。
2.根据权利要求1所述的WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述的氧化石墨烯与水的质量-体积比为1mg:1~2mL。
3.根据权利要求1所述的WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述的苯胺与水的体积比为1:80~150。
4.根据权利要求1所述的WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述的十二烷基硫酸钠与氧化石墨烯、过硫酸铵的质量比为1:1~5:60~90。
5.根据权利要求1所述的WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述的氧化石墨烯与氯化钨、TiO2的质量比为1:1~10:1~10。
6.根据权利要求5所述的WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述的氧化石墨烯与氯化钨、TiO2的质量比为1:3~7:2~5。
7.根据权利要求1、5、6所述的WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述TiO2的粒径为10~100nm。
8.根据权利要求1所述的WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述的氯化钨和硫代乙酰胺的摩尔比为1:2~10。
9.根据权利要求8所述的WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述的氯化钨和硫代乙酰胺的摩尔比为1:3~6。
10.根据权利要求1所述的WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:在密闭条件下240~250℃反应12小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011256824.7A CN112216833A (zh) | 2020-11-11 | 2020-11-11 | 一种WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011256824.7A CN112216833A (zh) | 2020-11-11 | 2020-11-11 | 一种WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112216833A true CN112216833A (zh) | 2021-01-12 |
Family
ID=74056828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011256824.7A Pending CN112216833A (zh) | 2020-11-11 | 2020-11-11 | 一种WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112216833A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112919544A (zh) * | 2021-01-25 | 2021-06-08 | 齐齐哈尔大学 | 一种低频段电磁波吸收WS2/TiO2杂化材料的制备方法 |
CN114014303A (zh) * | 2021-11-03 | 2022-02-08 | 电子科技大学 | 氮化钨纳米针复合氮掺杂石墨烯纳米片及制备方法和应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102214816A (zh) * | 2011-02-25 | 2011-10-12 | 浙江振龙电源股份有限公司 | 一种锂离子电池石墨烯/ws2复合纳米材料电极及制备方法 |
WO2015014120A1 (zh) * | 2013-07-29 | 2015-02-05 | 华为技术有限公司 | 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池 |
CN105327708A (zh) * | 2015-10-10 | 2016-02-17 | 岭南师范学院 | 一种Se掺杂少层数WS2纳米片/氮、磷共掺杂石墨烯复合纳米材料的制备方法 |
CN105576212A (zh) * | 2016-02-19 | 2016-05-11 | 东莞市迈科科技有限公司 | 一种锂离子电池二氧化钛纳米片包覆石墨烯负极材料的制备方法 |
CN105688940A (zh) * | 2016-02-29 | 2016-06-22 | 山东科技大学 | 一种硫化钨纳米片/二氧化钛纳米带复合材料及其制备方法 |
CN105924963A (zh) * | 2016-06-06 | 2016-09-07 | 上海应用技术学院 | 一种石墨烯/氧化铁/聚苯胺复合材料的制备方法 |
CN108565434A (zh) * | 2018-05-02 | 2018-09-21 | 南昌大学 | 一种二硫化钨/氮硫共掺杂石墨烯复合物的制备方法 |
CN109768261A (zh) * | 2019-01-25 | 2019-05-17 | 东北大学 | 一种新型锂离子电池负极材料氮掺杂多孔石墨烯制备方法及应用 |
-
2020
- 2020-11-11 CN CN202011256824.7A patent/CN112216833A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102214816A (zh) * | 2011-02-25 | 2011-10-12 | 浙江振龙电源股份有限公司 | 一种锂离子电池石墨烯/ws2复合纳米材料电极及制备方法 |
WO2015014120A1 (zh) * | 2013-07-29 | 2015-02-05 | 华为技术有限公司 | 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池 |
CN105327708A (zh) * | 2015-10-10 | 2016-02-17 | 岭南师范学院 | 一种Se掺杂少层数WS2纳米片/氮、磷共掺杂石墨烯复合纳米材料的制备方法 |
CN105576212A (zh) * | 2016-02-19 | 2016-05-11 | 东莞市迈科科技有限公司 | 一种锂离子电池二氧化钛纳米片包覆石墨烯负极材料的制备方法 |
CN105688940A (zh) * | 2016-02-29 | 2016-06-22 | 山东科技大学 | 一种硫化钨纳米片/二氧化钛纳米带复合材料及其制备方法 |
CN105924963A (zh) * | 2016-06-06 | 2016-09-07 | 上海应用技术学院 | 一种石墨烯/氧化铁/聚苯胺复合材料的制备方法 |
CN108565434A (zh) * | 2018-05-02 | 2018-09-21 | 南昌大学 | 一种二硫化钨/氮硫共掺杂石墨烯复合物的制备方法 |
CN109768261A (zh) * | 2019-01-25 | 2019-05-17 | 东北大学 | 一种新型锂离子电池负极材料氮掺杂多孔石墨烯制备方法及应用 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112919544A (zh) * | 2021-01-25 | 2021-06-08 | 齐齐哈尔大学 | 一种低频段电磁波吸收WS2/TiO2杂化材料的制备方法 |
CN112919544B (zh) * | 2021-01-25 | 2023-07-25 | 齐齐哈尔大学 | 一种低频段电磁波吸收WS2/TiO2杂化材料的制备方法 |
CN114014303A (zh) * | 2021-11-03 | 2022-02-08 | 电子科技大学 | 氮化钨纳米针复合氮掺杂石墨烯纳米片及制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | In-situ topochemical nitridation derivative MoO2–Mo2N binary nanobelts as multifunctional interlayer for fast-kinetic Li-Sulfur batteries | |
CN114050246B (zh) | 微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池 | |
CN102089240B (zh) | 插入硅和/或锡的多孔碳基底 | |
Du et al. | Core-shell structured ZnS-C nanoparticles with enhanced electrochemical properties for high-performance lithium-ion battery anodes | |
Sun et al. | Boosting the electrochemical performance of lithium/sulfur batteries with the carbon nanotube/Fe3O4 coated by carbon modified separator | |
Wu et al. | Sb@ C/expanded graphite as high-performance anode material for lithium ion batteries | |
Li et al. | Anchoring MoSe2 nanosheets on N-doped carbon nanotubes as high performance anodes for potassium-ion batteries | |
CN111785898B (zh) | 一种基于纤维素的一体化锌离子电池及其制备方法 | |
Zhao et al. | Nano-sized FeSe2 decorated rGO as a potential anode material with enhanced lithium-ion storage | |
Zhang et al. | One-pot synthesis of NiO/C composite nanoparticles as anode materials for lithium-ion batteries | |
CN104966824A (zh) | 一种基于壳聚糖及其衍生物氮掺杂多孔碳球-氧化钴纳米复合负极材料及其制备方法 | |
Zhu et al. | Improved high-rate performance of Li4Ti5O12/carbon nanotube nanocomposite anode for lithium-ion batteries | |
Qiu et al. | In situ growth of CuO nanoparticles on graphene matrix as anode material for lithium-ion batteries | |
Li et al. | High-performance lithium-ion battery anodes based on Mn3O4/nitrogen-doped porous carbon hybrid structures | |
Feng et al. | Synthesis of nanosized cadmium oxide (CdO) as a novel high capacity anode material for Lithium-ion batteries: influence of carbon nanotubes decoration and binder choice | |
Yuan et al. | Flexible free-standing Na4Mn9O18/reduced graphene oxide composite film as a cathode for sodium rechargeable hybrid aqueous battery | |
CN111211273A (zh) | 氮化铁纳米颗粒原位生长在还原氧化石墨烯上作为修饰隔膜材料的锂硫电池及其制备方法 | |
Pan et al. | Porous architectures assembled with ultrathin Cu2O–Mn3O4 hetero-nanosheets vertically anchoring on graphene for high-rate lithium-ion batteries | |
Li et al. | Preparation of Fe3O4/FexSy heterostructures via electrochemical deposition method and their enhanced electrochemical performance for lithium-sulfur batteries | |
Kong et al. | Twin-nanoplate assembled hierarchical Ni/MnO porous microspheres as advanced anode materials for lithium-ion batteries | |
CN112216833A (zh) | 一种WS2/TiO2/氮掺杂石墨烯纳米复合材料的制备方法 | |
Yang et al. | Synthesis and characterization of NASICON-structured NaTi2 (PO4) 3/C as an anode material for hybrid Li/Na-ion batteries | |
Zhang et al. | VSe2/MXene composite with hierarchical three-dimensional structure encapsulated in dopamine as an anode for potassium-ion batteries | |
Tian et al. | Fabrication of MnSe/SnSe@ C heterostructures for high-performance Li/Na storage | |
Li et al. | Advanced aqueous zinc battery with excellent rate and low-temperature adaptation enabled by bimetallic phosphide with hetero-interface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |