CN112213855A - Display device and optical waveguide lens - Google Patents

Display device and optical waveguide lens Download PDF

Info

Publication number
CN112213855A
CN112213855A CN201910622759.6A CN201910622759A CN112213855A CN 112213855 A CN112213855 A CN 112213855A CN 201910622759 A CN201910622759 A CN 201910622759A CN 112213855 A CN112213855 A CN 112213855A
Authority
CN
China
Prior art keywords
light
optical waveguide
lens
waveguide lens
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910622759.6A
Other languages
Chinese (zh)
Other versions
CN112213855B (en
Inventor
罗明辉
乔文
熊金艳
李瑞彬
李玲
周振
陈林森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
SVG Tech Group Co Ltd
Original Assignee
Suzhou University
SVG Tech Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University, SVG Tech Group Co Ltd filed Critical Suzhou University
Priority to CN201910622759.6A priority Critical patent/CN112213855B/en
Publication of CN112213855A publication Critical patent/CN112213855A/en
Application granted granted Critical
Publication of CN112213855B publication Critical patent/CN112213855B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer

Abstract

The application relates to a display device and optical waveguide lens belongs to display device technical field, and this display device includes: an optical waveguide lens including a plurality of functional regions including a light-coupling region; the transparent lens is attached to the substrate corresponding to the light coupling-in area in the optical waveguide lens; the light is refracted by the transparent lens and then enters the optical waveguide lens, and is coupled into the optical waveguide lens through the light coupling-in area for total reflection transmission; the limitation of the existing optical waveguide lens can be solved, the deviation of the positive angle of an image watched by human eyes is large, and the image display effect is poor; the requirement of large-range incident light causes the problem of complex structure of the front-end optical system; because the light only needs to be incident within a small angle range, the structural complexity of the front-end optical system can be reduced; meanwhile, the refraction effect of the transparent lens can also improve the condition that the positive angle of an image formed by the light coupled out by the optical waveguide lens deviates from the condition that human eyes watch the image is larger.

Description

Display device and optical waveguide lens
Technical Field
The application relates to a display device and an optical waveguide lens, and belongs to the technical field of display equipment.
Background
Augmented Reality (AR) technology is a new technology for seamlessly integrating real world information and virtual world information, and is a technology for overlaying entity information (visual information, sound, taste, touch and the like) which is difficult to experience in a certain time space range of the real world originally by simulating and simulating through a photoelectric information technology, applying virtual information to the real world and sensing by human senses, so that the sensory experience beyond the Reality is achieved. Real environment and virtual object are superimposed on the same picture or space in real time and exist simultaneously, and high-reality virtual-real fusion is realized. Among the features of the AR system: and additionally positioning the virtual object in the three-dimensional scale space.
Most of the current mainstream near-eye augmented reality display devices adopt the optical waveguide principle. The publication number is: 106338832A discloses a monolithic holographic diffractive light waveguide lens, which comprises a layer of optical waveguide medium and a first functional area, a second functional area and a third functional area arranged on the optical waveguide; the external image light beam is incident through the first functional area, coupled into the optical waveguide, propagates to the second functional area under the action of total reflection of the optical waveguide, is diffracted through the second functional area, continues to propagate to the third functional area under the action of total reflection of the optical waveguide, and finally is diffracted through the third functional area to emit the image light beam to an external space.
However, in order to satisfy the requirement of total reflection transmission of light in the optical waveguide, the light incident on the first functional region needs to be incident in a large range with respect to the normal of the surface of the optical waveguide, and accordingly, the emergent angle is also emitted in a large range with respect to the normal of the surface of the optical waveguide. At this time, due to the limitation of the existing optical waveguide lens, the deviation of the positive angle of the image viewed by human eyes is large, and the image display effect is poor; and the requirement of a large range of incident light results in a complex structure of the front-end optical system.
Disclosure of Invention
The application provides a display device and an optical waveguide lens, which can solve the limitation of the existing optical waveguide lens, the deviation positive angle of an image watched by human eyes is large, and the image display effect is poor; and the requirement of a large range of incident light causes a problem of a complicated structure of the front-end optical system. The application provides the following technical scheme:
in a first aspect, there is provided a display device, comprising:
an optical waveguide lens comprising a plurality of functional areas, the plurality of functional areas comprising light incoupling areas;
the transparent lens is attached to the substrate corresponding to the light coupling-in area in the optical waveguide lens; and light is refracted by the transparent lens, then enters the optical waveguide lens, is coupled into the optical waveguide lens through the light coupling-in area and is transmitted by total reflection.
Optionally, the incident angle of the light ray to the transparent lens is smaller than the critical angle of total reflection.
Optionally, the transparent lens is a transparent prism whose one surface is attached to the substrate corresponding to the light coupling-in area.
Optionally, the refractive index range of the transparent prism is the same as the refractive index range of the optical waveguide lens.
Optionally, the transparent prism has a refractive index in the range of [1.4, 2 ].
Optionally, the transparent prism is a triangular prism.
Optionally, the transparent lens is seamlessly attached to the substrate corresponding to the light coupling-in area.
Optionally, the plurality of functional areas are located on an upper surface of the optical waveguide lens; or, the lower surface of the optical waveguide lens is positioned; or one part is positioned on the upper surface of the optical waveguide lens, and the other part is positioned on the lower surface of the optical waveguide lens.
Optionally, each functional region comprises at least one building block pixel consisting of a periodic nanograting.
In a second aspect, there is provided an optical waveguide lens comprising a plurality of functional areas; the plurality of functional regions includes a light incoupling region; the position corresponding to the light coupling-in area is provided with a transparent lens which is arranged in a protruding way; and the light is refracted by the transparent lens, then enters the light coupling-in area, and is coupled into the optical waveguide lens through the light coupling-in area for total reflection transmission.
The beneficial effect of this application lies in: the transparent lens is attached to the substrate corresponding to the light coupling-in area of the optical waveguide lens, and light is refracted by the transparent lens and then enters the optical waveguide lens; at this time, the transparent lens can receive the light ray with a small-angle incident angle before the light ray is incident to the light ray coupling-in area, and refract the light ray into a large-angle incident to the light ray coupling-in area, so that the light ray can be totally reflected and transmitted in the optical waveguide lens after being coupled by the light ray coupling-in area; the limitation of the existing optical waveguide lens can be solved, the deviation of the positive angle of an image watched by human eyes is large, and the image display effect is poor; the requirement of large-range incident light causes the problem of complex structure of the front-end optical system; because the light only needs to be incident within a small angle range, the structural complexity of the front-end optical system can be reduced; meanwhile, the refraction effect of the transparent lens can also improve the condition that the positive angle of an image formed by the light coupled out by the optical waveguide lens deviates from the condition that human eyes watch the image is larger.
The foregoing description is only an overview of the technical solutions of the present application, and in order to make the technical solutions of the present application more clear and clear, and to implement the technical solutions according to the content of the description, the following detailed description is made with reference to the preferred embodiments of the present application and the accompanying drawings.
Drawings
FIG. 1 is a schematic view of a waveguide optic according to one embodiment of the present application transmitting light;
FIG. 2 is a schematic view of a waveguide optic according to another embodiment of the present application transmitting light;
fig. 3 is a schematic diagram of a display device according to an embodiment of the present application.
Detailed Description
The following detailed description of embodiments of the present application will be described in conjunction with the accompanying drawings and examples. The following examples are intended to illustrate the present application but are not intended to limit the scope of the present application.
Fig. 1 is a schematic structural diagram of an optical waveguide lens provided in an embodiment of the present application, and as shown in fig. 1, the optical waveguide lens includes a plurality of functional regions (11, 12, and 13).
Optionally, the plurality of functional areas are located on the upper surface of the optical waveguide lens; or, the lower surface of the optical waveguide lens; or one part is positioned on the upper surface of the optical waveguide lens, and the other part is positioned on the lower surface of the optical waveguide lens.
Optionally, each functional region comprises at least one building block pixel consisting of a periodic nanograting.
Illustratively, the plurality of functional regions includes a light incoupling region 11. The light incoupling area 11 is used for incoupling light into the optical waveguide lens, and the incoupling light needs to satisfy the condition of total reflection transmission in the optical waveguide lens. Optionally, the light incoupling region 11 includes 3 kinds of structural unit pixels, and the 3 kinds of structural unit pixels are respectively used for coupling light of three color images of red, green and blue. In one example, the period of the periodic nano-grating of the pixel of the structural unit in the light coupling-in region 11 is 200-600nm, the duty ratio is 0.1-0.7, and the depth is 100-500 nm.
Optionally, the plurality of functional areas comprises a light outcoupling area 12. The light outcoupling region 12 serves to couple light propagating in the optical waveguide lens out of the optical waveguide lens. The light coupling-out region 12 includes 3 kinds of structural unit pixels, and the 3 kinds of structural unit pixels are respectively used for coupling the light of the three-color image of red, green and blue. In one example, the period of the periodic nano-grating of the structural unit pixel in the light-incoupling region 12 is 200-600nm (the same as the period of the periodic nano-grating of the structural unit pixel in the light-incoupling region 11), the duty ratio is 0.1-0.7, and the depth is 100-500 nm.
Optionally, the plurality of functional regions comprises a ray-turning region 13. The light turning region 13 is used for turning the light coupled from the light-in region 11 to the light-out region 12. The light turning region 13 includes 3 kinds of structural unit pixels, and the 3 kinds of structural unit pixels are respectively used for coupling the light of the red, green and blue three-color images. In one example, the period of the periodic nano-grating of the structural unit pixel in the light turning region 13 is between 150-500nm, the duty ratio is between 0.1-0.7, and the depth is between 100-500 nm.
Schematically, the orientation of the periodic nanograting in the light turning region 13 is 45 ° to the orientation of the periodic nanograting in the light incoupling region 11; the orientation of the periodic nanograms in the light outcoupling region 12 is 90 ° to that of the periodic nanograms in the light incoupling region 11.
In the optical waveguide lens shown in fig. 1, the light incoupling region 11 has a broadband diffraction function. The diffraction light of the three color images of red, green and blue needs to satisfy the condition of total reflection in the optical waveguide lens, so that the light coupled into the optical waveguide lens through the light coupling-in area 11 can be transmitted in the optical waveguide lens by total reflection, and is diffracted to the light coupling-out area 12 through the light turning area 13; the light of the three-color image is coupled out of the optical waveguide lens and transmitted to human eyes after being diffracted by the light coupling-out area 12, and the color augmented reality display is realized through the synthesis of the human eyes.
It should be noted that fig. 1 only illustrates that the optical waveguide lens includes 3 functional regions, and in actual implementation, the number of the functional regions may be 2 or 3 or more, and the number of the functional regions is not limited in this embodiment.
For the optical waveguide lens shown in fig. 1, the diffracted light generated by the incident light diffracted by the light coupling-in area 11 needs to satisfy the requirement of total internal reflection of the optical waveguide lens, and the light needs to be incident at a large angle relative to the normal of the surface of the optical waveguide lens, and at this time, the light generated by the light coupling-in area 11 can be transmitted by total reflection in the optical waveguide lens. The period and the angle of view of the periodic nano-grating in the light incoupling region 11 and the wavelength of incident light need to satisfy Λ 1 ═ λ/(1+ sin FOV/2). Where Λ 1 is the period of the periodic nanograting in the light incoupling region 11, FOV is the field of view, and λ is the wavelength of incident light.
Referring to fig. 2, it is assumed that light is incident at two critical angles (shown as a light path shown by a solid line and a light path shown by a dotted line, respectively) capable of being totally reflected and transmitted in the optical waveguide lens, and an angle between the two critical angles is 50 °. Since the light rays constituting the image are incident into the optical waveguide lens at the same diffraction angle when entering the light ray coupling-in area 11, and are propagated under the total reflection condition, the light rays are emitted at an angle parallel to the incident light rays when being output, and the image can be displayed completely, the field of view constituted by the light rays coupled out from the light ray coupling-out area 12 is 50 °.
When the light is output from the light coupling-out area 12, because the total reflection incident angles are consistent, and the periods of the periodic nano gratings of the light coupling-in area 11 and the light coupling-out area 12 are consistent, at each total reflection exit point, the light is parallel to the original light, which causes that the image formation has a certain deviation at different exit pupil positions, and when the image formation surface is less than 1 meter, the positive angle of the image formed by the emergent light when the image is viewed by human eyes is larger. In addition, the included angle between the two critical angles is large, and the structure of the front-end optical system is complicated due to the requirement of large-range incident light.
Based on the above technical problem, in the optical waveguide lens, the transparent lens is introduced at a position corresponding to the light coupling-in area 11, and the transparent lens is configured to receive the light at a small incident angle before the light enters the light coupling-in area 11, and refract the light to enter the light coupling-in area 11 at a large incident angle, so that the light can be transmitted by total reflection in the optical waveguide lens after being coupled by the light coupling-in area 11. Because the light only needs to be incident within a small angle range, the structural complexity of the front-end optical system can be reduced; meanwhile, the transparent lens can also improve the condition that the positive angle of an image formed by light coupled out by the optical waveguide lens deviates from that when the image is watched by human eyes is larger.
Fig. 3 is a schematic structural diagram of a display device according to an embodiment of the present application, and as shown in fig. 3, the display device at least includes: an optical waveguide lens 1 and a transparent lens 2.
The optical waveguide lens 1 includes a plurality of functional regions, and the plurality of functional regions includes a light coupling-in region 11, and the light coupling-in region 11 is used for coupling light into the optical waveguide lens and performing total reflection transmission in the optical waveguide lens. The optical waveguide lens 1 may be the optical waveguide lens shown in fig. 1.
The transparent lens 2 is attached to the substrate corresponding to the light input region 11 of the optical waveguide lens 1. The light is refracted by the transparent lens 2 and then enters the optical waveguide lens 1, and is coupled into the optical waveguide lens 1 through the light coupling-in area 11 for total reflection transmission.
The transparent lens 2 is used for refracting the light before the light enters the optical waveguide lens, and the refracted light is coupled by the light coupling area 11 to meet the requirement of total reflection transmission in the optical waveguide lens 1. Alternatively, in order to enable the transparent lens 2 to refract the light, the incident angle of the light to the transparent lens 2 is smaller than the critical angle at which total reflection occurs.
Optionally, the normal line of the surface of the transparent lens 2 has a plurality of angles, so that light rays with different angles can be refracted through the adaptive positions in the transparent lens 2, so that the refracted light rays can meet the requirement of total reflection transmission in the optical waveguide lens 1 after being coupled through the light ray coupling-in area 11.
In one example, the transparent lens 2 is a transparent prism having one surface attached to a substrate corresponding to the light-incoupling area 11. At this time, the transparent prism has at least two side surfaces which are not attached to the optical waveguide lens, and the normal line of each side surface is different.
Alternatively, the refractive index range of the transparent prism is the same as that of the optical waveguide lens 1. Thus, the light refracted by the transparent prism can be directly incident to the optical waveguide lens 1 without being bent, and the complexity of calculating the incident angle of the light can be reduced. Such as: the transparent prism has a refractive index in the range of
[1.4,2]。
Optionally, the transparent lens is seamlessly attached to the substrate corresponding to the light coupling-in area, so as to ensure that the light refracted by the transparent prism can be directly incident to the optical waveguide lens 1 without bending.
Referring to fig. 3, it is assumed that light is incident at two critical angles (a light path shown by a solid line and a light path shown by a broken line in fig. 3) at which total reflection can be performed in the optical waveguide lens 1, respectively, and an included angle between the two critical angles is 11.3 °. After being adjusted by the transparent lens 2, the angle of the adjusted light ray entering the optical waveguide lens is increased, and the light ray is coupled into the optical waveguide lens 2 and meets the condition of total reflection transmission. Since the wavelength of the incident light and the period of the periodic nano-grating in the light coupling-in region 11 are not changed, the field of view of the light coupled out from the light coupling-out region 12 is still 50 °. At this time, the case where the image composed of the light coupled out from the light coupling-out area 12 deviates from the positive angle when the image is viewed by the human eye is also improved due to the refraction action of the transparent lens.
In fig. 3, the transparent prism is illustrated as a triangular prism, but in actual implementation, the transparent prism may be a quadrangular prism, a pentagonal prism, or the like, and the specific shape of the transparent prism is not limited in this embodiment. In addition, in fig. 3, an included angle between two side surfaces of the prism, which are not attached to the optical waveguide lens, is 90 degrees, when the prism is actually implemented, the included angle may also be set to other angles according to an angle of an incident light ray, only a requirement that the adjusted light ray is coupled into the optical waveguide lens at an incident angle greater than or equal to a preset angle is required to be satisfied, and a value of the included angle is not limited in this embodiment.
In another example, the transparent lens 2 is a curved transparent mirror attached to a substrate corresponding to the light-coupling-in area 11, such as: a lens formed by half of a cylinder. Of course, the transparent lens 2 can also be implemented in other shapes, such as: irregular shape, etc., and the implementation of the transparent lens 2 is not limited in this embodiment.
Optionally, in order to further improve the situation that the image formed by the light coupled out from the light coupling-out area 12 deviates from the positive angle when the human eye views the image, another transparent lens may be attached to the substrate corresponding to the light coupling-out area 12.
In summary, in the display device provided in this embodiment, the transparent lens is attached to the substrate corresponding to the light-coupling-in area of the optical waveguide lens, and the light is refracted by the transparent lens and then enters the optical waveguide lens; at this time, the transparent lens can receive the light ray with a small-angle incident angle before the light ray is incident to the light ray coupling-in area, and refract the light ray into a large-angle incident to the light ray coupling-in area, so that the light ray can be totally reflected and transmitted in the optical waveguide lens after being coupled by the light ray coupling-in area; the limitation of the existing optical waveguide lens can be solved, the deviation of the positive angle of an image watched by human eyes is large, and the image display effect is poor; the requirement of large-range incident light causes the problem of complex structure of the front-end optical system; because the light only needs to be incident within a small angle range, the structural complexity of the front-end optical system can be reduced; meanwhile, the refraction effect of the transparent lens can also improve the condition that the positive angle of an image formed by the light coupled out by the optical waveguide lens deviates from the condition that human eyes watch the image is larger.
Optionally, in another implementation, the transparent lens is integrated into the optical waveguide lens, in which case the optical waveguide lens includes a plurality of functional areas; the plurality of functional regions includes a light incoupling region; the position corresponding to the light coupling-in area is provided with a transparent lens which is arranged in a protruding way; the light is refracted by the transparent lens, then enters the light coupling-in area, and is coupled into the optical waveguide lens through the light coupling-in area for total reflection transmission.
At this time, the related description of the transparent lens refers to the above embodiments, and the description of the embodiment is omitted here.
Optionally, the present application further provides a three-dimensional display system, where the display device according to the above embodiment is installed in the three-dimensional display system; alternatively, the transparent lens described in the above embodiments. Of course, the three-dimensional display system may also include other components, such as: the front-end optical system (e.g., projection system), power supply module, communication module, etc., and the detailed description thereof is omitted here.
The technical features of the embodiments described above may be arbitrarily combined, and for the sake of brevity, all possible combinations of the technical features in the embodiments described above are not described, but should be considered as being within the scope of the present specification as long as there is no contradiction between the combinations of the technical features.
The above-mentioned embodiments only express several embodiments of the present application, and the description thereof is more specific and detailed, but not construed as limiting the scope of the invention. It should be noted that, for a person skilled in the art, several variations and modifications can be made without departing from the concept of the present application, which falls within the scope of protection of the present application. Therefore, the protection scope of the present patent shall be subject to the appended claims.

Claims (10)

1. A display device, characterized in that the display device comprises:
an optical waveguide lens comprising a plurality of functional areas, the plurality of functional areas comprising light incoupling areas;
the transparent lens is attached to the substrate corresponding to the light coupling-in area in the optical waveguide lens; and light is refracted by the transparent lens, then enters the optical waveguide lens, is coupled into the optical waveguide lens through the light coupling-in area and is transmitted by total reflection.
2. The display device according to claim 1, wherein the incident angle of the light ray to the transparent lens is smaller than a critical angle at which total reflection occurs.
3. The display device according to claim 1, wherein the transparent lens is a transparent prism having one surface attached to the substrate corresponding to the light-in coupling area.
4. The display device according to claim 3, wherein the transparent prism has a refractive index range identical to that of the optical waveguide lens.
5. The display device according to claim 4, wherein the transparent prism has a refractive index in a range of [1.4, 2 ].
6. A display device as claimed in claim 3, characterised in that the transparent prism is a triangular prism.
7. The display device according to any one of claims 1 to 6, wherein the transparent lens is seamlessly attached to the substrate corresponding to the light-in area.
8. The display device according to any one of claims 1 to 6, wherein the plurality of functional areas are located on an upper surface of the optical waveguide lens; or, the lower surface of the optical waveguide lens is positioned; or one part is positioned on the upper surface of the optical waveguide lens, and the other part is positioned on the lower surface of the optical waveguide lens.
9. The display device according to any one of claims 1 to 6, wherein each functional region comprises at least one structural unit pixel, the structural unit pixel being composed of a periodic nanograting.
10. An optical waveguide lens, wherein the optical waveguide lens comprises a plurality of functional areas; the plurality of functional regions includes a light incoupling region; the position corresponding to the light coupling-in area is provided with a transparent lens which is arranged in a protruding way; and the light is refracted by the transparent lens, then enters the light coupling-in area, and is coupled into the optical waveguide lens through the light coupling-in area for total reflection transmission.
CN201910622759.6A 2019-07-11 2019-07-11 Display device and optical waveguide lens Active CN112213855B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910622759.6A CN112213855B (en) 2019-07-11 2019-07-11 Display device and optical waveguide lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910622759.6A CN112213855B (en) 2019-07-11 2019-07-11 Display device and optical waveguide lens

Publications (2)

Publication Number Publication Date
CN112213855A true CN112213855A (en) 2021-01-12
CN112213855B CN112213855B (en) 2022-07-12

Family

ID=74047501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910622759.6A Active CN112213855B (en) 2019-07-11 2019-07-11 Display device and optical waveguide lens

Country Status (1)

Country Link
CN (1) CN112213855B (en)

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030081317A1 (en) * 2001-10-01 2003-05-01 Masao Katsumata Prism, projection device and optical component
US20050078388A1 (en) * 2003-09-10 2005-04-14 Yaakov Amitai Optical devices particularly for remote viewing applications
US20060193550A1 (en) * 1999-11-05 2006-08-31 Wawro Debra D Methods for using resonant waveguide-grating filters and sensors
CN101377569A (en) * 2008-09-28 2009-03-04 苏州大学 Prism-grating-prism imaging system
CN101639169A (en) * 2008-08-01 2010-02-03 索尼株式会社 Illumination optical device and virtual image display
US20100134534A1 (en) * 2007-05-04 2010-06-03 Carl Zeiss Ag Display unit, and displaying method for the binocular representation of a multicolor image
CN101846803A (en) * 2009-03-25 2010-09-29 奥林巴斯株式会社 Head-mounted type image display device
US20110194163A1 (en) * 2008-11-26 2011-08-11 Konica Minolta Opto, Inc. Image display device and head-mounted display
CN102418302A (en) * 2011-10-21 2012-04-18 苏州大学 Safety paper with optical invisible watermarks
CN103837937A (en) * 2014-03-19 2014-06-04 清华大学深圳研究生院 Prism-grating optical waveguide coupler and optical waveguide device
CN104536140A (en) * 2015-01-24 2015-04-22 上海理湃光晶技术有限公司 Folding extension display optical device based on prism coupling
CN104536137A (en) * 2015-01-25 2015-04-22 上海理湃光晶技术有限公司 Folding expanding optical waveguide device for image display
CN104570353A (en) * 2015-01-08 2015-04-29 浙江大学 Method, optical system and wearable equipment for color visual display by means of holographic waveguide
CN105180800A (en) * 2015-04-30 2015-12-23 中国科学院上海光学精密机械研究所 High optical subdivision structure of auto-collimation grating interferometer
CN106338832A (en) * 2016-11-09 2017-01-18 苏州苏大维格光电科技股份有限公司 Single holographic diffraction optical waveguide lens and 3D display device
US20170045744A1 (en) * 2014-04-23 2017-02-16 Lumus Ltd. Compact head-mounted display system
CN106501957A (en) * 2015-09-03 2017-03-15 3M创新有限公司 Camera
CN106526730A (en) * 2016-11-21 2017-03-22 苏州苏大维格光电科技股份有限公司 Wide viewing angle waveguide lens, manufacturing method and head-mounted three-dimensional display device
CN107111204A (en) * 2014-09-29 2017-08-29 奇跃公司 Architecture and method for exporting different wavelengths of light from waveguide
WO2017219433A1 (en) * 2016-06-20 2017-12-28 东莞市长资实业有限公司 Optical device for waveguide headset display
CN108027524A (en) * 2015-09-04 2018-05-11 图茨技术股份有限公司 Method for the eyeglass of the imaging optical system that produces virtual image and for producing such eyeglass
CN108369346A (en) * 2015-12-03 2018-08-03 夏普株式会社 Light guide plate, light guide and virtual image display apparatus
US20180231784A1 (en) * 2017-02-14 2018-08-16 Optecks, Llc Optical display system for augmented reality and virtual reality
CN109073896A (en) * 2016-05-20 2018-12-21 图茨技术股份有限公司 Eyeglass and data goggles for image formation optical unit
CN109239920A (en) * 2017-07-11 2019-01-18 苏州苏大维格光电科技股份有限公司 A kind of holographical wave guide eyeglass and augmented reality display device
WO2019077601A1 (en) * 2017-10-16 2019-04-25 Oorym Optics Ltd. Highly efficient compact head-mounted display system
CN109683317A (en) * 2018-12-28 2019-04-26 北京灵犀微光科技有限公司 Augmented reality eyepiece device and augmented reality display device

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193550A1 (en) * 1999-11-05 2006-08-31 Wawro Debra D Methods for using resonant waveguide-grating filters and sensors
US20030081317A1 (en) * 2001-10-01 2003-05-01 Masao Katsumata Prism, projection device and optical component
US20050078388A1 (en) * 2003-09-10 2005-04-14 Yaakov Amitai Optical devices particularly for remote viewing applications
US20100134534A1 (en) * 2007-05-04 2010-06-03 Carl Zeiss Ag Display unit, and displaying method for the binocular representation of a multicolor image
CN101639169A (en) * 2008-08-01 2010-02-03 索尼株式会社 Illumination optical device and virtual image display
CN101377569A (en) * 2008-09-28 2009-03-04 苏州大学 Prism-grating-prism imaging system
US20110194163A1 (en) * 2008-11-26 2011-08-11 Konica Minolta Opto, Inc. Image display device and head-mounted display
CN101846803A (en) * 2009-03-25 2010-09-29 奥林巴斯株式会社 Head-mounted type image display device
CN102418302A (en) * 2011-10-21 2012-04-18 苏州大学 Safety paper with optical invisible watermarks
CN103837937A (en) * 2014-03-19 2014-06-04 清华大学深圳研究生院 Prism-grating optical waveguide coupler and optical waveguide device
US20170045744A1 (en) * 2014-04-23 2017-02-16 Lumus Ltd. Compact head-mounted display system
CN106461946A (en) * 2014-04-23 2017-02-22 鲁姆斯有限公司 Compact head-mounted display system
CN107111204A (en) * 2014-09-29 2017-08-29 奇跃公司 Architecture and method for exporting different wavelengths of light from waveguide
CN104570353A (en) * 2015-01-08 2015-04-29 浙江大学 Method, optical system and wearable equipment for color visual display by means of holographic waveguide
CN104536140A (en) * 2015-01-24 2015-04-22 上海理湃光晶技术有限公司 Folding extension display optical device based on prism coupling
CN104536137A (en) * 2015-01-25 2015-04-22 上海理湃光晶技术有限公司 Folding expanding optical waveguide device for image display
CN105180800A (en) * 2015-04-30 2015-12-23 中国科学院上海光学精密机械研究所 High optical subdivision structure of auto-collimation grating interferometer
CN106501957A (en) * 2015-09-03 2017-03-15 3M创新有限公司 Camera
CN108027524A (en) * 2015-09-04 2018-05-11 图茨技术股份有限公司 Method for the eyeglass of the imaging optical system that produces virtual image and for producing such eyeglass
CN108369346A (en) * 2015-12-03 2018-08-03 夏普株式会社 Light guide plate, light guide and virtual image display apparatus
CN109073896A (en) * 2016-05-20 2018-12-21 图茨技术股份有限公司 Eyeglass and data goggles for image formation optical unit
WO2017219433A1 (en) * 2016-06-20 2017-12-28 东莞市长资实业有限公司 Optical device for waveguide headset display
CN106338832A (en) * 2016-11-09 2017-01-18 苏州苏大维格光电科技股份有限公司 Single holographic diffraction optical waveguide lens and 3D display device
CN106526730A (en) * 2016-11-21 2017-03-22 苏州苏大维格光电科技股份有限公司 Wide viewing angle waveguide lens, manufacturing method and head-mounted three-dimensional display device
US20180231784A1 (en) * 2017-02-14 2018-08-16 Optecks, Llc Optical display system for augmented reality and virtual reality
CN109239920A (en) * 2017-07-11 2019-01-18 苏州苏大维格光电科技股份有限公司 A kind of holographical wave guide eyeglass and augmented reality display device
WO2019077601A1 (en) * 2017-10-16 2019-04-25 Oorym Optics Ltd. Highly efficient compact head-mounted display system
CN111465888A (en) * 2017-10-16 2020-07-28 奥里姆光学有限公司 High-efficient compact head-mounted display system
CN109683317A (en) * 2018-12-28 2019-04-26 北京灵犀微光科技有限公司 Augmented reality eyepiece device and augmented reality display device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU AO, Z等: "Realization and Optimization of Holographic Waveguide Display System", 《OL》 *
徐越 等: "基于全息波导的增强现实头盔显示器研究进展", 《激光杂志》 *

Also Published As

Publication number Publication date
CN112213855B (en) 2022-07-12

Similar Documents

Publication Publication Date Title
US10061124B2 (en) Robust architecture for large field of view components
CN111158153B (en) Near-to-eye display device and augmented reality equipment
US8885997B2 (en) NED polarization system for wavelength pass-through
US11231581B2 (en) Near eye 3D display with separate phase and amplitude modulators
US20200088945A1 (en) Color separation in planar waveguides using dichroic filters
CN103718083A (en) Method and apparatus for a near-to-eye display
US20210356748A1 (en) Methods and systems for high efficiency eyepiece in augmented reality devices
US20230176382A1 (en) Waveguide display with cross-polarized eye pupil expanders
CN111448505B (en) Near-to-eye system with polarizing waveguide
CN114127596A (en) Display waveguide with high index portion
CN113805344A (en) AR glasses
CN103513422A (en) Perspective display device
CN110873962A (en) Display system based on waveguide
CN211086808U (en) Optical waveguide near-to-eye display device and electronic equipment
CN218995792U (en) Display device, head-up display and traffic equipment
EP4050401A1 (en) Optical system and mixed reality device
CN216351551U (en) AR glasses
CN114326123B (en) Near-to-eye display device
CN112213855B (en) Display device and optical waveguide lens
CN105242773A (en) Electronic device
CN219737894U (en) Optical waveguide display device for increasing field angle and AR display equipment
CN217443725U (en) Optical-mechanical system
CN217902097U (en) Waveguide device and display system
US20240094537A1 (en) Uniform incoupler for conical incidence
CN214503944U (en) Optical waveguide display device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant