CN112198396B - 一种船舶电缆水树修复性能评估方法 - Google Patents

一种船舶电缆水树修复性能评估方法 Download PDF

Info

Publication number
CN112198396B
CN112198396B CN202011079873.8A CN202011079873A CN112198396B CN 112198396 B CN112198396 B CN 112198396B CN 202011079873 A CN202011079873 A CN 202011079873A CN 112198396 B CN112198396 B CN 112198396B
Authority
CN
China
Prior art keywords
cable
repair
water tree
factor
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011079873.8A
Other languages
English (en)
Other versions
CN112198396A (zh
Inventor
贾小平
谢宁宁
安连彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Ocean University
Original Assignee
Guangdong Ocean University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Ocean University filed Critical Guangdong Ocean University
Priority to CN202011079873.8A priority Critical patent/CN112198396B/zh
Publication of CN112198396A publication Critical patent/CN112198396A/zh
Application granted granted Critical
Publication of CN112198396B publication Critical patent/CN112198396B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2688Measuring quality factor or dielectric loss, e.g. loss angle, or power factor
    • G01R27/2694Measuring dielectric loss, e.g. loss angle, loss factor or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors

Abstract

本发明涉及一种船舶电缆水树修复性能评估方法,本发明首先将电缆终端改造打孔,然后在电缆的空隙上注入氮气排出电缆里的水分,再通过注入修复液对水树进行修复;最后通过泄漏电流测试、介质损耗角正切测试和绝缘电阻测试,分别计算泄漏电流因子α、介质损耗角正切因子β和绝缘电阻修复特征参数η。计算修复性能因子u,本发明能够评估水树的修复效果,保障了船舶电缆的供电可靠性。

Description

一种船舶电缆水树修复性能评估方法
技术领域
本发明属于船舶电缆水树修复领域,具体涉及一种船舶电缆水树修复性能评估方法。
背景技术
随着海洋经济的发展,船舶电缆应用越来越多,它具有诸多优点,如供电可靠性高,绝缘性能好,耐水和化学腐蚀性能良好等。船舶电缆运行环境恶劣,工作电压高、距离长,其机械和电气性能经常受到威胁,容易发生水树老化,从而导致其故障率更高,将会带来了巨大的经济损失。因此对船舶电缆的水树修复以及对水树修复性能进行评估是保障供电稳定的重要一环。
高效准确的对船舶电缆水树修复性能评估具有重要的工程意义,通过对水树修复性能进行评估,及时更换不达标的电缆,从而减少船舶电缆故障发生率。因此急需一种能够对船舶电缆水树修复性能评估方法,本方法为一种船舶电缆水树修复性能评估方法,该方法能够对电缆水树修复性能进行有效评估。
发明内容
本发明为一种船舶电缆水树修复性能评估方法,用于船舶电缆水树修复性能评估,具体包括以下步骤:
第一步:将电缆终端进行改造打孔,在电缆导体的空隙中注入干燥氮气排出水分,然后注入修复液,将电缆静置一段时间,使修复液与电缆中水树充分发生反应;
第二步:计算修复性能因子u
1)计算泄漏电流因子α
对修复后的电缆进行泄漏电流测试,定义偏差系数K如下所示:
Figure GDA0003445016630000011
其中ε1为修复前的泄漏电流,ε2为修复后的泄漏电流;
泄漏电流因子α的计算如下所示:
Figure GDA0003445016630000012
2)计算介质损耗角正切因子β
对修复后的电缆进行介质损耗角正切值测试,定义介质损耗角正切因子如下所示:
Figure GDA0003445016630000021
其中tanδ1为修复前的介质损耗角正切值,tanδ2为修复后的介质损耗角正切值;
3)计算绝缘电阻修复特征参数η
对修复后的电缆进行绝缘电阻测试,定义绝缘电阻修复特征参数如下所示:
Figure GDA0003445016630000022
其中λ1为修复前的绝缘电阻,λ2为修复后的绝缘电阻;
4)计算修复性能因子u
Figure GDA0003445016630000023
第三步:通过修复性能因子u对修复性能进行评估
若μ<σ1,则电缆水树修复性能处于良好状态;
若σ1≤μ<σ2,则电缆水树修复性能处于一般状态;
若μ≥σ2,则电缆水树修复性能处于较差状态。
其中σ1=3.218,σ2=21.526。
附图说明
图1是本发明涉及的一种船舶电缆水树修复性能评估方法的流程图。
具体实施方式
第一步:将电缆终端进行改造打孔,在电缆导体的空隙中注入干燥氮气排出水分,然后注入修复液,将电缆静置一段时间,使修复液与电缆中水树充分发生反应;
第二步:计算修复性能因子u
1)计算泄漏电流因子α
对修复后的电缆进行泄漏电流测试,定义偏差系数K如下所示:
Figure GDA0003445016630000031
其中ε1为修复前的泄漏电流,ε2为修复后的泄漏电流,单位为微安(uA);
泄漏电流因子α的计算如下所示:
Figure GDA0003445016630000032
2)计算介质损耗角正切因子β
对修复后的电缆进行介质损耗角正切值测试,定义介质损耗角正切因子如下所示:
Figure GDA0003445016630000033
其中tanδ1为修复前的介质损耗角正切值,tanδ2为修复后的介质损耗角正切值;
3)计算绝缘电阻修复特征参数η
对修复后的电缆进行绝缘电阻测试,定义绝缘电阻修复特征参数如下所示:
Figure GDA0003445016630000034
其中λ1为修复前的绝缘电阻,λ2为修复后的绝缘电阻,单位为兆欧(MΩ);
4)计算修复性能因子u
Figure GDA0003445016630000035
第三步:通过修复性能因子u对修复性能进行评
若μ<σ1,则电缆水树修复性能处于良好状态;
若σ1≤μ<σ2,则电缆水树修复性能处于一般状态;
若μ≥σ2,则电缆水树修复性能处于较差状态。
其中σ1=3.218,σ2=21.526。

Claims (1)

1.一种船舶电缆水树修复性能评估方法,其特征在于,包括以下步骤:
第一步:将电缆终端进行改造打孔,在电缆导体的空隙中注入干燥氮气排出水分,然后注入修复液,将电缆静置一段时间,使修复液与电缆中水树充分发生反应;
第二步:计算修复性能因子u
1)计算泄漏电流因子α
对修复后的电缆进行泄漏电流测试,定义偏差系数K如下所示:
Figure FDA0003445016620000011
其中ε1为修复前的泄漏电流,ε2为修复后的泄漏电流;
泄漏电流因子α的计算如下所示:
Figure FDA0003445016620000012
2)计算介质损耗角正切因子β
对修复后的电缆进行介质损耗角正切值测试,定义介质损耗角正切因子如下所示:
Figure FDA0003445016620000013
其中tanδ1为修复前的介质损耗角正切值,tanδ2为修复后的介质损耗角正切值;
3)计算绝缘电阻修复特征参数η
对修复后的电缆进行绝缘电阻测试,定义绝缘电阻修复特征参数如下所示:
Figure FDA0003445016620000014
其中λ1为修复前的绝缘电阻,λ2为修复后的绝缘电阻;
4)计算修复性能因子u
Figure FDA0003445016620000015
第三步:通过修复性能因子u对修复性能进行评估
若μ<σ1,则电缆水树修复性能处于良好状态;
若σ1≤μ<σ2,则电缆水树修复性能处于一般状态;
若μ≥σ2,则电缆水树修复性能处于较差状态;
其中σ1=3.218,σ2=21.526。
CN202011079873.8A 2020-10-10 2020-10-10 一种船舶电缆水树修复性能评估方法 Active CN112198396B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011079873.8A CN112198396B (zh) 2020-10-10 2020-10-10 一种船舶电缆水树修复性能评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011079873.8A CN112198396B (zh) 2020-10-10 2020-10-10 一种船舶电缆水树修复性能评估方法

Publications (2)

Publication Number Publication Date
CN112198396A CN112198396A (zh) 2021-01-08
CN112198396B true CN112198396B (zh) 2022-02-01

Family

ID=74013326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011079873.8A Active CN112198396B (zh) 2020-10-10 2020-10-10 一种船舶电缆水树修复性能评估方法

Country Status (1)

Country Link
CN (1) CN112198396B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881785B (zh) * 2021-01-18 2022-08-30 国网天津市电力公司电力科学研究院 一种基于电容电流分析的电缆缓冲层修复效果评价方法
CN113690809B (zh) * 2021-10-26 2022-02-22 国网天津市电力公司电力科学研究院 一种配合电缆缓冲层修复时波纹铝护套开孔及修复的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778638A (zh) * 2012-09-11 2012-11-14 中国电力科学研究院 一种判定xlpe电缆绝缘水树老化状态的方法
JP2013036839A (ja) * 2011-08-08 2013-02-21 Yazaki Energy System Corp 橋絡水トリー位置標定方法及び橋絡水トリー位置標定装置
CN103001155A (zh) * 2013-01-04 2013-03-27 西南交通大学 一种交联聚乙烯电力电缆绝缘水树的智能修复方法
CN105048365A (zh) * 2015-08-12 2015-11-11 清华大学 非侵入式高压输电电缆在线自动维护和缺陷修复系统
CN106786231A (zh) * 2017-02-28 2017-05-31 四川大学 一种交联聚乙烯电力电缆运行时绝缘性能在线修复方法和装置
CN109142992A (zh) * 2018-07-11 2019-01-04 国网上海市电力公司 一种35千伏交联电缆绝缘老化状态评估方法
CN111718582A (zh) * 2020-04-15 2020-09-29 国网安徽省电力有限公司电力科学研究院 铝芯电力电缆修复液、制备方法、修复装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11177055B2 (en) * 2017-03-06 2021-11-16 Savannah River Nuclear Solutions, Llc Leading/lagging cable referencing platform for monitoring the health of underground cable networks

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036839A (ja) * 2011-08-08 2013-02-21 Yazaki Energy System Corp 橋絡水トリー位置標定方法及び橋絡水トリー位置標定装置
CN102778638A (zh) * 2012-09-11 2012-11-14 中国电力科学研究院 一种判定xlpe电缆绝缘水树老化状态的方法
CN103001155A (zh) * 2013-01-04 2013-03-27 西南交通大学 一种交联聚乙烯电力电缆绝缘水树的智能修复方法
CN105048365A (zh) * 2015-08-12 2015-11-11 清华大学 非侵入式高压输电电缆在线自动维护和缺陷修复系统
CN106786231A (zh) * 2017-02-28 2017-05-31 四川大学 一种交联聚乙烯电力电缆运行时绝缘性能在线修复方法和装置
CN109142992A (zh) * 2018-07-11 2019-01-04 国网上海市电力公司 一种35千伏交联电缆绝缘老化状态评估方法
CN111718582A (zh) * 2020-04-15 2020-09-29 国网安徽省电力有限公司电力科学研究院 铝芯电力电缆修复液、制备方法、修复装置及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Correlation between AC breakdown Strength and Low frequency dielectric loss of water tree aged XLPE Cables;SVerre Hvidsten,et al;《IEEE transactions on power Delivery》;19980131;第13卷(第1期);第40-45页 *
XLPE 中压电缆中间接头的界面老化修复研究;刘力等;《绝缘材料》;20191231;第55-59页 *
XLPE 水树老化电缆注入式修复研究;覃秀君等;《青海电力》;20180630;第37卷(第2期);第18-21页 *

Also Published As

Publication number Publication date
CN112198396A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
CN112198396B (zh) 一种船舶电缆水树修复性能评估方法
Zhang et al. Component reliability modeling of distribution systems based on the evaluation of failure statistics
Montanari et al. Partial discharge behavior and accelerated aging upon repetitive DC cable energization and voltage supply polarity inversion
CN110618365B (zh) 一种基于介电响应特性的低压电缆状态评估方法
CN111157854A (zh) 电缆剩余寿命的处理方法、装置、存储介质以及处理器
Martin et al. Life estimation techniques for transformer insulation
Vasquez et al. Advanced aging failure model for overhead conductors
Das et al. A novel approach to estimate the quantity of ingressed moisture content inside metal oxide surge arrester using dielectric modulus technique
Chiodo et al. Theoretical and practical aids for the proper selection of reliability models for power system components
Afotey et al. Investigation into the impact of cable failure localisation methods on the underground cable life time in a medium voltage distribution network
Klerx et al. Investigation of failures of low voltage grid components
Sumereder et al. Estimation of residual lifetime—Theory and practical problems
CN115754631B (zh) 基于极化响应转换因子的xlpe电缆绝缘耐压性能评估方法
Sulaiman et al. Comparing simulation modelling and measurement results of polarization/depolarization current analysis on various underground cable insulation systems
Pérez-Rúa et al. Lifetime estimation and performance evaluation for offshore wind farms transmission cables
Ocoleanu et al. Technological solution for increasing the quality of crimped connections
Korzhov et al. A method of accounting for fuzzy operational factors influencing 6 (10) kV power cable insulation longevity
Hussain et al. Review of third harmonic current characteristic based diagnostic methods of medium voltage power cable insulation
Chiodo et al. Bayes parametric estimation of insulation reliability under distorted voltage
Wei et al. Study on residual life prediction of shipboard cable based on grey linear regression model
Meena et al. Failure analysis of Medium Voltage Cable accessories during qualification tests
CN112798519B (zh) 防腐涂层剩余寿命的评估方法
Velasco et al. An approach to improve power supply continuity throughout the estimation of insulated power cable life expectance indexes
Helal et al. Medium-voltage shielded busbar long-term ageing test method
Oluwafemi et al. Causes of Deterioration in XLPE MV Cables: A Review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant