CN105048365A - 非侵入式高压输电电缆在线自动维护和缺陷修复系统 - Google Patents

非侵入式高压输电电缆在线自动维护和缺陷修复系统 Download PDF

Info

Publication number
CN105048365A
CN105048365A CN201510492765.6A CN201510492765A CN105048365A CN 105048365 A CN105048365 A CN 105048365A CN 201510492765 A CN201510492765 A CN 201510492765A CN 105048365 A CN105048365 A CN 105048365A
Authority
CN
China
Prior art keywords
transmission cable
intrusion type
high voltage
voltage electric
electric transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510492765.6A
Other languages
English (en)
Other versions
CN105048365B (zh
Inventor
何金良
胡军
杨洋
张波
余占清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201510492765.6A priority Critical patent/CN105048365B/zh
Publication of CN105048365A publication Critical patent/CN105048365A/zh
Priority to PCT/CN2016/090446 priority patent/WO2017024924A1/zh
Application granted granted Critical
Publication of CN105048365B publication Critical patent/CN105048365B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/16Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for repairing insulation or armouring of cables

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

本发明公开了一种非侵入式高压输电电缆在线自动维护和缺陷修复系统,包括:高压输电电缆,高压输电电缆的绝缘材料为聚丙烯-氧化铁纳米复合材料;多个非侵入式高频电流激励装置,多个非侵入式高频电流激励装置相互间隔预设距离,每个非侵入式高频电流激励装置包围高压输电电缆,用于非侵入式地实现高压输电电缆的高频电流注入,并全自动地实现聚丙烯-氧化铁纳米复合材料的磁致升温和磁致保温功能,以对绝缘材料中初始电树缺陷进行自行修复。本发明实施例的系统可以提高输电电缆的使用寿命,降低输电系统故障率,对提高输电系统的可靠性具有重要意义。

Description

非侵入式高压输电电缆在线自动维护和缺陷修复系统
技术领域
本发明涉及聚合物绝缘电缆维护技术领域,特别涉及一种非侵入式高压输电电缆在线自动维护和缺陷修复系统。
背景技术
高压输电电缆在长期运行过程中容易遭受过电压、纹波及其他外部环境的侵害而形成绝缘缺陷。特别是直流电缆,由于绝缘内部空间电荷的积聚而发生放电,形成微缺陷。即使是在理想的运行条件下,由于电缆制造过程中不可避免的在绝缘介质中引入杂质缺陷,在强电场作用下也会发展为绝缘破坏。这些绝缘缺陷会在长期运行过程中或在强电场作用下发展为电树枝,并迅速贯穿绝缘介质,造成电缆过早劣化,大大缩短电缆的使用寿命并引发故障,降低输电系统的可靠性和稳定性。
因此,针对以上问题,一方面从电缆的设计制造出发,努力改善绝缘电缆(挤塑电缆)的制造工艺,但目前依然无法将电缆缺陷降低到令人满意的程度。另一方面,则是努力研发具有高介电性能的新型电缆绝缘材料。无论采用什么样的绝缘介质,电气老化是任何电缆都无法避免的问题。另外目前已提出多种技术(如电桥法,声测法,直流冲击法)对电力电缆进行绝缘探伤,寻找电缆内部的故障点。然而,超、特高压直流输电电缆承担重大负荷任务且跨距远,输电走廊大多分布在荒野和多山地带的地下,定期的离线人工检修难以实现并耗费大量人力物力。对于输电电缆绝缘缺陷的在线修复,目前还没有应用于电缆绝缘修复的有效技术,具有自修复功能的绝缘材料还有待进一步研究。
发明内容
本发明旨在至少在一定程度上解决上述相关技术中的技术问题之一。
为此,本发明的目的在于提出一种非侵入式高压输电电缆在线自动维护和缺陷修复系统,该系统可以提高输电电缆的使用寿命,降低输电系统故障率。
为达到上述目的,本发明实施例提出了一种非侵入式高压输电电缆在线自动维护和缺陷修复系统,包括:高压输电电缆,所述高压输电电缆的绝缘材料为聚丙烯-氧化铁纳米复合材料;多个非侵入式高频电流激励装置,所述多个非侵入式高频电流激励装置相互间隔预设距离,每个非侵入式高频电流激励装置包围所述高压输电电缆,用于非侵入式地实现所述高压输电电缆的高频电流注入,并全自动地实现所述聚丙烯-氧化铁纳米复合材料的磁致升温和磁致保温功能,以对所述绝缘材料中初始电树缺陷进行自行修复。其中,所述每个非侵入式高频电流激励装置包括:螺绕磁环,所述螺绕磁环采用可开闭的电流钳结构,以通过夹扣在所述高压输电电缆上实现非侵入式的电流耦合;高频逆变器,所述高频逆变器采用IGBT全桥逆变拓扑和高频方波逆变的调制方式,以保证输出回路工作在谐振状态;供电模块,所述供电模块采用工频交流供电模式或太阳能及储能供电模式进行供电;循环水冷却模块,用于提供冷却水,以对所述螺绕磁环、所述高频逆变器进行冷却;以及控制模块,用于监控输出电流、输出功率、逆变频率、循环水温度和水压,并且实现所述逆变频率的闭环控制、升温与保温阶段的切换控制。
根据本发明实施例提出的非侵入式高压输电电缆在线自动维护和缺陷修复系统,高压输电电缆的绝缘材料为聚丙烯-氧化铁纳米复合材料,从而以较低的制造成本,在提高复合材料介电性能的同时具备自修复能力,并且通过多个非侵入式高频电流激励装置,在不降低供电可靠性的条件下实现全线安全、便捷、全自动的定期维护和微缺陷修复,提高输电电缆的使用寿命,降低输电系统故障率,打破输电电缆在线维护和自修复的技术空白,对提高输电系统的可靠性具有重要意义。
另外,根据本发明上述实施例的非侵入式高压输电电缆在线自动维护和缺陷修复系统还可以具有如下附加的技术特征:
优选地,在本发明的一个实施例中,所述螺绕磁环上采用螺绕环结构均匀绕有励磁线圈。
优选地,在本发明的一个实施例中,所述螺绕磁环的线圈导线采用高频利兹线或中空水冷铜管,以降低趋肤效应带来的发热。
进一步地,在本发明的一个实施例中,上述系统还包括:补偿电容器,所述补偿电容器与所述高频逆变器串联连接,以与所述螺绕磁环的线圈构成LC回路。
进一步地,在本发明的一个实施例中,所述供电模块包括整流桥与滤波装置,或者光伏板与蓄电池。
进一步地,在本发明的一个实施例中,所述循环水冷却模块包括:水泵、循环水道与散热器;冷凝器,所述冷却水通过所述冷凝器降温循环利用,其中,所述冷凝器为金属散热片,以通过空气传导散热;以及水压开关及温度传感器,所述水压开关及温度传感器与所述控制模块相连,用于提供循环水的欠压和过热保护功能。
进一步地,在本发明的一个实施例中,所述控制模块包括:电压传感器、电流传感器、锁相环电路、水温水压监控单元,以保证所述循环水的冷却条件。
进一步地,在本发明的一个实施例中,所述控制模块还包括:无线通信单元,用于与终端进行通讯。
进一步地,在本发明的一个实施例中,所述控制模块的工作模式包括自检模式、升温模式、保温模式和结束模式。
进一步地,在本发明的一个实施例中,所述无线通信单元还用于实时上传各工作模式下的状态参数。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明实施例的非侵入式高压输电电缆在线自动维护和缺陷修复系统的结构示意图;
图2为根据本发明一个实施例的自修复材料修复机制示意图;
图3为根据本发明一个实施例的非侵入式高压输电电缆在线自动维护和缺陷修复系统的结构示意图;
图4为根据本发明一个实施例的非侵入式高频电流激励装置的结构示意图;以及
图5为根据本发明一个实施例的维护的全自动工作流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面参照附图描述根据本发明实施例提出的非侵入式高压输电电缆在线自动维护和缺陷修复系统。参照图1所示,该非侵入式高压输电电缆在线自动维护和缺陷修复系统100包括:高压输电电缆101和多个非侵入式高频电流激励装置(例如图中所示的非侵入式高频电流激励装置102、非侵入式高频电流激励装置103、…、非侵入式高频电流激励装置10N)。
其中,高压输电电缆101的绝缘材料为聚丙烯-氧化铁纳米复合材料。多个非侵入式高频电流激励装置相互间隔预设距离,每个非侵入式高频电流激励装置包围高压输电电缆,用于非侵入式地实现高压输电电缆的高频电流注入,并全自动地实现聚丙烯-氧化铁纳米复合材料的磁致升温和磁致保温功能,以对绝缘材料中初始电树缺陷进行自行修复。预设距离根据实际情况进行设置,以下会进行详细叙述。
在本发明的实施例中,具有自修复功能的新型聚合物纳米复合绝缘材料:聚丙烯(PP)/γ-氧化铁(γ-Fe2O3)纳米复合材料,在提高复合材料介电性能的同时,具备自修复能力。具体地,自修复复合材料是以热塑型聚合物为基材,以磁性纳米颗粒为掺杂物的纳米复合材料。所采用的磁性纳米颗粒属于金属氧化物纳米材料(纳米氧化铁),复合材料的制备工艺与现有用于高压输电电缆的纳米电介质相同(熔融共混挤塑成型),因此本发明实施例的系统能够以较低的制造成本,在提高复合材料介电性能的同时具备自修复能力。聚合物/磁性纳米颗粒复合材料的自修复特性,主要是利用高频磁场下磁性纳米颗粒的磁致生热效应来实现。用于缺陷修复的高频交流磁场可以通过换流站(变电站)或站外非侵入的感应装置向电缆注入高频电流分量来实现。
图2为根据本发明一个实施例的自修复材料幅修复机制示意图。图2图示了螺绕磁环激励下高频电流在电缆绝缘层-铜芯-铠装层中的流向及分布示意图。图中:1-励磁高频电流,2-磁环内磁场B1,3-螺绕磁环,4-感应高频电流,5-绝缘介质内磁场B1,6-电缆芯线,7-聚丙烯/γ-氧化铁纳米复合材料,8-电缆铠装层。
具体而言,参照图2所示,具有自修复功能的纳米复合绝缘材料为聚丙烯(PP)/γ-氧化铁(γ-Fe2O3)纳米复合材料(纳米颗粒重量百分比在5wt%以下)。纳米掺杂工艺采用熔融共混技术,配合电缆挤塑技术即可同时实现绝缘层的材料制备和成型。为了使纳米颗粒在聚合物基材中有较好的分散性和界面相容性,采用硅烷偶联剂KH550对20nm粒径的γ-Fe2O3纳米颗粒进行表面改性。由于常温下磁性材料在一定的临界尺寸(一般为30nm左右粒径)以下会呈现超顺磁特性,即磁滞特性消失,因此所用的磁性纳米颗粒基本不存在剩磁,在掺杂过程中不会发生因磁力相互作用而造成的纳米颗粒团聚。当含有绝缘缺陷(起始电树)的复合材料被施以高频交流磁场时,磁性纳米颗粒因磁热效应生热,使复合材料温度升高至基材的玻璃化转变温度以上(升温阶段)并保持在软化温度以下(保温阶段)。聚丙烯高分子链的无规则热运动使介质向微缺陷区域扩散,最终修复损伤区域。由于电老化形成电树微缺陷的同时会使放电通道内的高分子降解,使得基材中的磁性纳米颗粒残留在电树通道的内壁,因此在初始电树的损伤区域磁致生热效果更为明显,形成局部高热并率先开始软化扩散。因此对于电老化损伤的修复,上述自修复复合材料具有损伤区域自动靶向的作用,从而能够在实现缺陷区域修复的同时避免电缆绝缘层整体过热老化。
进一步地,考虑到输电电缆容性较大,高频电流分量在传输过程中会迅速衰减而无法作用于全线,因此本发明实施例的非侵入式高压输电电缆在线自动维护和缺陷修复系统100在站外沿线等间距地布置一定数量的非侵入式高频电流(磁场)激励装置,以作为输电电缆定期维护和修复的配套系统,如图1所示。本发明实施例的非侵入式高压输电电缆在线自动维护和缺陷修复系统100能够在不降低供电可靠性的条件下实现全线安全、便捷、全自动的定期维护和微缺陷修复。
其中,每个非侵入式高频电流激励装置包括:螺绕磁环、高频逆变器、供电模块、循环水冷却模块和控制模块。
螺绕磁环采用可开闭的电流钳结构,以通过夹扣在高压输电电缆上实现非侵入式的电流耦合。高频逆变器采用IGBT全桥逆变拓扑和高频方波逆变的调制方式,以保证输出回路工作在谐振状态。供电模块采用工频交流供电模式或太阳能及储能供电模式进行供电。循环水冷却模块用于提供冷却水,以对螺绕磁环、高频逆变器进行冷却。控制模块用于监控输出电流、输出功率、逆变频率、循环水温度和水压,并且实现逆变频率的闭环控制、升温与保温阶段的切换控制。
本发明实施例的非侵入式高频电流激励装置能够非侵入式地实现高压输电电缆的高频电流注入,并全自动地实现上述自修复材料的磁致升温和磁致保温功能,实现可修复绝缘材料中初始电树缺陷的自行修复,解决站外地下输电电缆的维护和自修复问题。
优选地,在本发明的一个实施例中,螺绕磁环上采用螺绕环结构均匀绕有励磁线圈。
进一步地,在本发明的一个实施例中,螺绕磁环的线圈导线采用高频利兹线或中空水冷铜管,以降低趋肤效应带来的发热。
具体地,在本发明的实施例中,螺绕磁环可以采用可开闭的电流钳结构,通过夹扣在电缆上实现非侵入式的电流耦合。磁环上采用螺绕环结构均匀绕有励磁线圈(约15~20匝),正常工作状态下实现线圈与电缆铜芯之间1:15~20的电流放大变比。线圈导线采用高频利兹线或中空水冷铜管,以降低趋肤效应带来的发热。
在本发明的实施例中,高频逆变器可以采用IGBT全桥逆变拓扑和高频方波逆变的调制方式,从而能够根据输出电压基波和电流波形的相位关系,依靠锁相环及控制系统实时反馈调节逆变频率,保持输出回路工作在谐振状态。逆变器的开关器件(IGBT)采用传导水冷散热方式,通过散热片和循环水进行冷却。
进一步地,在本发明的一个实施例中,本发明实施例的非侵入式高压输电电缆在线自动维护和缺陷修复系统100还包括:补偿电容器,补偿电容器与高频逆变器串联连接,以与螺绕磁环的线圈构成LC回路。
进一步地,在本发明的一个实施例中,供电模块包括整流桥与滤波装置,或者光伏板与蓄电池。
具体地,供电模块如供电(储能)装置可采用工频交流供电(含整流桥和滤波装置),也可以采用“太阳能+储能”的方式供电(含光伏板和蓄电池)。前者主要用于换流站站内及附近的电缆维护,整流桥采用全桥拓扑和PWM整流的调制方式,整流桥的开关器件(晶闸管)采用传导水冷散热方式,通过散热片和循环水进行冷却。后者可用于远离换流站的野外装置,光伏电源带有DC-DC变换器和电源管理模块,在有充足光照的大部分待机时间内,DC-DC变换器和电源管理模块以较低的功率为蓄电池充电,并维持蓄电池的电量和健康状况以备维护工作所需。蓄电池采用阀控式铅蓄电池或其他电池,典型参数为标称电压240VDC,容量10A·h。
进一步地,在本发明的一个实施例中,循环水冷却模块包括:水泵、循环水道与散热器;冷凝器,冷却水通过冷凝器降温循环利用,其中,冷凝器为金属散热片,以通过空气传导散热;以及水压开关及温度传感器,水压开关及温度传感器与控制模块相连,用于提供循环水的欠压和过热保护功能。
具体地,循环水冷却模块如循环水冷却系统包含水泵、循环水道、散热器、冷凝器、水压开关、温度传感器等。循环水冷却系统为输出回路(包括螺绕磁环、补偿电容),逆变桥开关管(IGBT)散热器,整流开关管(IGBT)散热器等提供冷却水。冷却水通过冷凝器降温循环利用,冷凝器可以为金属散热片,以通过空气传导散热。水压开关和温度传感器配合控制模块,提供循环水的欠压和过热保护功能,即只有在水压高于开关阈值,水温低于过热保护阈值时装置才能运行,以保障装置良好的散热条件,下面会详细赘述。水压开关阈值可以为0.02MPa,为满足压力要求,水泵扬程需要2m以上,考虑水道阻力和高差,选择水泵的扬程为5m。过热保护阈值可以为50℃,且循环水流通路径为全密封。
进一步地,在本发明的一个实施例中,控制模块包括:电压传感器、电流传感器、锁相环电路、水温水压监控单元,以保证循环水的冷却条件。
进一步地,在本发明的一个实施例中,控制模块还包括:无线通信单元,用于与终端进行通讯。
进一步地,在本发明的一个实施例中,控制模块的工作模式包括自检模式、升温模式、保温模式和结束模式。
进一步地,在本发明的一个实施例中,无线通信单元还用于实时上传各工作模式下的状态参数。
具体地,控制模块如控制保护系统的控制电路包括电压、电流传感器,锁相环电路,温度传感器以及水压开关。控制算法和嵌入式操作界面由一块ARM处理器实现。控制保护系统设有循环水欠压保护和过热保护,以保障整个装置良好的循环水冷却条件。控制系统的软件部分包含例行维护的全自动工作流程。控制系统自带无线电通信设备即无线通信模块,可以通过远方终端实现维护工作流程的启动,中止,工作流程更改,并实时监测设备各部分状态参数。
图3为根据本发明一个实施例的非侵入式高压输电电缆在线自动维护和缺陷修复系统的结构示意图。图中:1-换流站出线,2-输电电缆芯线,3-聚丙烯/γ-氧化铁纳米复合材料,4-电缆铠装层,5-螺绕磁环,6-光伏板及充电电源管理装置,7-非侵入式高频电流(磁场)激励装置主机,8-换流站进线,9-高频磁场,10-地面。
在本发明的一个具体实施例中,参照图3所示,本发明实施例的非侵入式高压输电电缆在线自动维护和缺陷修复系统100主要针对高压输电电缆的在线自动维护及绝缘老化缺陷的修复,包含新型自修复绝缘材料的研发和与之配套的全自动非侵入式电缆在线自动维护和自修复系统设计。非侵入式高压输电电缆在线自动维护和缺陷修复系统100具有可修复性能的绝缘材料,可基于现有的输电电缆制造工艺挤塑成型得到高压输电电缆绝缘。非侵入式高压输电电缆在线自动维护和缺陷修复系统100通过一种分布于输电电缆沿线的非侵入式高频电流激励装置,在电缆绝缘层中激发出高频强磁场,并利用缺陷区域可修复纳米复合材料的磁致生热效应实现缺陷修复。非侵入式高频电流(磁场)激励装置主要包括螺绕磁环、补偿电容器、高频逆变器、供电(储能)装置、循环水冷却系统、控制及保护系统。本发明实施例能够在不降低供电可靠性的前提下实现高压输电电缆的绝缘缺陷自修复,打破高压输电电缆,特别是深埋地下的站外电缆在线自动维护和自修复的技术空白。
图4为根据本发明一个实施例的非侵入式高频电流激励装置的结构示意图。图中:1-光伏-蓄电池供电模块,2-交流整流供电模块,3-高频逆变器,4-晶闸管,5-IGBT,6-散热器,7-螺绕磁环,8-补偿电容Cs,9-循环水道,10-冷凝器,11-温度传感器,12-水压开关,13-水泵,14-控制及保护系统,15-电缆等效电容C0
进一步地,参照图4所示,非侵入式高频电流(磁场)激励装置主要包括螺绕磁环、补偿电容器、高频逆变器、供电(储能)装置、循环水冷却系统、控制及保护系统,实现非侵入式的磁场激励。该装置的工作原理是利用高频螺绕磁环与输电电缆铜芯的对地回路耦合,通过电磁感应原理在电缆铜芯上产生高频大电流,进而在电缆芯线周围的绝缘介质中感应出高频强磁场。高频逆变器将直流(储能供电或工频交流电整流)调制为高频交流电压。为了在螺绕线圈上获得较大的高频电流,需要在逆变器的输出回路串联可调补偿电容Cs,使输出回路工作在LC串联谐振状态(500~1000kHz)。非侵入式高频电流(磁场)激励装置具有快速升温和恒功率保温功能,分别用于电缆修复过程中的升温和保温阶段,并由装置自带的控制系统实现功能设定和控制。为了防止工作过程中器件过热,装置配备循环水冷系统和过热,过载等保护功能。根据应用场合不同,该装置能量来源可以是工频交流电源供电(靠近低压交流电源)或“太阳能+储能”。装置的控制与保护系统自带无线通信功能,能够实现远方终端的遥控和状态参数遥测,实现全自动的在线维护。
其中,螺绕磁环可以采用可开闭的电流钳结构,通过夹扣在电缆上实现非侵入式的电流耦合。磁环用于束缚磁通减少漏磁,其材料采用高频铁氧体。磁环上采用螺绕环结构均匀绕有励磁线圈(约15~20匝),正常工作状态下实现线圈与电缆铜芯之间1:15~20的电流放大变比。线圈导线采用高频利兹线或中空水冷铜管,以降低趋肤效应带来的发热。在装置装配过程中,需要将磁环夹扣处的电缆铠装层和屏蔽层去除。电缆绝缘层与电缆芯线、接地铠装层形成的等效电容C0构成螺绕磁环副边的耦合回路。
补偿电容器Cs与螺绕磁环的线圈构成LC串联回路,并工作在串联谐振状态以获得较大的电流。通过调节补偿电容的容值能够获得不同的谐振频率,并适应不同的线圈结构和工况,使谐振频率维持在500~1000kHz。补偿电容采用高频感应炉用CELEM水冷电容,通过循环水进行冷却。
高频逆变器可以采用IGBT全桥逆变拓扑和高频方波逆变的调制方式,变换器设计容量为10kW。工作时,逆变器输出高频方波电压,频率在LC串联回路的谐振频率f0附近,输出电流为正弦波。逆变器根据输出电压基波和电流波形的相位关系,依靠控制系统实时反馈调节逆变频率,保持输出回路工作在谐振状态。逆变器的开关器件(IGBT)采用传导水冷散热方式,通过散热片和循环水进行冷却。
供电(储能)装置可采用工频交流供电(含整流桥和滤波装置),也可以采用“太阳能+储能”的方式供电(含光伏板和蓄电池)。前者主要用于换流站站内及附近的电缆维护,整流桥采用全桥拓扑和PWM整流的调制方式。与逆变器相同,整流桥的开关器件(晶闸管)采用传导水冷散热方式,通过散热片和循环水进行冷却。后者可用于远离换流站的野外装置,光伏电源带有DC-DC变换器和电源管理模块,在有充足光照的大部分待机时间内,DC-DC变换器和电源管理模块以较低的功率为蓄电池充电,并维持蓄电池的电量和健康状况以备维护工作所需。蓄电池采用阀控式铅蓄电池或其他电池,典型参数为标称电压240VDC,容量10A·h。在装置工作于维护模式时,蓄电池的光伏充电电路停止工作,依靠蓄电池储存的电能维持约15min的维护工作。待维护工作结束后,蓄电池约有20%以上的电量剩余。此时控制系统系统进入待机状态,光伏充电电路恢复工作,为蓄电池储能。
循环水冷却系统包含水泵、循环水道、散热器、冷凝器、水压开关、温度传感器等。该系统为输出回路(包括螺绕磁环、补偿电容),逆变桥开关管(IGBT)散热器,整流开关管(IGBT)散热器等提供冷却水。冷却水路径通过冷凝器降温循环利用,冷凝器为金属散热片,通过空气或土壤传导散热。水压开关和温度传感器配合控制及保护系统,提供循环水的欠压和过热保护功能,即只有在水压高于开关阈值,水温低于过热保护阈值时装置才能运行,以保障装置良好的散热条件。所述水压开关阈值为0.02MPa,为满足压力要求,水泵扬程需要2m以上,考虑水道阻力和高差,选择水泵的扬程为5m。为了防止设备过热以及冷却水散失,过热保护阈值为50℃,且循环水流通路径为全密封。
控制及保护系统用于实现装置的输出电流,输出功率和逆变频率的监控,循环水温度和水压监测,实现逆变器逆变频率的闭环控制,以及升温、保温阶段的切换控制。控制保护系统包括电压、电流传感器,锁相环电路,无线通信模块等。控制算法和嵌入式操作系统由一块ARM处理器实现。控制保护系统设有循环水欠压保护和过热保护功能,以保障整个装置良好的循环水冷却条件。控制系统的软件部分包含例行维护的全自动工作流程。控制系统自带无线电通信设备,可以通过远方终端实现维护工作流程的启动,中止和工作流程更改,并实时监测设备各部分状态参数。
图5为根据本发明一个实施例的维护的全自动工作流程图。
在本发明的一个实施例中,参照图5所示,控制模块的工作模式包括自检模式、升温模式、保温模式和结束模式。也就是说,控制模块的工作流程可以包括启动自检,升温过程,保温修复过程,结束阶段。启动自检主要是检测循环水水量及水泵工作是否正常(水压),水温是否正常(<50℃),以确保装置工作于良好的散热条件。升温过程以较大的逆变器输出功率(电流),在5min以内使电缆温度上升至合适温度(100℃左右,微缺陷的局部温度可高于180℃)。保温修复过程中,降低逆变器输出功率,并与电缆散热功率大致相同,以维持升温阶段最后的电缆温度。最后的结束阶段,降低逆变器输出功率至0,保持循环水冷却装置(水泵)工作直至冷凝器出口水温降低至40℃以下,然后关闭水循环,系统进入待机模式。装置在全过程通过无线信号实时上传状态参数。
本发明实施例的非侵入式高压输电电缆在线自动维护和缺陷修复系统在不改变电缆制造工艺,不降低绝缘性能的前提下,提供一种具有可修复功能的新型聚合物纳米复合材料,和与之配套的非侵入式高压电缆在线自动维护和自修复装置。本发明实施例的非侵入式高压输电电缆在线自动维护和缺陷修复系统打破了高压输电电缆,特别是深埋地下的站外电缆在线自动维护和自修复的技术空白,提供了一种输电电缆例行维护的全自动工作流程,对提高高压输电电缆的使用寿命和可靠性具有重要意义。
另外,在铺设地下电缆时,等间距地安装非侵入式高频电流(磁场)激励装置。间隔距离因实际电缆类型和地理因素而定,可通过离线实验来确定,满足相邻两装置中间位置的芯线高频电流(或介质内磁场)不低于维护所需的最低强度即可。安置螺绕线圈时,需要将线圈以下的铠装层和屏蔽层剥除,避免除图2所示高频电流回路以外的与螺绕磁环耦合的其他金属回路。安置光伏板时要根据当地的日光辐照条件,选择最佳朝向。铅蓄电池应安置在装置地下,以避免阳光暴晒。根据地理环境,循环水冷凝器可深埋地下,以取得较好的传导散热效果。装置安装完毕后加注冷却水,并检查密封性。
电缆的定期维护工作由远方终端遥控启动,并实时监测各个装置以及电缆各区段的状态参数。参照图5所示,在需要进行例行维护时,高频电流(磁场)激励装置启动控制与保护系统,确定水压高于水压开关闭锁阈值,水温低于过热保护阈值。然后启动逆变器,进入升温模式。待电缆升温至合适温度时(约5min),装置自动切换至保温模式,此时输出电流较小,输出功率约为电缆的散热功率,电缆温度维持在软化温度以下。一定时间(约10min左右)后,电缆绝缘层内的缺陷基本得到修复,装置降低输出功率至0,关闭逆变器。循环水冷却系统继续工作,待装置温度降低至安全范围以内后(通过冷却水水温判断),关闭控制及保护系统电源,关闭水泵。装置在全过程通过无线信号实时上传状态参数。
需要说明的是,维护过程中注入电流大小,升温时间及保温功率等参数可通过离线电缆实验得到并进行预先设定。根据不同的电缆类型和所处地理环境的不同,升温及保温流程的输出参数也不尽相同,因此需要根据实际情况进行实验调节,因地制宜。由于在发生电树老化时,缺陷区域的磁性纳米颗粒浓度远高于周围正常介质,因此仅需要较低的注入电流便可以使缺陷区域获得足够温升并软化,而完好区域的温升很小,保障电缆全线介电性能不受影响,便为实际操作留出了较大的安全裕度。
根据本发明实施例提出的非侵入式高压输电电缆在线自动维护和缺陷修复系统,高压输电电缆的绝缘材料为聚丙烯-氧化铁纳米复合材料,从而以较低的制造成本,在提高复合材料介电性能的同时具备自修复能力,并且通过多个非侵入式高频电流激励装置,在不降低供电可靠性的条件下实现全线安全、便捷、全自动的定期维护和微缺陷修复,提高输电电缆的使用寿命,降低输电系统故障率,打破输电电缆在线维护和自修复的技术空白,对提高输电系统的可靠性具有重要意义。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种非侵入式高压输电电缆在线自动维护和缺陷修复系统,其特征在于,包括:
高压输电电缆,所述高压输电电缆的绝缘材料为聚丙烯-氧化铁纳米复合材料;
多个非侵入式高频电流激励装置,所述多个非侵入式高频电流激励装置相互间隔预设距离,每个非侵入式高频电流激励装置包围所述高压输电电缆,用于非侵入式地实现所述高压输电电缆的高频电流注入,并全自动地实现所述聚丙烯-氧化铁纳米复合材料的磁致升温和磁致保温功能,以对所述绝缘材料中初始电树缺陷进行自行修复,其中,所述每个非侵入式高频电流激励装置包括:
螺绕磁环,所述螺绕磁环采用可开闭的电流钳结构,以通过夹扣在所述高压输电电缆上实现非侵入式的电流耦合;
高频逆变器,所述高频逆变器采用IGBT全桥逆变拓扑和高频方波逆变的调制方式,以保证输出回路工作在谐振状态;
供电模块,所述供电模块采用工频交流供电模式或太阳能及储能供电模式进行供电;
循环水冷却模块,用于提供冷却水,以对所述螺绕磁环、所述高频逆变器进行冷却;以及
控制模块,用于监控输出电流、输出功率、逆变频率、循环水温度和水压,并且实现所述逆变频率的闭环控制、升温与保温阶段的切换控制。
2.如权利要求1所述的非侵入式高压输电电缆在线自动维护和缺陷修复系统,其特征在于,所述螺绕磁环上采用螺绕环结构均匀绕有励磁线圈。
3.如权利要求2所述的非侵入式高压输电电缆在线自动维护和缺陷修复系统,其特征在于,所述螺绕磁环的线圈导线采用高频利兹线或中空水冷铜管,以降低趋肤效应带来的发热。
4.如权利要求3所述的非侵入式高压输电电缆在线自动维护和缺陷修复系统,其特征在于,还包括:
补偿电容器,所述补偿电容器与所述高频逆变器串联连接,以与所述螺绕磁环的线圈构成LC回路。
5.如权利要求1所述的非侵入式高压输电电缆在线自动维护和缺陷修复系统,其特征在于,所述供电模块包括整流桥与滤波装置,或者光伏板与蓄电池。
6.如权利要求1所述的非侵入式高压输电电缆在线自动维护和缺陷修复系统,其特征在于,所述循环水冷却模块包括:
水泵、循环水道与散热器;
冷凝器,所述冷却水通过所述冷凝器降温循环利用,其中,所述冷凝器为金属散热片,以通过空气传导散热;以及
水压开关及温度传感器,所述水压开关及温度传感器与所述控制模块相连,用于提供循环水的欠压和过热保护功能。
7.如权利要求6所述的非侵入式高压输电电缆在线自动维护和缺陷修复系统,其特征在于,所述控制模块包括:电压传感器、电流传感器、锁相环电路、水温水压监控单元,以保证所述循环水的冷却条件。
8.如权利要求7所述的非侵入式高压输电电缆在线自动维护和缺陷修复系统,其特征在于,所述控制模块还包括:
无线通信单元,用于与终端进行通讯。
9.如权利要求8所述的非侵入式高压输电电缆在线自动维护和缺陷修复系统,其特征在于,所述控制模块的工作模式包括自检模式、升温模式、保温模式和结束模式。
10.如权利要求9所述的非侵入式高压输电电缆在线自动维护和缺陷修复系统,其特征在于,所述无线通信单元还用于实时上传各工作模式下的状态参数。
CN201510492765.6A 2015-08-12 2015-08-12 非侵入式高压输电电缆在线自动维护和缺陷修复系统 Active CN105048365B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510492765.6A CN105048365B (zh) 2015-08-12 2015-08-12 非侵入式高压输电电缆在线自动维护和缺陷修复系统
PCT/CN2016/090446 WO2017024924A1 (zh) 2015-08-12 2016-07-19 非侵入式高压输电电缆在线自动维护和缺陷修复系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510492765.6A CN105048365B (zh) 2015-08-12 2015-08-12 非侵入式高压输电电缆在线自动维护和缺陷修复系统

Publications (2)

Publication Number Publication Date
CN105048365A true CN105048365A (zh) 2015-11-11
CN105048365B CN105048365B (zh) 2017-06-23

Family

ID=54454694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510492765.6A Active CN105048365B (zh) 2015-08-12 2015-08-12 非侵入式高压输电电缆在线自动维护和缺陷修复系统

Country Status (2)

Country Link
CN (1) CN105048365B (zh)
WO (1) WO2017024924A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024924A1 (zh) * 2015-08-12 2017-02-16 清华大学 非侵入式高压输电电缆在线自动维护和缺陷修复系统
CN111200226A (zh) * 2018-11-19 2020-05-26 波音公司 处理屏蔽线缆的系统、方法和装置
CN112198396A (zh) * 2020-10-10 2021-01-08 广东海洋大学 一种船舶电缆水树修复性能评估方法
CN112653035A (zh) * 2020-11-30 2021-04-13 浙江建设职业技术学院 一种电线绝缘修复系统
CN113922293A (zh) * 2021-10-08 2022-01-11 众邦电缆集团有限公司 一种电缆绝缘线芯修补方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535595B (zh) * 2017-03-01 2024-02-02 江苏士林电气设备有限公司 一种轨道交通牵引供电直流绝缘管型母线监测保护装置
CN110690734A (zh) * 2019-10-15 2020-01-14 艾铂科技(湖北)有限公司 一种高压传感器感应供电电源
CN111993441B (zh) * 2020-09-02 2022-08-12 东台市高科技术创业园有限公司 一种高压电线接线机器人
CN112362976B (zh) * 2020-11-10 2024-04-26 张国俊 在线实时电缆参数测试系统
CN115277465B (zh) * 2022-05-13 2023-09-22 国网福建省电力有限公司 一种多频自愈合的电缆运行状态监测装置及方法
CN115128403A (zh) * 2022-07-27 2022-09-30 哈尔滨工业大学 一种用于电力电缆的在线信号测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202678854U (zh) * 2012-07-30 2013-01-16 广东汇盈电力工程有限公司 一种对高压电缆进行有机修复的修复液注入系统
CN104319698A (zh) * 2014-11-10 2015-01-28 国网河南省电力公司济源供电公司 电缆头绝缘套破损快速处理方法
CN104610703A (zh) * 2015-01-22 2015-05-13 清华大学 一种微放电缺陷光致自修复的电气绝缘层材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011077885B4 (de) * 2011-06-21 2015-07-09 Lisa Dräxlmaier GmbH Leitung sowie Verfahren zur Konfektionierung einer derartigen Leitung
CN202856255U (zh) * 2012-10-29 2013-04-03 吉视传媒股份有限公司 有线电视同轴电缆修复装置
CN104140640B (zh) * 2013-10-29 2018-08-10 中国石油化工集团公司 一种管道修复用导电环氧树脂及管道在线修复方法
CN105048365B (zh) * 2015-08-12 2017-06-23 清华大学 非侵入式高压输电电缆在线自动维护和缺陷修复系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202678854U (zh) * 2012-07-30 2013-01-16 广东汇盈电力工程有限公司 一种对高压电缆进行有机修复的修复液注入系统
CN104319698A (zh) * 2014-11-10 2015-01-28 国网河南省电力公司济源供电公司 电缆头绝缘套破损快速处理方法
CN104610703A (zh) * 2015-01-22 2015-05-13 清华大学 一种微放电缺陷光致自修复的电气绝缘层材料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KESSLER M R,SOTTOS N R,WHITE S R: "Self-healing structural composite materials", 《COMPOSITES PART A:APPLIED SCIENCE AND MANUFACTURING 》 *
吴杰等: "薄膜结构监控检测系统和自修复材料的应用现状", 《工业建筑》 *
杨红等: "空心光纤用于纸蜂窝结构自修复的研究", 《光纤与电缆及其应用技术》 *
杨红等: "空心光纤网络埋入复合材料中性能影响的研究", 《应用力学学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024924A1 (zh) * 2015-08-12 2017-02-16 清华大学 非侵入式高压输电电缆在线自动维护和缺陷修复系统
CN111200226A (zh) * 2018-11-19 2020-05-26 波音公司 处理屏蔽线缆的系统、方法和装置
CN111200226B (zh) * 2018-11-19 2024-02-13 波音公司 处理屏蔽线缆的系统和方法
CN112198396A (zh) * 2020-10-10 2021-01-08 广东海洋大学 一种船舶电缆水树修复性能评估方法
CN112198396B (zh) * 2020-10-10 2022-02-01 广东海洋大学 一种船舶电缆水树修复性能评估方法
CN112653035A (zh) * 2020-11-30 2021-04-13 浙江建设职业技术学院 一种电线绝缘修复系统
CN113922293A (zh) * 2021-10-08 2022-01-11 众邦电缆集团有限公司 一种电缆绝缘线芯修补方法

Also Published As

Publication number Publication date
WO2017024924A1 (zh) 2017-02-16
CN105048365B (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
CN105048365A (zh) 非侵入式高压输电电缆在线自动维护和缺陷修复系统
US10404101B2 (en) Contactless electric power transmission device and electric power transfer system
CN102810875B (zh) 使用变流器进行能量转换的系统及其运作方法
US9209500B2 (en) Temperature controlling system and method of battery
CN103475061A (zh) 光伏智能控制器
KR101116498B1 (ko) 에너지 저장 시스템
CN104242405A (zh) 一种电动汽车动力电池快速充电系统及方法
KR101496516B1 (ko) 배터리 온도 조절 시스템 및 이의 구동 방법
KR101106413B1 (ko) 에너지 저장 시스템의 인버터
CN104810822A (zh) 一种微网双向dc/dc变化下垂系数的控制方法
CN104578171B (zh) 一种直流光伏发电模块的控制方法
US20220379746A1 (en) Dc link charging of capacitor in a wireless power transfer pad
CN108594038A (zh) 避雷器监控系统
CN104201762B (zh) 一种电力箱变专用操作电源
CN108448558A (zh) 避雷器系统
CN108448559A (zh) 适用于避雷器装置的供电方法
CN108448560A (zh) 避雷器
CN102243288A (zh) 等脉宽pwm控制的调频式串联谐振耐压检测装置
CN106357127A (zh) 箱式光伏逆变器
CN201718065U (zh) 一种电感控制器及含有电感控制器的电感加热装置
CN206250997U (zh) 一种lcc谐振式微波应用器供电电源系统
CN110011559A (zh) 隔离逆变器
CN201639482U (zh) 高压隔离多输出igct驱动电源
CN108063500B (zh) 一种在线监测无线传感器的磁谐振非接触供电系统及方法
CN202973323U (zh) 风能电暖器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant