CN112195482A - 一种复合钛阳极板及其制备方法 - Google Patents
一种复合钛阳极板及其制备方法 Download PDFInfo
- Publication number
- CN112195482A CN112195482A CN202011104160.2A CN202011104160A CN112195482A CN 112195482 A CN112195482 A CN 112195482A CN 202011104160 A CN202011104160 A CN 202011104160A CN 112195482 A CN112195482 A CN 112195482A
- Authority
- CN
- China
- Prior art keywords
- active layer
- titanium
- substrate
- coating
- anode plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1225—Deposition of multilayers of inorganic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1229—Composition of the substrate
- C23C18/1241—Metallic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/02—Electrodes; Connections thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
- C02F2001/46138—Electrodes comprising a substrate and a coating
- C02F2001/46142—Catalytic coating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Ceramic Engineering (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
本发明公开了一种复合钛阳极板及其制备方法,所述的复合钛阳极板由钛基体、基体结合层、中间活性层和表面活性层组成,所述的基体结合层、中间活性层和表面活性层均为Ti、Ir、Ru和Co的氧化物组成,其中中间活性层和表面活性层中(Ir+Co):Ru的摩尔比为(5~8):(1~4)。本发明钛阳极板的三层结构能够增强与基体的结合力,不容易溶蚀和脱落;用Co替代部分Ir,延长极板使用寿命,降低了钛阳极板的综合使用成本;涂层喷涂方式相比涂刷更加可控,有利于工业化推广。
Description
技术领域
本发明属于化工技术领域,进一步属于电化学技术领域,具体涉及一种复合钛阳极板及其制备方法。
背景技术
钛阳极又称为尺寸稳定阳极(DSA),是由金属基体和附着在其表面的氧化物涂层组成。基体普遍采用金属钛材,氧化物涂层一般由活性组元和起稳定作用的惰性组元组成。氧化物涂层的组织结构是决定阳极性能的关键因素,其中包括电化学活性和耐腐蚀性能,它们均与材料的成分与组织结构密切相关。Ti/IrO2-Ta2O5涂层电极被认为是很有前途的析氧用钛阳极,其基材为纯钛材,表层由活性组元IrO2和起稳定作用的惰性组员Ta2O5组成,这一阳极可取代铅阳极,在工业电镀、金属冶炼、环境保护和电解海水等领域,具有广阔的应用前景,由于其主要用于高腐蚀性酸性溶液的电解工艺,所以要求具有极强的稳定性和良好的电化学催化活性。
钛极板对环境友好,尺寸稳定、能耗低,Ti/IrO2-RuCl3是目前在硫酸溶液中析氧用最好的电极材料,但钛板价格高于铅银阳极,Ir和Ru在自然界储量低因此价格昂贵。相比传统铅银阳极板,Ti/IrO2- RuCl3的强化电解寿命仅增长20%,综合核算成本仍然高于传统铅银阳极板,因此成本问题仍是惰性钛阳极板工业化应用的障碍。寻找可替代贱金属,降低Ir和Ru用量,优化涂层设计和工艺控制,改善极板性能,延长涂层使用寿命,最终实现降低钛极板使用成本,才能实现产业化的替代。
发明内容
本发明的第一目的在于提供一种复合钛阳极板;第二目的在于提供所述的复合钛阳极板的制备方法。
本发明的第一目的是这样实现的,所述的复合钛阳极板由钛基体、基体结合层、中间活性层和表面活性层组成,所述的基体结合层、中间活性层和表面活性层均为Ti、Ir、Ru和Co的氧化物组成,其中中间活性层和表面活性层中(Ir+Co):Ru的摩尔比为(5~8):(1~4)。
本发明的第二目的是这样实现的,包括钛基体预处理、涂液制备、涂液涂覆和热处理步骤,具体包括:
A、钛基体预处理:将钛基体进行除油、刻蚀和清洗得到表面干净但粗糙的钛基体备用;
B、涂液制备:分别将配方配比的为Ti、Ir、Ru和Co的氧化物溶解在有机溶剂中得到基体结合层涂液、中间活性层涂液和表面活性层涂液备用;
C、涂液涂覆和热处理:依次将基体结合层涂液、中间活性层涂液和表面活性层涂液涂覆到钛基体上得到目标物复合钛阳极板,其中每次涂覆均包括喷涂、干燥和煅烧步骤。
本发明所述的复合钛阳极板采用喷涂方式涂覆,得到的涂层与基体结合紧密,活性点分布均匀,涂层不容易在电解过程中出现溶蚀和剥落,最外层表面活性层(疏水层)有效防止电解液浸入基体,提高电极抗腐蚀能力。
本发明研究发现,氧化物阳极的失效并非由氧化物涂层本身失去电催化活性所致,而是由于工作过程中基体金属腐蚀钝化、失去导电载体作用而使涂层大面积剥离所致。本发明的三层活性结构金属元素相同,配比不同,钛基体的基体结合层增强了与基体的结合力,中间活性层增加了金属Co含量,作为Ir的替代金属,降低了Ir的使用量,表面活性层又提高了Ir的含量,适当降低了Co的使用量。中间活性层和表面活性层始终保证(Ir+Co):Ru的摩尔比为7:3,保证较高的催化活性。金属Ti含量的变化是越靠近基体含量越高,保证涂层与基体有较强的结合力,涂层的每一层相互之间也能够紧密结合。表层Co含量的降低是为了防止金属Co溶蚀进入电解中过多,影响电解液质量。
本发明的复合涂层有三层结构,每层的金属氧化物配比不同,每种金属氧化物起到不同的配合作用,采用喷涂的方式相比传统的涂刷涂液分布更均匀,可以控制少量多次,得到的涂层致密均匀,不容易被侵蚀和剥离,能够大大增强涂层的使用寿命。
本发明的有益效果:喷涂方式相比涂刷更加可控,有利于工业化推广;降低了极板涂层的生产成本,延长了使用寿命,综合成本降低30%以上。
附图说明
图1为实施例1和对比例钛阳极板的循环伏安曲线示意图;
图2为实施例1和对比例钛阳极板的强化电解寿命示意图。
具体实施方式
下面结合实施例和附图对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或替换,均属于本发明的保护范围。
本发明所述的复合钛阳极板由钛基体、基体结合层、中间活性层和表面活性层组成,所述的基体结合层、中间活性层和表面活性层均为Ti、Ir、Ru和Co的氧化物组成,其中中间活性层和表面活性层中(Ir+Co):Ru的摩尔比为(5~8):(1~4)。
中间活性层和表面活性层中(Ir+Co):Ru的摩尔比为7:3。
所述的钛基体为TA2钛板。
所述的Ti、Ir、Ru和Co的氧化物分别为钛酸四丁酯、H2IrCl6、RuCl3和CoCl2。
所述的基体结合层中Ti:Ir:Ru:Co的摩尔比为(1.5~3):(5~7):(3~5):(0.5~1)。Ti在基体结合层中形成的TiO2与钛基体有天然的结合力,经过热处理,这几种金属元素与Ti在钛基体表面形成金属氧化物固溶体,共同沉积在钛基体上。
所述的基体结合层中Ti:Ir:Ru:Co的摩尔比为(2~2.5): 7: 3:(0.5~0.7)。
所述的中间活性层中Ti:Ir:Ru:Co的摩尔比为(1~1.5):(2~3):3:(3~5)。Co的金属氧化物催化活性类似于Ir,但金属Co的价格远低于Ir,用部分金属Co代替Ir,在不降低综合性能的基础上降低涂层制备成本。
所述的表面活性层中Ti:Ir:Ru:Co的摩尔比为(0.3~0.5):5:3:2。表面活性层中Co的含量调整的较低,因为电解液中Co元素属于有害元素,要求电解锌过程中Co含量低于0.3mg/l,因此在表面活性层中适当降低Co含量,防止涂层出现溶蚀现象污染电解液。也有文献表明,在电解锌过程中,电解液中的Ir离子浓度超过0.5mg/dm3时,阴极过电位降低,阴极析氢现象明显,说明铱在锌电积过程中有去极化作用(促进析氢),从而降低锌电沉积的阴极电流效率,属于不利因素。
所述的基体结合层、中间活性层和表面活性层三层相比钛基体增重为1~2mg/cm2且每一单层的质量增重低于0.8mg/cm2。
本发明所述的复合钛阳极板的制备方法,包括钛基体预处理、涂液制备、涂液涂覆和热处理步骤,具体包括:
A、钛基体预处理:将钛基体进行除油、刻蚀和清洗得到表面干净但粗糙的钛基体备用;
B、涂液制备:分别将配方配比的为Ti、Ir、Ru和Co的氧化物溶解在有机溶剂中得到基体结合层涂液、中间活性层涂液和表面活性层涂液备用;
C、涂液涂覆和热处理:依次将基体结合层涂液、中间活性层涂液和表面活性层涂液涂覆到钛基体上得到目标物复合钛阳极板,其中每次涂覆均包括喷涂、干燥和煅烧步骤。
所述钛基体预处理是将钛基体浸于10%的NaOH溶液中微沸状态下处理1~2h,再浸于10%的草酸钠溶液中微沸状态下处理1~3h,然后用超声波清洗干净置于无水乙醇中备用。
所述的有机溶剂为无水乙醇和正丁醇的混合溶液。
所述的无水乙醇和正丁醇的摩尔比为(0.5~2):(0.5~2)。
所述的煅烧是在温度460~480℃下煅烧40~80min。
所述的喷涂时的喷射压力为0.15~0.2MPa、喷涂设备喷嘴的直径控制在0.2~0.4mm。
本发明所述的复合钛阳极板的制备方法,具体操作如下:
(1)钛基体预处理:将钛基体进行除油、刻蚀和清洗,得到表面干净但粗糙的钛基体;
(2)涂液制备:将Ti、Ir、Ru和Co的源物质按照Ti:Ir:Ru:
Co的摩尔比1.5-3:5-7:3-5:0.5-1溶解在有机溶剂中,得到涂液一;将Ti、Ir、Ru和Co的源物质按照Ti:Ir:Ru:Co的摩尔比1-1.5:2-3:3:3-5溶解在有机溶剂中,得到涂液二;将将Ti、Ir、Ru和Co的源物质按照Ti:Ir:Ru:Co的摩尔比0.3-0.5:5:3:2溶解在有机溶剂中,得到涂液三;
(3)涂液涂覆和热处理:先将涂液一喷涂在钛基体表面,干燥后在460-480℃的温度下煅烧40-80min;再将涂液二喷涂在有涂液一的基体上,干燥后在460-480℃的温度下煅烧40-80min,最后将涂液三喷涂在有涂液二的基体上,干燥后在460-480℃的温度下煅烧40-80min,得到复合涂层的钛阳极板。
下面以具体实施对本发明做进一步说明:
对比例:该钛极板为Ti、Ta、Ir三元单层涂层,在附图中表示为A。
(1)钛基体处理:将钛基体进行除油、刻蚀和清洗,得到表面干净但粗糙的钛基体;
(2)涂液配制:将乙醇与正丁醇按体积比为1:1配 制有机溶剂,按Ti:Ta:Ir=1:3:7的摩尔比称取钛酸正四丁酯、五氯化钽、氯铱酸水合物溶于有机溶剂中,得到涂液;
(3)涂液涂覆:将前驱体溶液用毛刷均匀涂覆在钛基体表面,然后置于红外灯照射中在120℃下干燥15min,在500℃下煅烧20min,取出在空气中冷却至室温,重复12次所述涂覆、干燥、煅烧、冷却操作,最后一次煅烧的时间为1h,得到三元金属氧化物活性涂层的钛阳极。
实施例1
本实施例为优选的复合钛阳极板,在附图中表示为B。
基体结合层中Ti:Ir:Ru:Co的摩尔比为2:7:3:0.5。中间活性层中Ti:Ir:Ru:Co的摩尔比为1:3:3:4。表面活性层中Ti:Ir:Ru:Co的摩尔比为0.5:5:3:2。具体工艺过程为:
(1)钛基体预处理:将钛基体进行除油、刻蚀和清洗,得到表
面干净但粗糙的钛基体;
(2)涂液制备:将Ti、Ir、Ru和Co的源物质按照基体结合层的配比将钛酸四丁酯、氯铱酸水溶液、三氯化钌和氯化钴溶解在无水乙醇和正丁醇混合溶液中,得到涂液一;再将这四种物质按照中间活性层的配比溶解在无水乙醇和正丁醇混合溶液中,得到涂液二;最后将这四种物质按照中间活性层的配比溶解在无水乙醇和正丁醇混合溶液中,得到涂液三;
(3)涂液涂覆和热处理:先将涂液一喷涂在钛基体表面,干燥后在480℃的温度下煅烧60min;再将涂液二喷涂在有涂液一的基体上,干燥后在480℃的温度下煅烧60min,最后将涂液三喷涂在有涂液二的基体上,干燥后在480℃的温度下煅烧60min,得到复合涂层的钛阳极板。得到的复合涂层钛阳极板相比钛基体增重为1.5mg/cm2,每一层涂层的质量增重0.5 mg/cm2。涂液一、涂液二和涂液三的喷涂、干燥和煅烧工作均重复2-5次,直到每种涂液消耗完毕。喷涂时喷射的压力为0.15MPa、喷涂设备喷嘴的直径控制在0.3mm。
本发明实施方式的分析测试设备为:电化学测试使用瑞士万通Autolab-302N电化学工作站,采用三电极体系,工作电极为所制金属氧化物涂层阳极,测试面积为 1 cm2,辅助电极为1.5 cm*1.5cm的铂片电极,参比电极为饱和硫酸亚汞电极,电解液为1 mol/LH2SO4溶液,测试温度为(25±0.5)℃;循环伏安曲线测试的扫描速率为 5 mV/s。
将实施例1和对比例得到的钛阳极进行循环伏安曲线测试,图1为循环伏安曲线图,循环伏安曲线积分面积为循环伏安电量Q,而循环伏安电量Q与电极表面活性点数量成正比关系,则可用循环伏安电量Q来表征梯度涂层对电极表面活性点数目的关系。从图中可知,实施例1中钛阳极的循环伏安曲线B的曲线积分显著大于对比例的曲线积分,说明实施例1钛阳极有更高的电化学活性、并且存在明显的氧化还原峰。
将实施例1和对比例得到的钛阳极进行强化寿命测试,图2为强化寿命曲线,当槽压急剧升高至9V时停止测样,此时的测试时间为电极的强化寿命。由图可知,实施例1钛电极B有更长的强化寿命,相较于对比例,强化寿命增长50%,此结果与SEM图相符,即实施例1钛电极表面裂纹更少,并且与对比例相比较,裂纹更细,在电解过程中涂层不容易整块剥落,从而延长了使用寿命。
实施例2
本实施例为优选的复合钛阳极板,基体结合层中Ti:Ir:Ru:Co的摩尔比为2.5:7:3:0.7。中间活性层中Ti:Ir:Ru:Co的摩尔比为1:2:3:5。表面活性层中Ti:Ir:Ru:Co的摩尔比为0.5:5:3:2。具体工艺过程为:
(1)钛基体预处理:将钛基体进行除油、刻蚀和清洗,得到表
面干净但粗糙的钛基体;
(2)涂液制备:将Ti、Ir、Ru和Co的源物质按照基体结合层的配比将钛酸四丁酯、氯铱酸水溶液、三氯化钌和氯化钴溶解在无水乙醇和正丁醇混合溶液中,得到涂液一;再将这四种物质按照中间活性层的配比溶解在无水乙醇和正丁醇混合溶液中,得到涂液二;最后将这四种物质按照中间活性层的配比溶解在无水乙醇和正丁醇混合溶液中,得到涂液三;
(3)涂液涂覆和热处理:先将涂液一喷涂在钛基体表面,干燥后在470℃的温度下煅烧60min;再将涂液二喷涂在有涂液一的基体上,干燥后在470℃的温度下煅烧60min,最后将涂液三喷涂在有涂液二的基体上,干燥后在470℃的温度下煅烧60min,得到复合涂层的钛阳极板。得到的复合涂层钛阳极板相比钛基体增重为1.8mg/cm2,每一层涂层的质量增重0.6mg/cm2。涂液一、涂液二和涂液三的喷涂、干燥和煅烧工作均重复2-5次,直到每种涂液消耗完毕。喷涂时喷射的压力为0.15MPa、喷涂设备喷嘴的直径控制在0.3mm。
实施例3
本实施例为优选的复合钛阳极板,,基体结合层中Ti:Ir:Ru:Co的摩尔比为2:7:3:0.6。中间活性层中Ti:Ir:Ru:Co的摩尔比为1:3:3:5。表面活性层中Ti:Ir:Ru:Co的摩尔比为0.5:5:3:2。具体工艺过程为:
(1)钛基体预处理:将钛基体进行除油、刻蚀和清洗,得到表
面干净但粗糙的钛基体;
(2)涂液制备:将Ti、Ir、Ru和Co的源物质按照基体结合层的配比将钛酸四丁酯、氯铱酸水溶液、三氯化钌和氯化钴溶解在无水乙醇和正丁醇混合溶液中,得到涂液一;再将这四种物质按照中间活性层的配比溶解在无水乙醇和正丁醇混合溶液中,得到涂液二;最后将这四种物质按照中间活性层的配比溶解在无水乙醇和正丁醇混合溶液中,得到涂液三;
(3)涂液涂覆和热处理:先将涂液一喷涂在钛基体表面,干燥后在460℃的温度下煅烧60min;再将涂液二喷涂在有涂液一的基体上,干燥后在460℃的温度下煅烧60min,最后将涂液三喷涂在有涂液二的基体上,干燥后在460℃的温度下煅烧60min,得到复合涂层的钛阳极板。得到的复合涂层钛阳极板相比钛基体增重为1.8mg/cm2,每一层涂层的质量增重0.6mg/cm2。涂液一、涂液二和涂液三的喷涂、干燥和煅烧工作均重复3次,直到每种涂液消耗完毕。喷涂时喷射的压力为0.2MPa、喷涂设备喷嘴的直径控制在0.3mm。
实施例4
本实施例为优选的复合钛阳极板,,基体结合层中Ti:Ir:Ru:Co的摩尔比为2:7:3:0.7。中间活性层中Ti:Ir:Ru:Co的摩尔比为0.8:2:3:5。表面活性层中Ti:Ir:Ru:Co的摩尔比为0.5:5:3:2。具体工艺过程为:
(1)钛基体预处理:将钛基体进行除油、刻蚀和清洗,得到表面干净但粗糙的钛基体;
(2)涂液制备:将Ti、Ir、Ru和Co的源物质按照基体结合层的配比将钛酸四丁酯、氯铱酸水溶液、三氯化钌和氯化钴溶解在无水乙醇和正丁醇混合溶液中,得到涂液一;再将这四种物质按照中间活性层的配比溶解在无水乙醇和正丁醇混合溶液中,得到涂液二;最后将这四种物质按照中间活性层的配比溶解在无水乙醇和正丁醇混合溶液中,得到涂液三;
(3)涂液涂覆和热处理:先将涂液一喷涂在钛基体表面,干燥后在470℃的温度下煅烧60min;再将涂液二喷涂在有涂液一的基体上,干燥后在470℃的温度下煅烧60min,最后将涂液三喷涂在有涂液二的基体上,干燥后在470℃的温度下煅烧60min,得到复合涂层的钛阳极板。得到的复合涂层钛阳极板相比钛基体增重为1.8mg/cm2,每一层涂层的质量增重0.6mg/cm2。涂液一、涂液二和涂液三的喷涂、干燥和煅烧工作均重复3次,直到每种涂液消耗完毕。喷涂时喷射的压力为0.15MPa、喷涂设备喷嘴的直径控制在0.3mm。
Claims (10)
1.一种复合钛阳极板,其特征在于,所述的复合钛阳极板由钛基体、基体结合层、中间活性层和表面活性层组成,所述的基体结合层、中间活性层和表面活性层均为Ti、Ir、Ru和Co的氧化物组成,其中中间活性层和表面活性层中(Ir+Co):Ru的摩尔比为(5~8):(1~4)。
2.根据权利要求1所述的复合钛阳极板,其特征在于,所述的钛基体为TA2钛板。
3.根据权利要求1所述的复合钛阳极板,其特征在于,所述的Ti、Ir、Ru和Co的氧化物分别为钛酸四丁酯、H2IrCl6、RuCl3和CoCl2。
4.根据权利要求1所述的复合钛阳极板,其特征在于,所述的基体结合层中Ti:Ir:Ru:Co的摩尔比为(1.5~3):(5~7):(3~5):(0.5~1)。
5.根据权利要求1所述的复合钛阳极板,其特征在于,所述的中间活性层中Ti:Ir:Ru:Co的摩尔比为(1~1.5):(2~3):3:(3~5)。
6.根据权利要求1所述的复合钛阳极板,其特征在于,所述的表面活性层中Ti:Ir:Ru:Co的摩尔比为(0.3~0.5):5:3:2。
7.根据权利要求1所述的复合钛阳极板,其特征在于,所述的基体结合层、中间活性层和表面活性层三层相比钛基体增重为1~2mg/cm2且每一单层的质量增重低于0.8mg/cm2。
8.一种权利要求1~7任一所述的复合钛阳极板的制备方法,其特征在于包括钛基体预处理、涂液制备、涂液涂覆和热处理步骤,具体包括:
A、钛基体预处理:将钛基体进行除油、刻蚀和清洗得到表面干净但粗糙的钛基体备用;
B、涂液制备:分别将配方配比的为Ti、Ir、Ru和Co的氧化物溶解在有机溶剂中得到基体结合层涂液、中间活性层涂液和表面活性层涂液备用;
C、涂液涂覆和热处理:依次将基体结合层涂液、中间活性层涂液和表面活性层涂液涂覆到钛基体上得到目标物复合钛阳极板,其中每次涂覆均包括喷涂、干燥和煅烧步骤。
9.根据权利要求8所述的制备方法,其特征在于,所述的有机溶剂为无水乙醇和正丁醇的混合溶液。
10.根据权利要求8所述的制备方法,其特征在于,所述的煅烧是在温度460~480℃下煅烧40~80min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011104160.2A CN112195482B (zh) | 2020-10-15 | 2020-10-15 | 一种复合钛阳极板及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011104160.2A CN112195482B (zh) | 2020-10-15 | 2020-10-15 | 一种复合钛阳极板及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112195482A true CN112195482A (zh) | 2021-01-08 |
CN112195482B CN112195482B (zh) | 2023-05-16 |
Family
ID=74010179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011104160.2A Active CN112195482B (zh) | 2020-10-15 | 2020-10-15 | 一种复合钛阳极板及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112195482B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113387417A (zh) * | 2021-05-14 | 2021-09-14 | 王彬宇 | 一种有机废水处理的金属氧化物电极的制备方法 |
CN114457368A (zh) * | 2022-03-08 | 2022-05-10 | 昆明冶金研究院有限公司 | 一种锌电积用涂层钛阳极及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1293263A (zh) * | 2000-09-30 | 2001-05-02 | 华东师范大学 | 无裂缝纳米级钛基阳极及其制备 |
CN1438362A (zh) * | 2003-03-11 | 2003-08-27 | 福州大学 | 带有种子层的电化学工业钛阳极 |
CN101235513A (zh) * | 2007-11-14 | 2008-08-06 | 福州大学 | 一种新型涂层钛阳极 |
RU2008126815A (ru) * | 2008-07-01 | 2010-01-10 | Открытое акционерное общество "Каустик" (ОАО "Каустик") (RU) | Способ изготовления электрода для электролиза водных растворов хлоридов щелочных металлов |
US20130087450A1 (en) * | 2010-06-17 | 2013-04-11 | Industrie De Nora S.P.A. | Electrode for electrochlorination |
CN106687416A (zh) * | 2014-10-27 | 2017-05-17 | 德诺拉工业有限公司 | 用于电解氯化工艺的电极和其制造方法 |
US20190338429A1 (en) * | 2016-11-22 | 2019-11-07 | Asahi Kasei Kabushiki Kaisha | Electrode for electrolysis |
CN111424229A (zh) * | 2018-12-20 | 2020-07-17 | 上海宝钢工业技术服务有限公司 | 耐液态金属合金浸蚀复合涂层的制备方法 |
-
2020
- 2020-10-15 CN CN202011104160.2A patent/CN112195482B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1293263A (zh) * | 2000-09-30 | 2001-05-02 | 华东师范大学 | 无裂缝纳米级钛基阳极及其制备 |
CN1438362A (zh) * | 2003-03-11 | 2003-08-27 | 福州大学 | 带有种子层的电化学工业钛阳极 |
CN101235513A (zh) * | 2007-11-14 | 2008-08-06 | 福州大学 | 一种新型涂层钛阳极 |
RU2008126815A (ru) * | 2008-07-01 | 2010-01-10 | Открытое акционерное общество "Каустик" (ОАО "Каустик") (RU) | Способ изготовления электрода для электролиза водных растворов хлоридов щелочных металлов |
US20130087450A1 (en) * | 2010-06-17 | 2013-04-11 | Industrie De Nora S.P.A. | Electrode for electrochlorination |
CN106687416A (zh) * | 2014-10-27 | 2017-05-17 | 德诺拉工业有限公司 | 用于电解氯化工艺的电极和其制造方法 |
US20190338429A1 (en) * | 2016-11-22 | 2019-11-07 | Asahi Kasei Kabushiki Kaisha | Electrode for electrolysis |
CN111424229A (zh) * | 2018-12-20 | 2020-07-17 | 上海宝钢工业技术服务有限公司 | 耐液态金属合金浸蚀复合涂层的制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113387417A (zh) * | 2021-05-14 | 2021-09-14 | 王彬宇 | 一种有机废水处理的金属氧化物电极的制备方法 |
CN114457368A (zh) * | 2022-03-08 | 2022-05-10 | 昆明冶金研究院有限公司 | 一种锌电积用涂层钛阳极及其制备方法 |
CN114457368B (zh) * | 2022-03-08 | 2023-11-21 | 昆明冶金研究院有限公司 | 一种锌电积用涂层钛阳极及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112195482B (zh) | 2023-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning | |
US10975482B1 (en) | Self-derivative iron-containing nickel anode for water electrolysis | |
US20040247978A1 (en) | Bipolar plate for fuel cell and method for production thereof | |
JP4673628B2 (ja) | 水素発生用陰極 | |
CN106283125A (zh) | 金属电积用涂层钛电极及其制备方法 | |
CN1694282A (zh) | 全钒氧化还原液流电池用电极及其制备方法 | |
CN1772955A (zh) | 一种混合金属氧化物电极及其制备方法 | |
CN106048690B (zh) | 一种钛基二氧化钛纳米管复合阳极及其制备方法 | |
Yang et al. | Effects of current density on preparation and performance of Al/conductive coating/a-PbO2-CeO2-TiO2/ß-PbO2-MnO2-WC-ZrO2 composite electrode materials | |
CN112195482B (zh) | 一种复合钛阳极板及其制备方法 | |
CN106086989B (zh) | 一种银改性二氧化钛纳米管复合阳极及其制备方法 | |
CN103345958B (zh) | 含反应等离子喷涂纳米TiN中间层的复合电极材料及其制备方法 | |
CN106835193B (zh) | 一种Pb基/3D-PbO2/MeOx复合阳极及其制备方法 | |
CN202936494U (zh) | 钛基二氧化铅阳极板 | |
US6231731B1 (en) | Electrolyzing electrode and process for the production thereof | |
EP0046449B1 (en) | Dimensionally stable coated electrode for electrolytic process, comprising protective oxide interface on valve metal base, and process for its manufacture | |
CN108060451B (zh) | 一种疏水天然纤维复合二氧化铅阳极的制备方法 | |
CN106521610B (zh) | 一种六价铬电镀用组合钛阳极及其制备方法 | |
CN114592218B (zh) | 一种钛基阳极及其制备方法和应用 | |
Pavlović et al. | On the use of platinized and activated titanium anodes in some electrodeposition processes | |
CN115354384A (zh) | 一种电沉积铜用涂层钛阳极及其制备方法 | |
CN109504987B (zh) | 一种用于电解锰的钛基复合阳极及其制备方法、应用 | |
Wang et al. | Effect of current densities on the microstructure and electrochemical behavior of the porous β-PbO2 electrode | |
CN114457368B (zh) | 一种锌电积用涂层钛阳极及其制备方法 | |
JPS6147231B2 (zh) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |