CN112187577A - 一种基于网络分解的大规模桥梁网络连通概率评估方法 - Google Patents

一种基于网络分解的大规模桥梁网络连通概率评估方法 Download PDF

Info

Publication number
CN112187577A
CN112187577A CN202011034299.4A CN202011034299A CN112187577A CN 112187577 A CN112187577 A CN 112187577A CN 202011034299 A CN202011034299 A CN 202011034299A CN 112187577 A CN112187577 A CN 112187577A
Authority
CN
China
Prior art keywords
network
probability
sub
subnet
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011034299.4A
Other languages
English (en)
Other versions
CN112187577B (zh
Inventor
李顺龙
王杰
何少阳
李忠龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202011034299.4A priority Critical patent/CN112187577B/zh
Publication of CN112187577A publication Critical patent/CN112187577A/zh
Application granted granted Critical
Publication of CN112187577B publication Critical patent/CN112187577B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/142Network analysis or design using statistical or mathematical methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种基于网络分解的大规模桥梁网络连通概率评估方法,涉及一种桥梁网络评估方法。应用多级k路划分算法,递归的划分桥梁网络为多个串联的子网;定义子网的相邻组件和局部网络并分别构建邻接矩阵,将子网状态分为子网连通、子网不连通但网络整体可能连通、子网不连通且网络整体不连通三种状态,计算各状态概率,同时在计算时删除子网不连通且网络整体不连通状态;依据子网终端节点连接情况,将属于子网不连通但网络整体可能连通状态的最小项进一步划分为多个类别,子网中所有终端节点之间彼此连通;将各子网的终端节点和子网间的连边进一步简化为简化网络,对简化网络整体连通的情况求和即得桥梁网络连通概率。

Description

一种基于网络分解的大规模桥梁网络连通概率评估方法
技术领域
本发明涉及一种桥梁网络评估方法,尤其是一种基于网络分解的大规模桥梁网络连通概率评估方法,属于土木工程技术领域。
背景技术
作为世界第一的桥梁大国,截至2019年底,中国公路桥梁总数已达87.83万座、6063.46万米。交通基础设施,特别是桥梁的退化问题一直是国内外研究的重点。但由于桥梁网络的高效运行对保障区域内交通基础设施网络的功能性与安全性、网络层面的资金合理分配至关重要,相较于单个桥梁的状态,近年来,桥梁网络的评估问题逐渐成为国内外研究学者与交通管理部门的关注焦点。
桥梁网络性能评估的重点内容之一就是探究其连通概率,该指标对评估网络整体安全性能与指导网络桥梁相对重要性等方面具有重要意义。目前,根据研究的网络中节点的数量,网络连通概率问题主要分为两端连通概率、多端连通概率和全端连通概率三类。交通基础设施网络连通概率问题属于最复杂的全端连通概率问题,因为出行者可能将网络中的任意两节点设为出行的出发点与目的地。
然而,网络的全端连通概率问题已被证明是NP-hard问题。目前广泛应用的桥梁网络连通概率的求解方法主要分为状态枚举法、路径/割集枚举法及其改进算法。由于对于一个含有m个不可靠构件(桥梁)、n个节点和s条边的桥梁网络,其包含的状态总数为2m、割集和路径分别约为2n-2个和2s-n-2条。显然,对于含有成百上千座桥梁的大规模桥梁网络,直接应用状态枚举法是不经济的甚至是不切实际的。因此,亟需研发一种精确高效的大规模桥梁网络连通概率评估算法。
发明内容
为解决背景技术存在的不足,本发明提供一种基于网络分解的大规模桥梁网络连通概率评估方法,能够高效准确地评估桥梁网络整体的连通情况。
为实现上述目的,本发明采取下述技术方案:一种基于网络分解的大规模桥梁网络连通概率评估方法,包括以下步骤:
步骤1:应用多级k路划分算法(Multilevel k-Way Graph Partition),其中k取为2,将桥梁网络一分为二,并不断地将所得网络二分,递归的划分桥梁网络为多个串联的子网,同时使划分出的各子网满足以下两个条件:
Figure BDA0002704651010000021
式中,Size(i)表示子网i包含的节点数,Size(j)表示子网j包含的节点数,
Figure BDA0002704651010000022
表示子网a和b之间边割的数目;
步骤2:根据网络整体以及子网连通与否,定义子网的相邻组件和局部网络并分别构建邻接矩阵ANC和Aloc,通过将Aloc应用于改进Dijkstra算法判断各局部网络的连通情况,将子网状态分为子网连通、子网不连通但网络整体可能连通、子网不连通且网络整体不连通三种状态,并计算各状态概率,同时在计算桥梁网路连通概率时删除子网不连通且网络整体不连通状态;
步骤3:依据子网终端节点之间的连接情况,将属于子网不连通但网络整体可能连通状态的最小项进一步划分为多个类别,同时,所有属于子网连通状态的最小项对应为所有终端节点之间彼此连通的同一个类别,即子网中所有终端节点之间彼此连通;
步骤4:将各子网的终端节点和子网间的连边进一步简化为简化网络,该简化网络各类别概率可由子网类别概率和边割连通情况概率求得,构造简化网络中各子网的终端节点及子网间的边割的不同连接情况的连接矩阵Asn,应用改进Dijkstra算法判断简化网络连通情况及连通概率,由于简化网络连通性与原桥梁网路连通性具有一致性,因此对简化网络整体连通的情况求和即得桥梁网络连通概率,
Figure BDA0002704651010000031
P(C)=∑P(Network connected|ith class)·P(ith class)
式中,P(ith class)为桥梁网络的第i个类别的概率,P(ath subnet)为子网a的终端节点的类别概率,P(bth edge-cut)为子网间连边b对应的状态概率,P(C)为桥梁网络连通概率,P(Network connected|ith class)为第i个类别下桥梁网络连通的概率。
与现有技术相比,本发明的有益效果是:本发明提出的大规模桥梁网络连通概率评估方法,采用网络分解的思想,基于多级k路划分算法,递归地将大规模桥梁网络划分为几个串联的规模大致相等的子网,大致相等的子网规模保证了各子网并行计算的时间均衡性。通过定义各子网的相邻组件、局部网络和三种状态,求得子网各状态概率,在进行后续网络连通概率评估中可直接删除子网不连通且网络整体不连通(DDS)状态,有效提高算法运行效率。根据每个子网终端节点的连接情况,进一步简化桥梁网络,简化的桥梁网路连通概率可应用串联体系连通概率求解方法。本发明方法的鲁棒性及可靠性强,能够快速准确地评估大规模桥梁网络安全性,精确度高、耗时少,为桥梁网络整体与网络中单体桥梁服役状态评估和运营维护提供技术支撑。
附图说明
图1是本发明的基于递归多级k路划分算法的网络分解流程图;
图2是实施例中的国道桥梁网络图;
图3是实施例中的国道桥梁网络各边的失效概率图;
图4是实施例中的国道桥梁网络的网络分解结果图;
图5是图4中子网1的2个典型最小项和对应的局部网络图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种基于网络分解的大规模桥梁网络连通概率评估方法:
原始多级k路划分算法(Multilevel k-Way Graph Partition)的主要目标是将网络划分为k个规模大致相等的子网,且使子网之间的连边数最小,主要内容包含粗化阶段(coarsening stage)、初始分割阶段(initial partitioning stage)和反粗化阶段(uncoarsening stage)。其中,粗化阶段通过寻找网络中的最大匹配(maximal matching)缩小网络。网络的最大匹配需满足以下两个条件:条件1,最大匹配中的任意两个边不能连接到同一节点;条件2,将任何其他边添加到该最大匹配会使上述条件1失效。每个匹配步骤中,相邻节点i和j之间(i>j),边的匹配过程可以通过邻接矩阵的更新表示,如下所示:
Figure BDA0002704651010000041
式中,Aupdate为i和j之间(i>j)的边经过匹配后更新的邻接矩阵,单位矩阵In×n通过如下变换转化为
Figure BDA0002704651010000051
Figure BDA0002704651010000052
其中等号后指设为空值,就是删除矩阵的某一行,
因为含有小于k个节点的网络无法进一步分解为k个子网,所以当粗化后的网络中的节点数足够小或等于k时,结束粗化阶段。
在初始分割阶段,将粗化后的图直接划分为k个大致相等的子网,然后,将获得的k个子网反粗化(映射)回原始图,同时,为了最大程度地减少子网之间的连边数,在反粗化阶段各个步骤对k个子网进行优化,即可得到分解为k个子网的网络划分结果,反粗化阶段的优化通常采用贪婪优化算法,该算法随机选择子网a中的节点v并将其移动到满足以下任意一个条件的子网b中:
Figure BDA0002704651010000053
Figure BDA0002704651010000054
式中,
Figure BDA0002704651010000055
表示节点v从子网a到子网b的最大出度、
Figure BDA0002704651010000056
表示子网a中节点v的入度;W(a)和W(b)分别代表子网a和b的总权重、w(v)表示节点v的权重。
前述的传统多级k路划分算法(Multilevel k-Way Graph Partition)通常分解出与其他子网相互并联的子网,导致后续网络连通概率的计算极为复杂。为简化计算,通过递归地应用多级k路图划分算法t次将大型桥梁网络分解为几个串联的子网,从而形成2t个串联子网,如图1所示,奇数数量的子网可以通过控制初始分割阶段(initial partitioningstage)将网络划分为几个不同大小的子网,如图1所示。
全终端网络连接概率问题中,当且仅当网络中所有节点对都处于连通状态时,才认为网络整体是连通的。因此传统的基于状态的枚举方法对具有m个不可靠组件(UCS)的网络,其连接概率通过列举所有2m个状态组合(最小项)及其概率计算,如下:
Figure BDA0002704651010000061
Figure BDA0002704651010000062
式中,P(ith minterm)代表网络的第i个最小项的概率,P(Network connected|ithminterm)为给定最小项i下网络处于连通状态的概率,
Figure BDA0002704651010000063
Figure BDA0002704651010000064
分别为最小项i中各组件的状态(失效和服役)概率。
网络划分为几个串联的子网后,网络整体概率可应用串联系统连通概率方法进行求解:
Figure BDA0002704651010000065
式中,P(ith minterm)为网络的第i个最小项的概率,P(ath subset)和P(bth edge-cut)分别为最小项i下子网a和边割b的状态概率。
在进行有效的网络分割后,含边数量少的边割状态概率P(bth edge-cut)是容易实现。网络连通概率评估的主要挑战是准确计算每个子网的状态概率P(ath subset),并判断每个子网状态下整个网络的状态P(Network connected|ith minterm),找到子网状态和网络整体状态之间的内在联系。
为解决上述问题,定义了子网的相邻组件以及局部网络。其中,为确定和描述某子网与其他子网之间的连接情况,该子网的相邻组件定义为直接连接到该子网的一组边割和与边割直接相连的相邻子网的节点的集合。如图5所示,三个节点(节点4、11和33)和其左侧的5个实线和组成了子网1的相邻组件。子网内与相邻组件连接的节点是终端节点(图5中的节点3、10和32)。因此,如果子网位于几个串联子网的开头或结尾,则它的一侧有相邻组件;否则,它的两侧都有相邻的组件。
为描述子网与其相邻组件的关系,对于具有n节点的子网以及具有n1个节点的相邻组件,定义了n1×(n1+n)维的(0-1)邻接矩阵ANC。其中,矩阵的n1×(1:n1)列存储相邻组件节点之间的连接关系,后n1×(n1+1:n1+n)列存储相邻组件的节点与该子网的节点之间的连接情况。如果子网的终端节点i通过边割连接到相邻组件节点j上,则ANC(j,n1+i)=1;否则,ANC(j,n1+i)=0。相邻组件的节点i和j之间视为直接或间接彼此相连,即ANC(i,j)=1(i≠j)。
其次,局部网络定义为由子网的最小项和相邻组件组成的一个整体(如图5所示)。同时,构造了局部网络矩阵Aloc用以描述局部网络内部节点的连接情况。对于具有n个节点的子网和具有n1个节点的相邻组件,按以下方式构造局部网络矩阵Aloc
Figure BDA0002704651010000071
因此,基于状态枚举法,子网或局部网络连通概率通过首先枚举网络的所有最小项以及相应的概率P(ith minterm),然后,可以应用改进的Dijkstra算法来判断任一最小项下网络的连通情况P(Network connected|ith minterm)(连接或断开)。改进的Dijkstra算法通过判断最小项的所有节点对之间是否存在至少一条有限长度的最短路径来判断全终端连通情况。如果存在至少一条,则该最小项处在连Wi mint通状态;否则,处于不连通状态。算法通过将经过不断变换的网络权值矩阵应用于传统的Dijkstra算法,获得任意节点i与其他所有节点之间的最短路径
Figure BDA0002704651010000081
Figure BDA0002704651010000082
式中,Wmint代表所研究网络的原始权值矩阵,由其最小项的邻接矩阵Amint转换得到。
由于划分出的子网的规模明显缩小,改进的Dijkstra算法可根据邻接矩阵Amint和网络中所有不可靠构件的故障概率判断每个最小项的连通情况(连通或断开)。然后,可以通过将处于连通状态的所有最小项概率相加来获得子网连通CS状态的概率PCS。
但是,由于存在其他子网和边割,属于断开状态的最小项不一定会导致整个网络断开。如图5所示,尽管边(10,32)和(25,32)断开后子网1处于不连通状态,但整个网络仍可以通过其他子网以及子网之间的边割连接。当然,存在处于断开状态的子网的最小项直接导致整个网络不连通的情况。如图5所示,如果节点1到节点2和节点1到节点9两条边处于失效状态,则该处于不连通状态的最小项将导致整个网络断开。
因此,本发明采用局部网络对子网状态进行分类,分为三个子网状态,包括1个连通状态(CS)和2个不连通状态。其中,子网的(CS)为网络中所有节点对都可以相互连通的状态。同时,通过判断相应的局部网络的连通性,可以将子网的断开状态分为两种:(DCS):子网处于断开状态,但是在某些条件下网络整体可能连通;(DDS):子网处于断开状态,并且网络整体不连通。值得注意的是,在进行网络连通概率评估中可直接删除子网不连通且网络整体不连通(DDS)状态。同时,局部网络的连通情况可应用改进Dijkstra算法根据各子网的最小项对应的局部网络矩阵Aloc求得。
在对子网状态进行定义后,为了建立子网状态和整个网络状态之间的关系,采用类别(Class)的概念对子网状态进一步分类。它表示子网所有终端节点之间的连通状态。对于通过网络的各边(直接或间接)相互连接的n个节点,这n个节点的类别被定义为不同的边失效下的节点连通情况的集合。在这里,它是终端节点相同连接情况的最小项集合。如图5所示,子网1的3个终端节点(节点3、10和32)的可以分为五类:{[3,10,32]},{[3],[10,32]},{[10],[3,32]},{[3,10],[32]}和{[3],[10],[32]}。其中,同一方括号和不同方括号中的节点分别表示相互连通和不连通状态。同时,某类别(Class)的概率是其中包含的所有最小项的概率之和。
可以看到,CS中每个子网的最小项对应于所有终端节点可以相互连通的同一类别(Class),即{[3,10,32]}对于子网1。DCS中的最小项包含子网终端节点的其余类别(Class),即{[3],[10,32]},{[10],[3,32]},{[3,10],[32]},和{[3],[10],[32]}对于子网1。
最后,通过提取每个子网的终端节点和边割,简化复杂的原始桥梁网络,建立新的串联系统。网络连通概率是通过评估每个子网的终端节点以及相邻组件中边割的不同状态下的网络连通情况来确定的:
Figure BDA0002704651010000091
P(C)=∑P(Network connected|ith class)·P(ith class)
其中,P(ith class)代表原桥梁网络的第i个类别的概率,P(ath subset)和P(bthedge-cut)分别代表子网a的终端节点的类别(Class)概率和边割b的状态概率。
同理,仍可通过构造简化网络的邻接矩阵Asn判断其连通情况。该邻接矩阵的维数由所有子网的终端节点总数决定,对于被分解为s个子网的桥梁网络,如果每个子网i含有ni个终端节点的,邻接矩阵Asn的维数为(n1+…ni+…ns)×(n1+…ni+…ns)。简化网络的第i类的每个终端节点对之间连通情况由所有子网的类和边割的当前状态确定。如果终端节点i和j(i≠j)在第i类的子网的类别的同一方括号中或通过边割连接,则Asn(i,j)=1;否则,Asn(i,j)=0。同时,如果i=j,那么Asn(i,j)=0。因此,简化网络的连通性可以通过改进的Dijkstra算法判断。最终可应用公式P(C)=∑P(Network connected|ith class)·P(ithclass)确定原始网络的连接概率。
步骤1:应用多级k路划分算法(Multilevelk-WayGraphPartition),其中k取为2,将桥梁网络一分为二,并不断地将所得网络二分,递归的划分桥梁网络为多个串联的子网,同时使划分出的各子网满足以下两个条件:
Figure BDA0002704651010000101
式中,Size(i)表示子网i包含的节点数,Size(j)表示子网j包含的节点数,
Figure BDA0002704651010000102
表示子网a和b之间边割的数目;
步骤2:根据网络整体以及子网连通与否,定义子网的相邻组件和局部网络并分别构建邻接矩阵ANC和Aloc,通过将Aloc应用于改进Dijkstra算法判断各局部网络的连通情况,将子网状态分为子网连通、子网不连通但网络整体可能连通、子网不连通且网络整体不连通三种状态,并计算各状态概率,同时在计算桥梁网路连通概率时删除子网不连通且网络整体不连通状态;
步骤3:依据子网终端节点之间的连接情况,将属于子网不连通但网络整体可能连通状态的最小项进一步划分为多个类别,同时,所有属于子网连通状态的最小项对应为所有终端节点之间彼此连通的同一个类别,即子网中所有终端节点之间彼此连通;
步骤4:将各子网的终端节点和子网间的连边进一步简化为简化网络,该简化网络各类别概率可由子网类别概率和边割连通情况概率求得
Figure BDA0002704651010000111
构造简化网络中各子网的终端节点及子网间的边割的不同连接情况的连接矩阵Asn,应用改进Dijkstra算法判断简化网络连通情况及连通概率,由于简化网络连通性与原桥梁网路连通性具有一致性,因此对简化网络整体连通的情况求和即得桥梁网络连通概率P(C)=∑P(Network connected|ith class)·P(ith class)。
实施例:(结合吉林省国道桥梁网络连通概率的评估分析进行说明)
位于中国东北地区的吉林省国道桥梁网络覆盖约18.74万平方公里的土地,涉及到2740.6万人的出行,共包含1772座桥梁,如图2(1)所示。该国道桥梁网络中所有桥梁的失效概率可根据检测结果和现有规范与相关研究确定。该桥梁网络拓扑模型可通过将网络中的国道交叉点和交点之间的国道分别提取为网络的节点和边得到,如图2(2)所示。因此,构造的网络模型中含有40个节点和68条边。每条边的失效概率由位于该边上的所有串联的桥梁的失效概率确定,如图3所示。
步骤1:应用多级k路划分算法(Multilevel k-Way Graph Partition),其中k取为2,将桥梁网络一分为二,并不断地将所得网络二分,递归的划分国道桥梁网络为7个部分,如图4所示,4个串联的子网和子网之间的3个边割(中间部分),同时使各子网规模大致相等,且通过优化使子网间连边数较少(从左到右分别为5、5和3);
步骤2:根据网络整体以及子网连通情况,定义子网的相邻组件和局部网络并分别构建邻接矩阵ANC和Aloc,其中,如图5所示,子网1的最小项(4条虚线边失效的情况)及其对应的邻接组件的邻接矩阵分别为:
Figure BDA0002704651010000121
于是,局部网络的邻接矩阵Aloc可由上述ANC和Amint构造(n1=3):
Figure BDA0002704651010000122
通过将权值矩阵进行转换
Figure BDA0002704651010000123
并将其应用到Dijkstra算法中判断各局部网络的连通情况,将子网状态分为子网连通(CS)、子网不连通但网络整体可能连通(DCS)、子网不连通且网络整体不连通(DDS)三种状态,并将每个状态中的所有最小项的概率相加求得相应概率(如表1所示),同时在计算桥梁网路连通概率时删除子网不连通且网络整体不连通(DDS)状态(分别占4个子网所有最小项数量的61.133%,2.053%,8.452%和73.438%)。使用电脑配置为i7-8700 CPU 8GB RAM时,只需约1分钟即可确定所有这4个子网的状态概率。
表1国道桥梁网络4个子网的状态概率
Figure BDA0002704651010000124
Figure BDA0002704651010000131
步骤3:依据子网终端节点之间的连接情况,将属于子网不连通但网络整体可能连通(DCS)的最小项进一步划分为多个类别(Class),同时,所有属于子网连通(CS)的最小项对应为所有终端节点之间彼此连通的同一个类别(Class),4个子网分别有20.801%,75.994%,46.896%和8.984%的最小项属于此类别,该部分最小项无需进一步划分。
步骤4:将各子网的终端节点和子网间的连边进一步简化为简化网络,该简化网络各类别概率可由子网各类别概率和边割连通情况的概率的乘积求得
Figure BDA0002704651010000132
同时构造描述简化网络中各子网的终端节点及子网间的边割的不同连接情况的邻接矩阵Asn,并应用改进Dijkstra算法判断简化网络的连通情况及概率,由于简化网络连通性与原桥梁网路连通性具有一致性,因此对局部网络连通的情况求和即得桥梁网络连通概率P(C)=∑P(Network connected|ith class)·P(ith class)。最终,在电脑配置为I7-8700 CPU 8GB RAM时,仅需5个小时即可求得在99.99979%保证率下,该国道桥梁网络连通概率为0.995338。这与改进ORDER-II-Dijkstra算法结果一致,而在准确度与算法效率方面都表现出了非常明显的优势(如表2所示)。
表2本发明所提出的算法与改进ORDER-II-Dijkstra算法结果对比
Figure BDA0002704651010000133
本评估方法能在较高的准确率下评估大规模桥梁网络连通概率,与其他算法求得的结果一致,而在准确度与算法效率方面表现出了明显的优势,验证了本发明所提方法的优异性。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的装体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同条件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (1)

1.一种基于网络分解的大规模桥梁网络连通概率评估方法,其特征在于:所述方法包括以下步骤:
步骤1:应用多级k路划分算法,其中k取为2,将桥梁网络一分为二,并不断地将所得网络二分,递归的划分桥梁网络为多个串联的子网,同时使划分出的各子网满足以下两个条件:
Figure FDA0002704649000000011
式中,Size(i)表示子网i包含的节点数,Size(j)表示子网j包含的节点数,
Figure FDA0002704649000000012
表示子网a和b之间边割的数目;
步骤2:根据网络整体以及子网连通与否,定义子网的相邻组件和局部网络并分别构建邻接矩阵ANC和Aloc,通过将Aloc应用于改进Dijkstra算法判断各局部网络的连通情况,将子网状态分为子网连通、子网不连通但网络整体可能连通、子网不连通且网络整体不连通三种状态,并计算各状态概率,同时在计算桥梁网路连通概率时删除子网不连通且网络整体不连通状态;
步骤3:依据子网终端节点之间的连接情况,将属于子网不连通但网络整体可能连通状态的最小项进一步划分为多个类别,同时,所有属于子网连通状态的最小项对应为所有终端节点之间彼此连通的同一个类别,即子网中所有终端节点之间彼此连通;
步骤4:将各子网的终端节点和子网间的连边进一步简化为简化网络,该简化网络各类别概率可由子网类别概率和边割连通情况概率求得,构造简化网络中各子网的终端节点及子网间的边割的不同连接情况的连接矩阵Asn,应用改进Dijkstra算法判断简化网络连通情况及连通概率,由于简化网络连通性与原桥梁网路连通性具有一致性,因此对简化网络整体连通的情况求和即得桥梁网络连通概率,
Figure FDA0002704649000000021
P(C)=∑P(Network connected|ith class)·P(ith class)
式中,P(ith class)为桥梁网络的第i个类别的概率,P(ath subnet)为子网a的终端节点的类别概率,P(bth edge-cut)为子网间连边b对应的状态概率,P(C)为桥梁网络连通概率,P(Network connected|ith class)为第i个类别下桥梁网络连通的概率。
CN202011034299.4A 2020-09-27 2020-09-27 一种基于网络分解的大规模桥梁网络连通概率评估方法 Active CN112187577B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011034299.4A CN112187577B (zh) 2020-09-27 2020-09-27 一种基于网络分解的大规模桥梁网络连通概率评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011034299.4A CN112187577B (zh) 2020-09-27 2020-09-27 一种基于网络分解的大规模桥梁网络连通概率评估方法

Publications (2)

Publication Number Publication Date
CN112187577A true CN112187577A (zh) 2021-01-05
CN112187577B CN112187577B (zh) 2021-11-23

Family

ID=73944742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011034299.4A Active CN112187577B (zh) 2020-09-27 2020-09-27 一种基于网络分解的大规模桥梁网络连通概率评估方法

Country Status (1)

Country Link
CN (1) CN112187577B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783823A (zh) * 2004-12-02 2006-06-07 索尼株式会社 网络系统、无线通信设备、无线通信方法及其计算机程序
CN104080056A (zh) * 2014-07-09 2014-10-01 南京邮电大学 基于连通度概率感知的车载自组织网络的消息分发方法
US9838943B2 (en) * 2015-11-24 2017-12-05 King Fahd University Of Petroleum And Minerals Method of routing for wireless ad hoc and sensor networks
CN108805205A (zh) * 2018-06-13 2018-11-13 中国矿业大学 一种基于显示连通贝叶斯网络的结构系统易损性评估方法
CN109472115A (zh) * 2018-12-14 2019-03-15 中国人民解放军国防科技大学 基于地理信息的大规模复杂网络建模方法及装置
CN109918819A (zh) * 2019-03-15 2019-06-21 哈尔滨工业大学 一种基于贝叶斯网络的大规模桥梁网络评估方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783823A (zh) * 2004-12-02 2006-06-07 索尼株式会社 网络系统、无线通信设备、无线通信方法及其计算机程序
CN104080056A (zh) * 2014-07-09 2014-10-01 南京邮电大学 基于连通度概率感知的车载自组织网络的消息分发方法
US9838943B2 (en) * 2015-11-24 2017-12-05 King Fahd University Of Petroleum And Minerals Method of routing for wireless ad hoc and sensor networks
CN108805205A (zh) * 2018-06-13 2018-11-13 中国矿业大学 一种基于显示连通贝叶斯网络的结构系统易损性评估方法
CN109472115A (zh) * 2018-12-14 2019-03-15 中国人民解放军国防科技大学 基于地理信息的大规模复杂网络建模方法及装置
CN109918819A (zh) * 2019-03-15 2019-06-21 哈尔滨工业大学 一种基于贝叶斯网络的大规模桥梁网络评估方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DOMINIQUE LASALLE,GEORGE KARYPIS,: ""Multi-threaded Graph Partitioning"", 《2013 IEEE 27TH INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING》 *
KEIVAN ROKNEDDIN,: ""Bridge retrofit priortisation for ageing transportation networks subject to seismic hazards"", 《STRUCTURE AND INFRASTRUCTURE ENGINEERING》 *
PETER WILLIS,ET AL.,: ""Optimum Rooted Trees for Failover in Switched Networks"", 《2020 IFIP NETWORKING CONFERENCE (NETWORKING)》 *
侯本伟,ET AL.,: ""基于Monte Carlo模拟的公路网络震后连通性与通行时间分析"", 《中国公路学报》 *
唐昀,: ""基于贝叶斯网络方法的城市道路交通网络抗震脆弱性评估"", 《中国优秀硕士学位论文全文数据库(工程科技II辑)》 *
李顺龙,: ""基于健康监测技术的桥梁结构状态评估和预警方法研究"", 《中国博士学位论文全文数据库 (工程科技Ⅱ辑)》 *

Also Published As

Publication number Publication date
CN112187577B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CN107092984B (zh) 一种基于级联失效的网络功能端节点传播预测方法
CN110111576B (zh) 一种基于时空拥堵子团的城市交通弹性指标的实现方法
CN112507552A (zh) 一种基于多种攻击策略的电力网络脆弱性评估方法
CN109918819B (zh) 一种基于贝叶斯网络的大规模桥梁网络评估方法
CN111193629A (zh) 一种多层信息网络的动态负载级联失效的故障传播方法
CN109446628A (zh) 基于复杂网络的多层城市交通网构建及关键节点识别方法
CN110232819B (zh) 一种基于复杂网络的城市关键道路的发掘方法
CN113190939B (zh) 基于多边形系数的大型稀疏复杂网络拓扑分析和简化方法
CN102665253B (zh) 一种基于无线传感网络的事件检测方法
Zhan et al. Dynamics of functional failures and recovery in complex road networks
CN112269844B (zh) 基于大规模轨迹数据的通用伴随模式分布式挖掘方法
CN113411691B (zh) 一种电力光纤网社团划分方法
CN112187577B (zh) 一种基于网络分解的大规模桥梁网络连通概率评估方法
CN108965287B (zh) 一种基于有限临时删边的病毒传播控制方法
Zhang et al. Connectivity in two-dimensional lattice networks
CN112101474B (zh) 一种航空交通网络模体识别方法及子图结构韧性评估方法
CN115879271A (zh) 一种基于割集断面树的电网割集型关键输电断面搜索方法
CN105429793A (zh) 一种通讯网络加权链路重要度评估方法
CN116129648A (zh) 一种路网拥堵关键节点识别方法、设备、介质
CN115577292A (zh) 基于抽象对偶网络和连锁故障超网络的脆弱线路辨识方法
CN111917589B (zh) 一种电力通信网络资源备份方法及相关装置
CN115130044A (zh) 一种基于二阶h指数的影响力节点识别方法和系统
CN108090616A (zh) 一种电力系统主动解列最优断面搜索方法
CN114416824A (zh) 基于模体信息的复杂网络关键节点挖掘的方法
CN114205214A (zh) 一种电力通信网络故障识别方法、装置、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant