CN104080056A - 基于连通度概率感知的车载自组织网络的消息分发方法 - Google Patents

基于连通度概率感知的车载自组织网络的消息分发方法 Download PDF

Info

Publication number
CN104080056A
CN104080056A CN201410326280.5A CN201410326280A CN104080056A CN 104080056 A CN104080056 A CN 104080056A CN 201410326280 A CN201410326280 A CN 201410326280A CN 104080056 A CN104080056 A CN 104080056A
Authority
CN
China
Prior art keywords
vehicle
observation
point
organizing network
perception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410326280.5A
Other languages
English (en)
Other versions
CN104080056B (zh
Inventor
赵海涛
彭江琴
刘南杰
朱洪波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201410326280.5A priority Critical patent/CN104080056B/zh
Publication of CN104080056A publication Critical patent/CN104080056A/zh
Application granted granted Critical
Publication of CN104080056B publication Critical patent/CN104080056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Traffic Control Systems (AREA)

Abstract

本发明公开了基于连通度概率感知的车载自组织网络的消息分发方法,该方法首先在道路处于自由连通状态的前提下,研究了基于车辆速度的多车道连通概率分析模型。该模型主要关注各个路段的连通概率,基于前人的研究分析推导出多车道的道路连通概率。其次,针对单播等端到端的消息分发场景,提出一种基于连通度概率感知的车载自组织网络的消息分发方法(简称CPAM)。该方法分为两个层次,宏观层次上选择连通度概率高的路段作为数据包转发的路径;微观层次上针对每一路段进行基于邻居信息的多跳广播,快速地将数据包从路段入口传输到路段出口。

Description

基于连通度概率感知的车载自组织网络的消息分发方法
技术领域
本发明涉及一种基于连通度概率感知的车载自组织网络的消息分发方法,属于网络通讯技术领域。
背景技术
随着近十年我国经济的快速增长,汽车在普通家庭越来越普及。公安部公布数据显示,2013年底全国机动车保有量已达2.5亿辆,其中汽车保有量1.37亿辆,年增长1651万辆。按照人口以及经济的增长速度,机动车保有量的发展大致可以分为三个阶段:1)快速增长期;2)缓慢增长期;3)平稳期。我国目前正处于快速增长期,而再过十年我国汽车市场将迎来新的里程碑,新车产销量将达到美欧之和,汽车保有量成为世界第一,我国将真正成为汽车大国。
为了改善交通系统的安全性和效率,智能交通系统(IntelligentTransportation System,简称ITS)应运而生。ITS通常是指与交通系统相关的应用,它并没有统一的定义,各个国家有所不同。例如,欧洲将ITS定义为城市交通中信息技术和通信技术相结合的新型应用,称为交通运输远程信息处理系统(Transport Telematics)。美国的智能运输协会(IntelligentTransportation Society of America,ITSA)定义ITS为能够解决许多现有交通问题的范围广泛的不同技术,包括信息处理、通信技术、控制技术以及电子学等。而日本的ITS是指解决交通系统相关问题(如交通事故、交通拥堵以及环境污染)的根本解决方案。在我国,智能交通系统是在较完善的基础设施(包括道路、港口、机场和通信)之上,将先进的信息技术、通信技术、控制技术、传感器、计算机技术和系统综合技术有效的集成,并应用于地面运输系统,从而建立起大范围内发挥作用的,实时、准确、高效的运输系统。可以看出,虽然各个国家对ITS的定义有所差别,但普偏认为,ITS就是利用车辆以及基础设施的通信和信息技术管理交通网络中的所有元素(如车辆、交通荷载、路径等)。ITS的旨在提高驾驶安全性,减少出行所需时间,改善交通状态以及降低油耗,有现实的研究意义。
ITS的分支之一是车载自组织网络(Vehicular Ad-hoc NETwork,VANET),它是移动自组织网络的特殊形式和应用,主要运用在道路交通和车载通信领域,是智能交通系统的重要组成部分。车载自组织网络最主要的目标在于使得车辆之间以及车辆与道路基础设施之间能够相互通信。为了达到此目的,需要在车辆以及道路上分别安装车载单元(On-Board Unit,OBU)和路边单元(Road-SideUnit,RSU)。RSU之间可以直接通信,而车辆可以直接通过OBU将数据发送到RSU,也可接收来自RSU的数据。在车辆不能直接与RSU通信时,车辆可以通过OBU将数据发送给相邻车辆,即通过多跳转发策略完成数据的传输。通过上述的这些通信方式,车载自组织网络中的车辆能够进行自由的组网和通信,并实现交通安全信息、道路状况信息和娱乐消息的实时高效传输,解决行车安全、道路拥堵等问题。
对于单播等端到端的应用场景,由于车载自组织网络的节点高速移动以及拓扑快速变化的特性,源节点与目的节点之间并不是总能够找到中继节点,或者端到端的连接并不能保持稳定。在这种情况下,如何实现端到端消息的高效传输也是车载自组织网络中研究热点之一。
目前,文献Karp B,Kung H T.GPSR:Greedy perimeter stateless routingfor wireless networks[C].Proceedings of the6th annual internationalconference on Mobile computing and networking.ACM,2000:243-254.提出了一种基于位置和地理路由协议的方案,该方案在路由过程中依赖于位置信息,源节点使用的是位置信息而不是网络地址发送的数据包。其中节点需要GPS辅助获取自身的位置以及邻节点的位置,源节点发送数据包时,将目的节点的位置信息作为包头信息,因此,数据包的转发过程不需要路由发现和路由维护,甚至不需要知道网络拓扑。但是,GPSR要求节点直接能够长时间相互连通,而在车载自组织网络中,节点的快速移动往往导致频繁的网络拓扑改变,最终导致网络分割。在这种情形下,GPSR存在很大的缺陷。除此之外,假如没有节点比自身离目的节点更近,数据包的转发将会失败,即局部最优问题。
目前,文献Blum J,Eskandarian A,Hoffman L.Mobility management inIVC networks[C].Intelligent Vehicles Symposium,2003.Proceedings.IEEE.IEEE,2003:150-155.提出了一种基于簇的路由协议,该协议根据节点的不同特性(如行驶方向、速度等)将网络划分成簇。每个簇都有一个簇头,其任务是管理簇内和簇外的通信过程。簇内节点之间可以直接通信,而与簇外节点的通信需要通过簇头来完成。这种方法可以提供良好的可扩展性,然而,对于高动态网络,会增加网络开销和延时。开放车间通信系统的分簇协议(Clustering forOpen IVC Network,COIN)根据节点的移动、位置以及行为来分簇,并为每个簇分配生命周期以减少控制开销。但是,为了保证簇头以及簇成员之间的持续通信,COIN协议中的节点必须以较低的速度移动,且移动性有较高的相似度。这个特殊的要求并不适合车载自组织网络的场景,这也是该协议最大的缺陷。而本发明能够很好地解决上面的问题。
发明内容
本发明目的在于解决了单播等端到端的消息分发场景,传统上以贪婪式的传输方式为主的问题。由于贪婪式本质上的局部最优特性,通常都不能满足到达率以及延迟等性能要求。车载自组织网络的路由问题可从两个层次来考虑,宏观层次选择适合的道路,数据包沿着选定的道路进行多跳转发,宏观层次主要关注网络连通度,尽可能选择连通度高的道路;微观层次上即在既定的道路上选择车辆节点转发数据包,这个层次关注的是快速地将数据包从道路入口转发到道路出口,主要是以贪婪方式为主,由于单条道路的地理特性以及车辆沿道路分布的规律,这种情况下贪婪方式的局部最优问题基本不存在。
本发明解决其技术问题所采取的技术方案是:本发明提供了一种基于连通度概率感知的车载自组织网络的消息分发方法,该方法首先在道路处于自由连通状态的前提下,设计了基于车辆速度的多车道连通概率分析模型。该模型主要关注各个路段的连通概率,基于现有研究分析推导出多车道的道路连通概率。其次,针对单播等端到端的消息分发场景,提出一种基于连通度概率感知的车载自组织网络的消息分发方法(简称CPAM)。该方法分为两个层次,宏观层次上选择连通度概率高的路段作为数据包转发的路径;微观层次上针对每一路段进行基于邻居信息的多跳广播,快速地将数据包从路段入口传输到路段出口。
方法流程:
步骤1:本方法在车辆间距的研究基础上得出车辆间距的分布,归纳出 和Ln之间的关系
步骤2:通过单车道的元组平均数目、元组间距车辆协助连通概率、多车道的间接连通概率的求解获得道路的多跳转发间接连通度概率;
步骤3:观察点的直接参与,经由路段更新和路段选择获得分布式路段选择;
步骤4:以分布式道路选择为基础得出CPAM的整个单播消息分发流程。
本发明关注各个路段的连通概率分析推导出多车道的道路连通概率。
本发明的多跳转发连通概率是通过单车道的元组平均数目、元组间距车辆协助连通概率、多车道的间接连通概率求解得到的。
有益效果:
1、本发明的模型将实际的多车道场景转换成每车道以相同速度行驶的虚拟多车道场景,实验结果表明基于车辆速度的多车道连通概率分析模型与实际情况的趋势保持一致。
2、本发明在数据包交付率以及时延性能上均优于带缓存的GPSR协议。
附图说明
图1为本发明两级速度的车辆间距计算示意图。
图2为本发明的消息分发路径选择示意图。
图3为本发明的方法流程图。
具体实施方式
下面结合说明书附图对本发明作进一步的详细说明。
一、道路连通度概率模型分析
1.车辆间距分布
车载自组织网络的连通概率分析大部分都是建立在车辆间距的研究基础之上。为了简化分析过程,假设道路的车辆流通方向为东西方向和南北方向,且道路都是单向的。观察点位于十字路口或者岔路口,用于记录单位时间(如1小时)内经过的车辆。交通状态为自由流通状态,路口处不设交通灯,驾驶者可以根据自己的意愿行驶,因此车辆之间是相互独立的。
定理1:假设单位时间内经过观察点的车辆数服从均值为λ泊松分布{X(t),t≥0},{Tn,n≥1}是对应的车辆到达观察点的时间间隔序列,则随机变量是Tn(n=1,2,…)独立同分布且服从参数为λ(vehicles/hour)的指数分布。
假设道路的车辆速度可以划分为M级离散常数vi(i=1,2,…,M),各级速度是独立同分布的且独立于车辆的到达时间间隔。各级速度的车辆到达率表示为λi(i=1,2,…M),满足
Σ i = 1 M λ i = λ - - - ( 1 )
因此,各级速度的出现频率为
pi=λi/λ    (2)
为了得到车辆间距的分布,本发明引入以下定义:
(1)表示第n辆车以速度vi经过观察点的时刻。
(2)表示车辆以速度vi经过观察点的时间间隔序列。显然,有其中 t 0 i = 0 .
由定理1可知,对于每个i,序列服从独立的指数分布,且参数为λi,因此,期望为
E [ T n i ] = 1 / λ i - - - ( 3 )
(3)表示以速度vi经过观察点的车辆间距序列,有
由于服从参数为λi的独立指数分布,且vi为常数,因此序列也服从独立指数分布,期望为
E [ S n i ] = v i / λ i - - - ( 4 )
(4)Ln表示在时刻0,离观察点第n近的车辆与离观察点第n-1近的车辆之间的距离,离观察点第0近即为观察点本身。
(5)在时刻0,包含各级速度的车辆按距离观察点的顺序排列,观察点的位置点设为1,离观察点第n近的车辆位置点设为n+1。表示速度为vi的车辆离位置点n的距离。如图1所示,本发明可以得出:
1) R 1 1 = S 1 1 , R 1 2 = S 1 2 , L 1 = min ( R 1 1 , R 1 2 ) .
2) R 2 1 = S 2 1 , R 2 2 = S 1 2 - L 1 , L 2 = min ( R 2 1 , R 2 2 ) .
3) R 3 1 = S 1 1 + S 2 1 - L 1 - L 2 , R 3 2 = S 2 2 , L 3 = min ( R 3 1 , R 3 2 ) .
4) R 4 1 = S 1 1 + S 2 1 - L 1 - L 2 - L 3 , R 4 2 = S 3 2 , L 4 = min ( R 4 1 , R 4 2 ) . - - - ( 5 )
由上面的推导,可以归纳出和Ln之间的关系。
其中α(n)表示在时刻0,除了离观察点第n-1近的车辆之外,距离观察点最近车辆的速度索引值i(1,2,…M)。
β ( i , n ) = 1 + Σ l = 1 n I { α ( l ) } ( i ) - - - ( 7 )
其中表示离观察点第n近的车辆之中,速度索引值为i的车辆数目。而I{l}(x)为指示函数,满足
I { l } ( x ) = 1 , l = x 0 , l ≠ x . - - - ( 8 )
定理2:序列{Ln}是独立同分布且服从参数为的指数分布,即
F L ( x ) = 1 - e - Σ i = 1 M λ i v i x = 1 - e - λ Σ i = 1 M p i v i x - - - ( 9 )
2.多跳转发的连通概率
本发明为了获得道路的多跳转发间接连通度概率,可以分三步求解:
(1)单车道的元组平均数目
如上所述,在虚拟多车道中,每条车道的车辆速度相同,且满足均匀分布。另外,自由流通状态的车辆可以看作相互独立的节点。这里,任取虚拟多车道中的一条车道进行分析。在车辆密度不高的自由流通道路状态下,有限的车辆通信距离必然导致网络分割问题。此时可以将被分割的网络看成多个元组,根据元组的定义,元组内的所有车辆都可以通过一跳或者多跳通信方式进行通信。
定理3:单车道车辆相互独立且均匀分布的道路场景,道路长度为H,车辆数目为n,通信半径为R,形成的元组数目的数学期望为
N platoon = Σ c = 1 ∞ ( c ( 1 - Σ i = c m ( - 1 ) i - c i - 1 c - 1 n - 1 i ( 1 - i R H ) n ) ) - - - ( 10 )
其中 表示小于x的最大整数。
(2)元组间距车辆协助连通概率
如上所述,在车辆密度不同的自由流通道路状态下,单车道的车辆会被划分成多个元组。元组内的车辆可以相互通信,而不同元组之间的车辆则不能单靠自身完成通信功能。因此,需要其他车道的车辆协助进行数据包的转发。
定理4:由于间距超过车辆的通信范围,相邻元组不能直接通信,因此需要其他车道的协助来完成。假设单车道上存在两个元组1和2,车辆速度vi,为则这两个元组间距中其他车道的车辆相互连通概率满足
P inter ( 1,2 ) = Σ i = 1 M - 1 p i ( e - λ i ′ - Σ n = 0 k e - λ i ′ n ! γ ( n + 1 , r 0 nλ i ′ - λ i ′ ) ) - - - ( 11 )
其中Pinter(i,i+1)表示第i个元组与第i+1个元组之间其他车道的车辆相互连通概率;pi是速度vi的出现频率,i=(1,2,…,M-1),即除了所选分析车道之外的所有虚拟车道;λ′i为元组之间距离长度的i级速度到达率;r0=R/h为归一化的通信范围,R为车辆最大通信范围,h为元组之间的距离,对于k=1,…,∞,有 γ ( n , x ) = ∫ 0 x t n - 1 e - t dt .
(3)多车道的间接连通概率。
定理5:多车道车辆相互连通的概率满足
P connectivity = Π i = 1 N platoon P inter ( i , i + 1 ) - - - ( 12 )
其中Pinter(i,i+1)表示第i个元组与第i+1个元组之间其他车道的车辆相互连通概率;Nplatoon表示单车道的元组的平均数目。
二、分布式路段选择
1.路段节点更新
本发明为了获得分布式的路段连通概率,需要有观察点的直接参与,路段节点更新需要合理设置观察点的更新周期。假设观察点位于各个重要岔路口,具有通信功能以及计算能力。观察点存储着各路段的长度信息,以及途经的车辆速度与驶向的路段ID等信息。观察点自身维护着各路段的车辆节点表。为了使得各路段的车辆节点表不至于过大以及数据的实时性,途径车辆在表中有其生命周期,该值可以直接由路段的长度以及车辆的速度确定。观察点周期性地更新各路段的车辆节点表,当周期到达时,观察点将在其通信范围内且未出现在表中的车辆加入表中,并记录车辆的到达时间。同时,删除生命周期已结束的车辆。需要合理设置观察点的更新周期,假设观察点的通信范围为1000m,车辆的速度最大为120km/h,则更新周期不能大于1分钟。整个更新过程的伪代码如表1所示。
表1各路段车辆节点表更新过程
2.路径选择
在集中式的Dijkstra算法中,最优的路由路径是由源节点计算得出并嵌入到数据包中,接收节点再根据数据包中的路径选择进行转发。这种方式的缺点在于增加了数据包的大小以及网络带宽,更重要的是不能适应网络拓扑的变化。嵌入到数据包的路由路径一旦中断,节点就必须进入路由恢复阶段。而对于本发明分布式的Dijkstra算法,每个中继节点都进行路由路径的计算,并选择最佳的下一跳节点进行数据包的转发。
显然,分布式的Dijkstra算法需要更大的计算量。然而,由于车载环境中节点没有能量的限制并且具有高的计算能力,因此,这一缺点并不是特别严重的问题。相反,针对车载环境网络拓扑频繁变化以及节点极高的移动速度等特性,分布式的Dijkstra算法是路由路径规划更好的选择。观察点根据各路段的节点数目计算各自的车辆到达率,并根据上述分析可以计算出不同路段的连通概率。当车辆到达观察点的通信范围内,直接将数据包发送给观察点。观察点再根据各路段的连通概率大小决定数据包的转发路段,并将数据包转发给该路段上距离最远的节点。
当然,各观察点可以直接通过有线网络进行通信交换各路段的连通概率,并维护着一张观察点之间的路由表。根据Dijkstra算法,假设观察点所选路由路径包含路段A,B,C,且各路段的连通概率分别为PA,PB,PC,则该路由路径的连通概率为PA*PB*PC。观察点计算所有到达目的节点的路由路径,并选择概率值最大的路径作为数据包的转发路径。此外,观察点在每次接收到数据包时都重新进行路径选择,这样可以保证路径的实时性。
三、消息分发过程
如图2所示,源节点S与目的节点D之间存在多条路径,其中选取粗线的路径1与细线的路径2作为比较。从图中可以看出,虽然路径2的长度较短,然而,由于中间节点存在存储-携带-转发过程,若选择此路径将大大增加了数据包的传输延迟。相反,虽然路径1的长度较长,而由于该路径各路段有良好的连通概率,数据包应该沿路径1进行传输。
本发明根据上述分布式道路选择为基础,可以得出CPAM的整个单播消息分发流程,如图3所示。节点在接收到数据包之后,首先判断邻居表中是否包含目的节点,若包含则直接交付数据包;否则判断邻居表中是否包含观察点,若是则将数据包转发给观察点,由观察点选择最佳的转发路段并将数据包转发给该路段上距离观察点最远的节点。若接收节点通信范围内不包含观察点,则直接进行基于邻居信息的多跳转发,各节点的转发等待时间如上述描述的过程进行。

Claims (10)

1.一种基于连通度概率感知的车载自组织网络的消息分发方法,其特征在于,所述方法包括如下步骤:
步骤1:在车辆间距的研究基础上归纳出车辆间距的分布,并归纳出和Ln之间的关系;
步骤2:通过单车道的元组平均数目、元组间距车辆协助连通概率、多车道的间接连通概率的求解获得道路的多跳转发间接连通度概率;
步骤3:观察点的直接参与,经由路段更新和路段选择获得分布式路段选择;
步骤4:以分布式道路选择为基础得出整个单播消息的分发流程。
2.根据权利要求1所述的一种基于连通度概率感知的车载自组织网络的消息分发方法,其特征在于:所述方法是针对单播端到端的消息分发场景。
3.根据权利要求1所述的一种基于连通度概率感知的车载自组织网络的消息分发方法,其特征在于:所述方法关注各个路段的连通概率分析推导出多车道的道路连通概率。
4.根据权利要求1所述的一种基于连通度概率感知的车载自组织网络的消息分发方法,其特征在于:所述方法在宏观层次上选择连通度概率高的路段作为数据包转发的路径。
5.根据权利要求1所述的一种基于连通度概率感知的车载自组织网络的消息分发方法,其特征在于:所述方法在微观层次上针对每一路段进行基于邻居信息的多跳广播,快速地将数据包从路段入口传输到路段出口。
6.根据权利要求1所述的一种基于连通度概率感知的车载自组织网络的消息分发方法,其特征在于:所述方法的步骤1包括:
其中α(n)表示在时刻0,除了离观察点第n-1近的车辆之外,距离观察点最近车辆的速度索引值i(1,2,…M)。
7.根据权利要求1所述的一种基于连通度概率感知的车载自组织网络的消息分发方法,其特征在于:所述方法多跳转发的连通概率是通过单车道的元组平均数目、元组间距车辆协助连通概率、多车道的间接连通概率求解得到。
8.根据权利要求1所述的一种基于连通度概率感知的车载自组织网络的消息分发方法,其特征在于:所述方法需要有观察点的直接参与,路段节点更新需要合理设置观察点的更新周期。
9.根据权利要求1所述的一种基于连通度概率感知的车载自组织网络的消息分发方法,其特征在于:所述方法采用分布式的Dijkstra算法,每个中继节点都进行路由路径的计算,并选择最佳的下一跳节点进行数据包的转发。
10.根据权利要求1所述的一种基于连通度概率感知的车载自组织网络的消息分发方法,其特征在于:所述方法的节点在接收到数据包之后,首先判断邻居表中是否包含目的节点,若包含则直接交付数据包;否则判断邻居表中是否包含观察点,若是则将数据包转发给观察点,由观察点选择最佳的转发路段并将数据包转发给该路段上距离观察点最远的节点;若接收节点通信范围内不包含观察点,则直接进行基于邻居信息的多跳转发。
CN201410326280.5A 2014-07-09 2014-07-09 基于连通度概率感知的车载自组织网络的消息分发方法 Active CN104080056B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410326280.5A CN104080056B (zh) 2014-07-09 2014-07-09 基于连通度概率感知的车载自组织网络的消息分发方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410326280.5A CN104080056B (zh) 2014-07-09 2014-07-09 基于连通度概率感知的车载自组织网络的消息分发方法

Publications (2)

Publication Number Publication Date
CN104080056A true CN104080056A (zh) 2014-10-01
CN104080056B CN104080056B (zh) 2017-12-29

Family

ID=51601060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410326280.5A Active CN104080056B (zh) 2014-07-09 2014-07-09 基于连通度概率感知的车载自组织网络的消息分发方法

Country Status (1)

Country Link
CN (1) CN104080056B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105306157A (zh) * 2015-11-13 2016-02-03 南京邮电大学 一种基于网络连通的车载通信建模方法
CN105307232A (zh) * 2015-11-13 2016-02-03 南京邮电大学 一种车载自组织网络的基于连通概率的路由优化方法
CN105553780A (zh) * 2016-01-08 2016-05-04 同济大学 一种城市场景中有基础设施的车联网连通性模型推演方法
CN105844370A (zh) * 2016-05-16 2016-08-10 西安电子科技大学 基于粒子群算法的城市道路车辆连通度优化方法
CN106792970A (zh) * 2017-02-17 2017-05-31 重庆邮电大学 一种车辆自组织网络路由选择方法
CN106789333A (zh) * 2017-01-16 2017-05-31 东北大学 一种基于时间分层的复杂网络传播源点定位方法
CN107040884A (zh) * 2016-11-23 2017-08-11 河海大学 一种基于邻域强连通性的移动自组网数据传输方法
CN109089241A (zh) * 2018-10-24 2018-12-25 常熟理工学院 一种车载网的数据通信实现方法
CN109275154A (zh) * 2018-11-30 2019-01-25 上海交通大学 基于双层拓扑路由算法的动态自适应路由路径规划方法
CN109743690A (zh) * 2018-12-19 2019-05-10 浙江工商大学 车载自组网中面向城市道路的基于方向和距离的广播方法
CN112187577A (zh) * 2020-09-27 2021-01-05 哈尔滨工业大学 一种基于网络分解的大规模桥梁网络连通概率评估方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307373A (zh) * 2011-08-23 2012-01-04 哈尔滨工业大学 考虑车辆交通特性的vanet分簇方法
CN102355406A (zh) * 2011-08-12 2012-02-15 河南工业大学 车载自组网中基于节点密度分布的自适应数据分发方法
CN103298059A (zh) * 2013-05-13 2013-09-11 西安电子科技大学 车辆自组网中基于位置预测的连通度感知路由方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355406A (zh) * 2011-08-12 2012-02-15 河南工业大学 车载自组网中基于节点密度分布的自适应数据分发方法
CN102307373A (zh) * 2011-08-23 2012-01-04 哈尔滨工业大学 考虑车辆交通特性的vanet分簇方法
CN103298059A (zh) * 2013-05-13 2013-09-11 西安电子科技大学 车辆自组网中基于位置预测的连通度感知路由方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AKBAR GHASEMI .ET AL: "Exact Probability of Connectivity in", 《IEEE COMMUNICATIONS LETTERS,》 *
CHEN CHEN .ET AL: "Available connectivity analysis under free flow state in VANETs", 《EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING》 *
QING YANG .ET AL: "Connectivity Aware Routing in Vehicular Network", 《IEEE WIRELESS COMMUNICATION AND NETWORKING CONFERENCE》 *
SALEH YOUSEFI .ET AL: "Analytical Model for Connectivity in Vehicular Ad Hoc Networks", 《IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY》 *
WANTANEE VIRIYASITAVAT .ET AL: "Dynamics of Network Connectivity in Urban", 《IEEE JOURNAL ON SELECTED AREAS IN COMMUNUNICATIONS》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105307232A (zh) * 2015-11-13 2016-02-03 南京邮电大学 一种车载自组织网络的基于连通概率的路由优化方法
CN105307232B (zh) * 2015-11-13 2020-05-12 南京邮电大学 一种车载自组织网络的基于连通概率的路由优化方法
CN105306157A (zh) * 2015-11-13 2016-02-03 南京邮电大学 一种基于网络连通的车载通信建模方法
CN105553780A (zh) * 2016-01-08 2016-05-04 同济大学 一种城市场景中有基础设施的车联网连通性模型推演方法
CN105553780B (zh) * 2016-01-08 2018-10-26 同济大学 一种城市场景中有基础设施的车联网连通性模型推演方法
CN105844370B (zh) * 2016-05-16 2019-08-13 西安电子科技大学 基于粒子群算法的城市道路车辆连通度优化方法
CN105844370A (zh) * 2016-05-16 2016-08-10 西安电子科技大学 基于粒子群算法的城市道路车辆连通度优化方法
CN107040884A (zh) * 2016-11-23 2017-08-11 河海大学 一种基于邻域强连通性的移动自组网数据传输方法
CN107040884B (zh) * 2016-11-23 2020-01-07 河海大学 一种基于邻域强连通性的移动自组网数据传输方法
CN106789333A (zh) * 2017-01-16 2017-05-31 东北大学 一种基于时间分层的复杂网络传播源点定位方法
CN106789333B (zh) * 2017-01-16 2019-08-23 东北大学 一种基于时间分层的复杂网络传播源点定位方法
CN106792970B (zh) * 2017-02-17 2019-12-03 重庆邮电大学 一种车辆自组织网络路由选择方法
CN106792970A (zh) * 2017-02-17 2017-05-31 重庆邮电大学 一种车辆自组织网络路由选择方法
CN109089241A (zh) * 2018-10-24 2018-12-25 常熟理工学院 一种车载网的数据通信实现方法
CN109089241B (zh) * 2018-10-24 2020-12-04 常熟理工学院 一种车载网的数据通信实现方法
CN109275154A (zh) * 2018-11-30 2019-01-25 上海交通大学 基于双层拓扑路由算法的动态自适应路由路径规划方法
CN109275154B (zh) * 2018-11-30 2020-08-04 上海交通大学 基于双层拓扑路由算法的动态自适应路由路径规划方法
CN109743690A (zh) * 2018-12-19 2019-05-10 浙江工商大学 车载自组网中面向城市道路的基于方向和距离的广播方法
CN109743690B (zh) * 2018-12-19 2021-08-06 浙江工商大学 车载自组网中面向城市道路的基于方向和距离的广播方法
CN112187577A (zh) * 2020-09-27 2021-01-05 哈尔滨工业大学 一种基于网络分解的大规模桥梁网络连通概率评估方法
CN112187577B (zh) * 2020-09-27 2021-11-23 哈尔滨工业大学 一种基于网络分解的大规模桥梁网络连通概率评估方法

Also Published As

Publication number Publication date
CN104080056B (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
CN104080056A (zh) 基于连通度概率感知的车载自组织网络的消息分发方法
CN103200526B (zh) 一种基于路边基站的车载自组织网络路由的方法
Shelke et al. Fuzzy priority based intelligent traffic congestion control and emergency vehicle management using congestion-aware routing algorithm
Kumar et al. A comparative study of various routing protocols in VANET
CN105553780A (zh) 一种城市场景中有基础设施的车联网连通性模型推演方法
CN105245608A (zh) 基于自编码网络的车联网网络节点筛选及其通达性路由构建方法
CN105245563A (zh) 一种基于车辆节点连通稳定度的动态分簇方法
CN105208616A (zh) 车载自组织网络中基于道路拓扑的自适应多副本路由方法
CN104640168A (zh) 基于q学习的车载自组织网络路由方法
CN103281742A (zh) 基于自主获取道路信息车载自组织网络路由方法
Zhou et al. Multiple intersection selection routing protocol based on road section connectivity probability for urban VANETs
CN107105389B (zh) 车载网络中基于道路拓扑结构的地理信息路由方法
CN103095593B (zh) 车辆自组网络的路由系统及方法
CN104185239A (zh) 车辆自组织网络中基于路段长度的交叉口路由方法
CN103634871A (zh) 一种平衡稳定性和有效性的车载网地理路由协议
Karpagalakshmi et al. An effective traffic management system using connected dominating set forwarding (CDSF) framework for reducing traffic congestion in high density VANETs
CN110519682A (zh) 一种结合位置与通信范围预测的v2v路由方法
Hussein et al. Connectivity Analysis in Vehicular Ad-hoc Network based on VDTN
CN101808275A (zh) 一种基于车辆移动趋势预测的车载网络数据转发方法
CN103095592B (zh) 车辆自组织网络的区域多播路由系统及方法
CN110072210B (zh) 在车载自组织网络rsu缺失场景下的路网信息收集方法
Sharef et al. A comparison of various vehicular ad hoc routing protocols based on communication environments
CN110446185B (zh) 一种基于节点熟悉度模型的车辆间通信的路由方法
Wu et al. A geographic routing protocol based on trunk line in VANETs
CN114629840A (zh) 一种基于群智感知策略的可靠车联网数据传输方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant