CN106792970B - 一种车辆自组织网络路由选择方法 - Google Patents

一种车辆自组织网络路由选择方法 Download PDF

Info

Publication number
CN106792970B
CN106792970B CN201710088319.8A CN201710088319A CN106792970B CN 106792970 B CN106792970 B CN 106792970B CN 201710088319 A CN201710088319 A CN 201710088319A CN 106792970 B CN106792970 B CN 106792970B
Authority
CN
China
Prior art keywords
vehicle
service
node
transmission
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710088319.8A
Other languages
English (en)
Other versions
CN106792970A (zh
Inventor
柴蓉
彭尚新
秦远征
陈前斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201710088319.8A priority Critical patent/CN106792970B/zh
Publication of CN106792970A publication Critical patent/CN106792970A/zh
Application granted granted Critical
Publication of CN106792970B publication Critical patent/CN106792970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明涉及一种车辆自组织网络路由选择方法,属于无线通信技术领域,特别是车辆自组织网络技术领域。该方法针对车辆自组织网络中源车辆无法实现与目的车辆的直接连接,需选择传输路由经中继车辆进行多跳信息转发的问题,首先采用逻辑代数化算法确定源车辆与目的车辆之间所有候选路由,进而采用随机网络演算理论建模源车辆不同业务的随机到达曲线以及候选路由各中继车辆的随机服务曲线,评估源车辆业务经各候选路由传输对应的端到端时延及传输速率性能,并基于源车辆业务需求选择具有最优传输性能的候选路由,从而实现优化路由选择。本方法综合考虑源车辆业务特性及各候选路由中继车辆的中继转发性能,以实现车辆自组织网络业务传输性能优化,具有广阔的应用前景。

Description

一种车辆自组织网络路由选择方法
技术领域
本发明属于无线通信技术领域,特别是车辆自组织网络技术领域,涉及一种车辆自组织网络路由选择方法。
背景技术
车辆自组织网络是一种自组织、结构开放的车辆间通信网络,能够提供车辆之间以及车辆与路边基础设施之间的通信,通过结合全球定位系统(GlobalPositioningSystem,GPS)及无线通信技术,如无线局域网、蜂窝网络等,可为处于高速移动状态的车辆提供高速率的数据接入服务,并支持车辆之间的信息交互,已成为保障车辆行驶安全,提供高速数据通信、智能交通管理及车载娱乐的有效技术。
车辆自组织网络中,车辆的位置、方向和速度不断改变以及接入点(AccessPoint,AP)覆盖范围有限等因素导致网络拓扑结构快速改变,源车辆(SourceVehicle,SV)与目的车辆(DestinationVehicle,DV)车辆间的通信链路不稳定,甚至无法直接进行通信,可采用中继车辆(RelayVehicle,RV)支持SV与DV之间的数据转发。在SV与DV之间存在多个候选路由的情况下,如何综合考虑SV业务特性,RV的业务转发性能等因素,选择最佳路由以满足客户应用及娱乐需求,并实现系统性能优化已成为车辆自组织网络的重要研究课题。
在现有技术中,有人提出基于链路生存时间的车辆自组织网络路由选择机制,即各节点选择具有最长链路生存时间的中继节点作为下一跳中继转发节点,从而实现路由生存时间最大化;也有人提出一种基于十字路口的车辆自组织网络连接性感知路由协议,通过考虑实时性车辆业务信息和过往分组发送时延,以传输时延及链路连接性为指标选择下一跳路径,从而提高分组发送率,并降低端到端传输时延;还有人提出一种车辆自组织网络多参数路由选择算法,根据车辆接收信号强度、路径持续时间及中继可用容量的归一化线性加权值,选择最大加权值所对应的RV作为下一跳转发节点。此外,也有研究基于链路状态信息、链路生存时间和存储转发机制,选择能效最小的路由作为转发路径。
以上研究所考虑路由选择因素较为单一,未综合考虑SV业务流的到达特性如到达速率、业务突发性等因素以及RV的服务特性,如可用带宽、接入时延等因素,无法实现端到端数据转发性能的优化。
发明内容
有鉴于此,本发明的目的在于提供一种车辆自组织网络路由选择方法,具体技术方案如下:
一种车辆自组织网络路由选择方法,该方法包括以下步骤:
S1:采用逻辑代数化算法确定源车辆(Source Vehicles,SV)与目的车辆(Destination Vehicle,DV)之间满足SV业务需求的所有候选路由;
S2:基于随机网络演算(StochasticNetworkCalculus,SNC)理论,建模SV业务随机到达曲线;
S3:基于SNC理论,建模SV与DV之间候选路由中继车辆(RelayVehicles,RVs)随机服务模型;
S4:评估SV业务经各候选路由传输所对应的传输速率;
S5:评估SV业务经各候选路由传输所对应的端到端时延边界;
S6:针对SV业务特性,选择对应传输性能最优的路由为目标路由。
进一步,在步骤S1中,采用逻辑代数化算法确定SV与DV之间的所有候选路由,具体步骤如下:
S11:建立网络节点关联矩阵并确定元素初始值,假设网络存在Z个节点,其中节点1为源节点,建立节点关联矩阵Q=[qi,j]Z×Z,qi,j为节点i与节点j的关联度;若节点i与节点j之间无直接连接链路,qi,j=0;若节点i与节点j之间存在直接连接链路,则qi,j=Xi,j,Xi,j表示节点i与节点j之间的链路;若节点之间存在多条直接连接链路时,若i=j,qi,i=1;
S12:关联矩阵行间整合与删除运算:调用公式q′i,j=qi,k·qk,j+qi,j对矩阵的第k行进行整合与删除,其中,q′i,j为整合后矩阵中的元素,i,j≠k;
S13:依次整合与删除关联矩阵中第2行到第Z行,直到矩阵中仅余第1行为止,此时,该行中每一个逻辑表达形式均表示源节点和对应目的节点的连接关系,其中每一个逻辑乘积项即表示一条源节点和对应目的节点间的候选路由,逻辑乘积项的集合即为源节点与目的节点间的全部候选路由,假设N为候选路由数目。
进一步,在步骤S2中,所述SV的业务随机到达曲线αi(t)建模包括:令αi(t)为SV传输第i种业务时对应的随机到达曲线,i=1,2表示业务类型,i=1表示语音业务,i=2表示视频业务;针对语音业务,即i=1时,采用马尔科夫开关模型建模业务随机到达曲线,令p1和p2分别表示源节点有数据流发送及无数据流发送的稳态概率,P1,2及P2,1为相应的状态转移概率,可得建模λ1为语音业务生成速率,θ>0为自由参数;i=2时,采用分型布朗运动模型建模业务随机到达曲线,可得其中,λ2为视频业务生成速率,为高斯随机变量的标准差,h为赫斯特参数,反映业务流的长范围依赖性。
进一步,在步骤S3中,所述RV的随机服务过程Sj,k(τ,t)建模如下:令Sj.k(τ,t)表示第j条候选路由第k个车辆的随机服务曲线,其中,τ∈(0,t],j=1,2…N,k=1,2…Mj,Mj为第j条候选路由的车辆数目,Sj.k(τ,t)可建模为:Sj,k(τ,t)=Rj,k(t-τ-ωj,k),其中,Rj,k为第j条候选路由第k个车辆的服务速率,建模为:Rj,k=Bj,klog2(1+γj,k),Bj,k为第j条候选路由第k个中继车辆的传输带宽,γj,k为相应接收信噪比,建模为Pk-1为第j条候选路由第k-1个车辆的发送功率,p0为源车辆的发送功率,σ2为传输信道噪声功率,hj,k为第j条候选路由第k-1个车辆与第k个车辆之间链路的增益,ωj,k为第j条路由第k个车辆的接入时延,建模为:ωj,k=E[Cj,k]+E[Bj,k]+Ts,其中,为车辆自身受到冲突所需的时间,为最大重传次数,碰撞周期为Tc=RTS+DIFS,RTS为请求发送帧,DIFS为长帧间间隔,为同一时隙邻居车辆发送数据的碰撞概率,L′为第k个车辆及它的邻居车辆总数,pa为每辆车发送数据包的概率;为车辆在退避状态阶段,正常退避计时与其它车辆干扰所需的时间,计时器计数减1的时间δ为一个时隙的长度,μl为第l个避退阶段的平均避退间隔,信道中仅有一辆非目标车辆传输数据包的概率为Psuc=(L′-1)pa(1-pa)L′-2为一次成功传输所需时间,H=LPHY+LMAC为分组头部大小,Lp为分组长度,LPHY和LMAC分别为物理层与MAC帧首部大小,R′p为分组传输速率,CTS为允许发送帧,ACK为确认帧,SIFS为短帧间间隔。
进一步,在步骤S4中,所述评估SV业务经各候选路由传输时对应的传输速率,具体如下:令SV的第j条候选路由传输第i种业务对应的传输速率为可得其中,为第j条路由第k个RV选择下一跳中继节点传输数据对应的传输速率,建模为:其中,其中,u(t)为时刻t背景业务的链路利用率,Dj,k(τ,t)为(τ,t]内经过节点k服务后离开的背景业务流。
进一步,在步骤S5中,评估SV业务经各候选路由传输时对应的端到端时延,具体如下:第j条路由传输第i种业务时对应的端到端时延建模为:
其中,ε为违约概率,分别为到达曲线和服务曲线的矩量母函数。
进一步,在步骤S6中,针对SV业务特性,确定路由选择策略,具体为:若SV拟传输语音业务,令为SV所传输业务的最大时延阈值,在满足的条件下,选择对应最小的路由j*,即:若SV拟传输视频业务,令为SV传输视频业务时对应的最小传输速率阈值,在满足的条件下,选择对应最大的路由,其中
本发明的有益效果在于:本发明所述方法综合考虑了影响SV选择最佳路由的多个因素,如SV业务到达速率、业务突发性、可用带宽、由于信道竞争导致碰撞等因素,在SV选择多条候选路由的场景下,应用随机网络演算理论,得到更加严谨的端到端时延与链路传输速率值,获得最佳传输路由选择方案。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明中所述的车辆自组织网络路由选择应用场景;
图2为本发明中所述的车辆自组织网络路由选择系统模型;
图3为本发明车辆自组织网络路由选择流程图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
图1为本发明中车辆自组织网络路由选择应用场景,假设通信场景为单向双轨道行驶道路,车辆间车辆密度多样化,可能存在车辆密度稀疏导致车辆间不能直接通信和车辆密集存在某车辆有多个邻居车辆等情况。涉及一个拟进行通信的源车辆(SV)通过中继车辆(RVs)发送信息到目的车辆(DV)。
图2为本发明中车辆自组织网络路由选择系统模型,假设SV与DV之间的候选路由数目为N条,每条候选路由的跳数为一跳或多跳。
图3为本发明公开的车辆自组织网络路由选择流程图,具体包括:
301:基于逻辑代数化算法,选取候选路由集合。
具体步骤包括:(1)建立节点关联矩阵并确定元素初始值,假设网络有Z个节点,其中节点1为源节点,建立节点关联方阵Q=[qi,j]Z×Z,qi,j为节点i与节点j的关联度。若节点i与节点j之间无直接连接链路,qi,j=0;若节点i与节点j之间存在直接连接链路,则qi,j=Xi,j,Xi,j表示节点i与节点j之间的链路;节点之间存在多条直接连接链路时,若i=j,qi,i=1;(2)关联矩阵行间整合与删除运算:调用公式q′i,j=qi,k·qk,j+qi,j对矩阵的第k行进行整合与删除,其中,qi,k、qk,j、qi,j为整合前矩阵中的元素,q′i,j为整合后矩阵中的元素,i,j≠k;(3)依次整合与删除关联矩阵中第2行到第Z行,直到矩阵中仅余第1行为止,此时,该行中每一个逻辑表达式均表示源节点和对应目的节点的连接关系,其中每一个逻辑乘积项即表示一条源节点和对应目的节点间的候选路由,逻辑乘积项的集合即为源节点与目的节点间的全部候选路由,假设N为候选路由数目。
302:基于SV的业务特性,建模业务随机到达曲线αi(t)
令αi(t)为SV传输第i种业务时对应的随机到达曲线,i=1,2表示业务类型,i=1表示语音业务,i=2表示视频业务。针对语音业务,即i=1时,采用马尔科夫开关模型建模业务随机到达曲线,令p1和p2分别表示源节点有数据流发送及无数据流发送的稳态概率,P1,2及P2,1为相应的状态转移概率,可得建模λ1为语音业务生成速率,θ>0为自由参数;i=2时,采用分型布朗运动模型建模业务随机到达曲线,可得其中,λ2为视频业务生成速率,为高斯随机变量的标准差,h为赫斯特参数,反映业务流的长范围依赖性。
303:建模RV的随机服务过程
令Sj.k(τ,t)表示第j条候选路由第k个车辆的随机服务曲线,其中,τ∈(0,t],j=1,2…N,k=1,2…Mj,Mj为第j条候选路由的车辆数目,Sj.k(τ,t)可建模为:Sj,k(τ,t)=Rj,k(t-τ-ωj,k),其中,Rj,k为第j条候选路由第k个车辆的服务速率,建模为:Rj,k=Bj,klog2(1+γj,k),Bj,k为第j条候选路由第k个中继车辆的传输带宽,γj,k为相应接收信噪比,建模为Pk-1为第j条候选路由第k-1个车辆与第k个车辆之间链路的增益,ωj,k为第j条路由第k个车辆的接入时延,建模为:ωj,k=E[Cj,k]+E[Bj,k]+Ts,其中,为车辆自身受到冲突所需的时间,为最大重传次数,碰撞周期为Tc=RTS+DIFS,RTS为请求发送帧,DIFS为长帧间间隔,为同一时隙邻居车辆发送数据的碰撞概率,L′为第k个车辆及它的邻居车辆总数,pa为每辆车发送数据包的概率;为车辆在退避状态阶段,正常退避计时与其它车辆干扰所需的时间,计时器计数减1的时间δ为一个时隙的长度,μl为第l个避退阶段的平均避退间隔时间,信道中仅有一辆非目标车辆传输数据包的概率为Psuc=(L′-1)pa(1-pa)L′-2为一次成功传输所需时间,H=LPHY+LMAC为分组头部大小,Lp为分组长度,LPHY和LMAC分别为物理层与MAC帧首部大小,,R′p为分组传输速率,CTS为允许发送帧,ACK为确认帧,SIFS为短帧间间隔。
304:评估SV选择各个路由的链路传输速率
令SV的第j条候选路由传输第i种业务对应的传输速率为可得其中,为第j条路由第k个RV选择下一跳中继节点传输数据对应的传输速率,建模为:其中,其中,u(t)为时刻t背景业务的链路利用率,Dj,k(τ,t)为(τ,t]内经过节点k服务后离开的背景业务流。
305:评估SV选择各个路由的端到端时延
第j条路由传输第i种业务时对应的端到端时延建模为:其中,分别为到达曲线和服务曲线的矩量母函数,ε为违约概率。
306:针对SV业务特性,选择对应传输性能最优的路由为目标路由
目标路由选择策略具体为:若SV拟传输语音业务,令为SV所传输业务的最大时延阈值,在满足的条件下,选择对应最小的路由j*,即:若SV拟传输视频业务,令为SV传输视频业务时对应的最小传输速率阈值,在满足的条件下,选择对应最大的路由,其中
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (1)

1.一种车辆自组织网络路由选择方法,其特征在于:该方法包括以下步骤:
S1:采用逻辑代数化算法确定源车辆SV与目的车辆DV之间满足SV业务需求的所有候选路由;
S2:基于随机网络演算SNC理论,建模SV业务随机到达曲线;
S3:基于SNC理论,建模SV与DV之间候选路由中继车辆RVs随机服务模型;
S4:评估SV业务经各候选路由传输所对应的传输速率;
S5:评估SV业务经各候选路由传输所对应的端到端时延边界;
S6:针对SV业务特性,选择对应传输性能最优的路由为目标路由;
在步骤S1中,采用逻辑代数化算法确定SV与DV之间的所有候选路由,具体步骤如下:
S11:建立网络节点关联矩阵并确定元素初始值,假设网络存在Z个节点,其中节点1为源节点,建立节点关联矩阵Q=[qi,j]Z×Z,qi,j为节点i与节点j的关联度;若节点i与节点j之间无直接连接链路,qi,j=0;若节点i与节点j之间存在直接连接链路,则qi,j=Xi,j,Xi,j表示节点i与节点j之间的链路;若节点之间存在多条直接连接链路时,若i=j,qi,i=1;
S12:关联矩阵行间整合与删除运算:调用公式q′i,j=qi,k·qk,j+qi,j对矩阵的第k行进行整合与删除,其中,q′i,j为整合后矩阵中的元素,i,j≠k;
S13:依次整合与删除关联矩阵中第2行到第Z行,直到矩阵中仅余第1行为止,此时,该行中每一个逻辑表达形式均表示源节点和对应目的节点的连接关系,其中每一个逻辑乘积项即表示一条源节点和对应目的节点间的候选路由,逻辑乘积项的集合即为源节点与目的节点间的全部候选路由,假设N为候选路由数目;
在步骤S2中,所述SV的业务随机到达曲线αi(t)建模包括:令αi(t)为SV传输第i种业务时对应的随机到达曲线,i=1,2表示业务类型,i=1表示语音业务,i=2表示视频业务;针对语音业务,即i=1时,采用马尔科夫开关模型建模业务随机到达曲线,令p1和p2分别表示源节点有数据流发送及无数据流发送的稳态概率,P1,2及P2,1为相应的状态转移概率,得建模λ1为语音业务生成速率,θ>0为自由参数;i=2时,采用分型布朗运动模型建模业务随机到达曲线,得其中,λ2为视频业务生成速率,为高斯随机变量的标准差,h为赫斯特参数,反映业务流的长范围依赖性;
在步骤S3中,所述RV的随机服务过程Sj,k(τ,t)建模如下:令Sj.k(τ,t)表示第j条候选路由第k个车辆的随机服务曲线,其中,τ∈(0,t],j=1,2···N,k=1,2···Mj,Mj为第j条候选路由的车辆数目,Sj.k(τ,t)建模为:Sj,k(τ,t)=Rj,k(t-τ-ωj,k),其中,Rj,k为第j条候选路由第k个车辆的服务速率,建模为:Rj,k=Bj,klog2(1+γj,k),Bj,k为第j条候选路由第k个中继车辆的传输带宽,γj,k为相应接收信噪比,建模为Pk-1为第j条候选路由第k-1个车辆的发送功率,p0为源车辆的发送功率,σ2为传输信道噪声功率,hj,k为第j条候选路由第k-1个车辆与第k个车辆之间链路的增益,ωj,k为第j条路由第k个车辆的接入时延,建模为:ωj,k=E[Cj,k]+E[Bj,k]+Ts,其中,为车辆自身受到冲突所需的时间,为最大重传次数,碰撞周期为Tc=RTS+DIFS,RTS为请求发送帧,DIFS为长帧间间隔,为同一时隙邻居车辆发送数据的碰撞概率,L′为第k个车辆及它的邻居车辆总数,pa为每辆车发送数据包的概率;为车辆在退避状态阶段,正常退避计时与其它车辆干扰所需的时间,计时器计数减1的时间δ为一个时隙的长度,μl为第l个避退阶段的平均避退间隔,信道中仅有一辆非目标车辆传输数据包的概率为Psuc=(L′-1)pa(1-pa)L′-2为一次成功传输所需时间,H=LPHY+LMAC为分组头部大小,Lp为分组长度,LPHY和LMAC分别为物理层与MAC帧首部大小,R′p为分组传输速率,CTS为允许发送帧,ACK为确认帧,SIFS为短帧间间隔;
在步骤S4中,所述评估SV业务经各候选路由传输时对应的传输速率,具体如下:令SV的第j条候选路由传输第i种业务对应的传输速率为其中,为第j条路由第k个RV选择下一跳中继节点传输数据对应的传输速率,建模为:其中,其中,u(t)为时刻t背景业务的链路利用率,Dj,k(τ,t)为(τ,t]内经过节点k服务后离开的背景业务流;
在步骤S5中,评估SV业务经各候选路由传输时对应的端到端时延,具体如下:第j条路由传输第i种业务时对应的端到端时延建模为:
其中,ε为违约概率,分别为到达曲线和服务曲线的矩量母函数;
在步骤S6中,针对SV业务特性,确定路由选择策略,具体为:若SV拟传输语音业务,令为SV所传输业务的最大时延阈值,在满足的条件下,选择对应最小的路由j*,即:若SV拟传输视频业务,令为SV传输视频业务时对应的最小传输速率阈值,在满足的条件下,选择对应最大的路由,其中
CN201710088319.8A 2017-02-17 2017-02-17 一种车辆自组织网络路由选择方法 Active CN106792970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710088319.8A CN106792970B (zh) 2017-02-17 2017-02-17 一种车辆自组织网络路由选择方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710088319.8A CN106792970B (zh) 2017-02-17 2017-02-17 一种车辆自组织网络路由选择方法

Publications (2)

Publication Number Publication Date
CN106792970A CN106792970A (zh) 2017-05-31
CN106792970B true CN106792970B (zh) 2019-12-03

Family

ID=58957751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710088319.8A Active CN106792970B (zh) 2017-02-17 2017-02-17 一种车辆自组织网络路由选择方法

Country Status (1)

Country Link
CN (1) CN106792970B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263318B (zh) * 2020-02-28 2021-07-27 南通大学 一种协同车辆安全系统广播传输公平性控制算法
CN112821940B (zh) * 2021-01-15 2022-08-30 重庆邮电大学 一种基于星间链路属性的卫星网络动态路由方法
CN114884557B (zh) * 2022-03-25 2023-07-25 重庆邮电大学 一种基于网络演算的卫星时间敏感网络路径选择方法
CN114938530B (zh) * 2022-06-10 2023-03-21 电子科技大学 基于深度强化学习的无线自组网智能组网方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103987103A (zh) * 2014-04-30 2014-08-13 重庆邮电大学 一种基于博弈论的车辆自组织网络路由选择方法
CN104080056A (zh) * 2014-07-09 2014-10-01 南京邮电大学 基于连通度概率感知的车载自组织网络的消息分发方法
CN105530680A (zh) * 2015-12-22 2016-04-27 重庆邮电大学 一种车辆自组织网络中继车辆选择方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7760645B2 (en) * 2002-02-25 2010-07-20 Olsonet Communications Method for routing ad-hoc signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103987103A (zh) * 2014-04-30 2014-08-13 重庆邮电大学 一种基于博弈论的车辆自组织网络路由选择方法
CN104080056A (zh) * 2014-07-09 2014-10-01 南京邮电大学 基于连通度概率感知的车载自组织网络的消息分发方法
CN105530680A (zh) * 2015-12-22 2016-04-27 重庆邮电大学 一种车辆自组织网络中继车辆选择方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Adaptive K-Harmonic Means clustering algorithm for VANETs;Chai Rong;《IEEE》;20150119;全文 *

Also Published As

Publication number Publication date
CN106792970A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN111479306B (zh) 一种基于Q-learning的飞行自组网QoS路由方法
US8300626B2 (en) Path shortening in a wireless mesh network
CN106792970B (zh) 一种车辆自组织网络路由选择方法
Akabane et al. An adaptive solution for data dissemination under diverse road traffic conditions in urban scenarios
Xu et al. A packet reception probability-based reliable routing protocol for 3D VANET
US7474630B2 (en) Coordinated convergecast for AD HOC wireless networks
Boucetta et al. Optimized ad-hoc multi-hop broadcast protocol for emergency message dissemination in vehicular ad-hoc networks
Niu et al. Study on QoS support in 802.11 e-based multi-hop vehicular wireless ad hoc networks
Ding et al. Mobility based routing protocol with MAC collision improvement in vehicular Ad Hoc networks
Naja et al. Performance analysis of an improved probability-based and counter-based broadcast protocols for VANETs
CN107105388A (zh) 一种基于链路传输能力的跨层车载网路由方法
WO2015048995A1 (en) Integration of cellular and ieee 802.11 networks in vanets
Li et al. Modeling and QoS analysis of IEEE 802.11 broadcast scheme in vehicular ad hoc networks
Upadhyay et al. Cluster head selection for CCB-MAC protocol by implementing high priority algorithm in VANET
CN107911296A (zh) 基于骨干链路保障时延的地理位置路由方法、车载终端
Hoang et al. Efficient load balancing in MANETs to improve network performance
Tang et al. Congestion-Aware Routing Scheme based on Traffic Information in Sensor Networks.
Carrillo et al. On the impact of network coding delay for IEEE 802.11 s infrastructure wireless mesh networks
Busanelli et al. Cluster-based irresponsible forwarding
Xu et al. ROR: an RSSI based OMNI-directional routing algorithm for geobroadcast in VANETs
Sethi et al. Cross layer optimization with QoS for heterogeneous ad-hoc network
Rehman et al. A review on delay efficient architecture for Software Defined Vehicular Networks (SDVN)
Beebi et al. A Study on Cross Layer MAC design for performance optimization of routing protocols in MANETs
Rezende et al. Enhancing path stability towards the provision of multimedia support in vehicular ad hoc networks
Lai et al. Burst transmission and frame aggregation for VANET communications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant