CN112186070A - 一种红外探测器件制备方法 - Google Patents

一种红外探测器件制备方法 Download PDF

Info

Publication number
CN112186070A
CN112186070A CN202010903991.XA CN202010903991A CN112186070A CN 112186070 A CN112186070 A CN 112186070A CN 202010903991 A CN202010903991 A CN 202010903991A CN 112186070 A CN112186070 A CN 112186070A
Authority
CN
China
Prior art keywords
layer
electrode layer
doping concentration
thickness
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010903991.XA
Other languages
English (en)
Other versions
CN112186070B (zh
Inventor
周朋
刘铭
温涛
邢伟荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 11 Research Institute
Original Assignee
CETC 11 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 11 Research Institute filed Critical CETC 11 Research Institute
Priority to CN202010903991.XA priority Critical patent/CN112186070B/zh
Publication of CN112186070A publication Critical patent/CN112186070A/zh
Application granted granted Critical
Publication of CN112186070B publication Critical patent/CN112186070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种红外探测器件制备方法,包括:根据预先确定的厚度和掺杂浓度在衬底上顺次生长第一电极层和吸收层;在所述吸收层上交替生长预设材料组合的势垒层;在所述势垒层上生长第二电极层;对完成生长的材料进行流片处理,制备高工作温度红外探测器件,本发明实施例通过预设材料组合的势垒层结构和器件刻蚀工艺,有效抑制红外探测器件存在较大的产生复合暗电流和表面漏电流的情况。

Description

一种红外探测器件制备方法
技术领域
本发明涉及红外探测器技术领域,尤其涉及一种红外探测器件制备方法。
背景技术
传统的器件无论是碲镉汞体系还是锑化铟体系,均需要工作在液氮温度77K下,温度升高,其暗电流噪声就会呈指数型增大,探测性能迅速变差。随着红外探测技术应用的不断拓展,提高红外探测系统工作温度的研究变得越来越受人们重视。提高红外探测系统工作温度可以带来诸多有益效果,首先,探测器组件的制冷需求就可以大大降低,进而实现探测组件体积和重量小型化、低功耗、低成本的目的;然后,组件达到工作温度的时间减少,可以满足某些应用场景下快速启动的要求;最后,提高探测器工作温度还能显著增加组件的寿命和可靠性。
采用势垒层结构是一种抑制器件暗电流,提高探测器工作温度的有效方法。势垒层结构本质上与p-n结二极管类似,不同之处在于其不能自发产生内建电场,需要在外加反偏电压下工作,此时的伏安特性与二极管的伏安特性类似,但其耗尽区可以集中在宽禁带宽度的势垒层,而不是窄禁带的吸收层中,因而大幅抑制了复合暗电流。
发明内容
本发明实施例提供一种红外探测器件制备方法,用以提高探测器的工作温度。
第一方面,本发明实施例提供一种红外探测器件制备方法,包括:
根据预先确定的厚度和掺杂浓度在衬底上顺次生长第一电极层和吸收层;
在所述吸收层上交替生长预设材料组合的势垒层;
在所述势垒层上生长第二电极层;
对完成生长的材料进行流片处理,以制备红外探测器件。
可选的,根据预先确定的厚度和掺杂浓度在衬底上顺次生长第一电极层和吸收层,包括:
根据预先确定的厚度和掺杂浓度使用分子束外延法在衬底上顺次生长第一电极层和吸收层。
可选的,在所述吸收层上交替生长预设材料组合的势垒层,包括:
通过预先确定的单层材料生长时间和材料组合的比例控制所述材料组合交替生长的层数,直至满足所述材料组合的厚度。
可选的,预先确定单层材料生长时间,包括:
选取所述材料组合中的一种在实验片上生长;
根据生长过程中材料衍射条纹的强度周期变化确定所述单层材料生长时间。
可选的,对完成生长的材料进行流片处理,包括:
通过饱和柠檬酸、磷酸、双氧水以及水根据指定配比配置腐蚀溶液;
通过所述腐蚀溶液对红外探测器件进行蚀刻。
可选的,所述势垒层材料组合为AlSb材料和AlAs材料的组合。
可选的,所述势垒层厚度范围为100-250nm,所述势垒层材料组合中AlAs材料不掺杂,AlSb材料的掺杂浓度为1×1016cm-3
可选的,所述第一电极层采用InAs0.91Sb0.09材料,所述第一电极层的厚度范围为0.4μm-0.6μm,所述第一电极层的掺杂浓度大于1×1017cm-3
可选的,所述吸收层采用InAs0.91Sb0.09材料,所述吸收层的厚度范围为2μm-4μm,掺杂浓度为1×1016cm-3
可选的,所述第二电极层采用InAs0.91Sb0.09或GaSb材料,厚度为0.2-0.4μm;掺杂浓度大于1×1017cm-3
本发明实施例通过预设材料组合的势垒层结构,有效抑制红外探测器件存在较大的产生复合暗电流和表面漏电流的情况,取得了积极的技术效果。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明第一实施例流程图;
图2为本发明第一实施例器件结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例一
本发明第一实施例提供一种红外探测器件制备方法,如图1所示,包括以下具体步骤:
S10、根据预先确定的厚度和掺杂浓度在衬底上顺次生长第一电极层和吸收层;
S20、在所述吸收层上交替生长预设材料组合的势垒层;
S30、在所述势垒层上生长第二电极层;
S40、对完成生长的材料进行流片处理,以制备红外探测器件。
本发明实施例通过预设材料组合的势垒层结构,有效抑制红外探测器件存在较大的产生复合暗电流和表面漏电流的情况。
可选的,根据预先确定的厚度和掺杂浓度在衬底上顺次生长第一电极层和吸收层,包括:
根据预先确定的厚度和掺杂浓度使用分子束外延法在衬底上顺次生长第一电极层和吸收层。
在本实施例中所述第一电极层和吸收层采用InAsSb材料,其As组分为91%,所述势垒层采用AlAsSb材料,其As组分为8%,所采用的结构如图2所示,其中包括衬底1、第一电极层2、吸收层3、势垒层4、第二电极层5、第一电极21以及第二电极51。
预先确定厚度和掺杂浓度可以通过软件仿真完成,例如使用TCAD软件对InAsSb/AlAsSb势垒层组件的结构进行模拟仿真,改变各层材料的厚度和浓度范围,找出模拟结果的较优值,即可确定厚度和掺杂浓度,之后再根据设计的结构进行分子束外延生长,就可以制备出性能良好的高温工作器件。
在本实例中,所述第一电极层的厚度范围为0.4μm-0.6μm,所述第一电极层的掺杂浓度大于1×1017cm-3,所述吸收层的厚度范围为2μm-4μm,掺杂浓度为1×1016cm-3
可选的,通过预设材料组合在所述吸收层上交替生长势垒层,包括:
通过预先确定的单层材料生长时间控制所述材料组合交替生长的层数,直至满足所述材料组合的厚度以及预先确定的材料组合的比例。
具体地说本实施例中在材料生长阶段,将AlAsSb势垒层看做由AlAs和AlSb两种材料组成的固溶体,由于势垒层的厚度很薄,本实施例提出交替地生长一定比例的AlAs和AlSb材料来代替现有的AlAsSb材料,由此实现对势垒层的改进。而所需AlAsSb材料的As组分为8%,AlSb和AlAs材料的比例应为23:2。但是在实际生长时,由于As束流有残存,会混入AlSb层中,本实施例经过试验得出AlSb层需增大约50%。
在具体材料生长过程中,为了实现AlSb层的层数的控制,本实施例提前通过高能电子衍射仪测试AlSb的沉积速率,然后计算沉积所需层数需要的时间,具体方法包括:
选取所述材料组合中的一种在实验片上生长;
根据生长过程中材料衍射条纹的强度周期变化确定所述单层材料生长时间。
也即本实施例中可以在实验片上生长AlSb材料,同时使用高能电子衍射仪通过衍射条纹的强度周期变化测试出生长一层AlSb材料所需的时间t。
在获取单层材料生长时间之后,通过预先确定的单层材料生长时间控制所述材料组合交替生长的层数,直至满足所述材料组合的厚度以及预先确定的材料组合的比例,一种可选的生长方法为:交替生长8~9层AlSb,1层AlAs,8~9层AlSb,重复这个步骤直到达到需要的厚度。
AlSb的层数通过生长时间控制,可以根据前述获得的单层材料生长时间t来进行控制,例如在实际操作过程中同时打开Al源快门和Sb源快门以及掺杂源的快门,停顿层数*t的时间即可;AlAs每次只生长1层:先关闭Sb源快门,停顿2~3秒后关闭Al源快门打开As源快门,停顿2~4秒,再关闭As源快门打开Al源快门,停顿2~3秒即可,本实施例中势垒层厚度范围为100-250nm,所述势垒层材料组合中AlAs材料不掺杂,AlSb材料的掺杂浓度为1×1016cm-3
在生长完成势垒层之后基于所述势垒层生长第二电极层。所述第二电极层采用InAsSb或GaSb材料,厚度为0.2-0.4μm;掺杂浓度大于1×1017cm-3
在第二电极层生长完成后,需要进行器件流片,在刻蚀工艺时还可以通过预先配置的腐蚀溶液对完成生长的器件进行蚀刻。
对完成生长的材料进行流片处理,包括:
通过饱和柠檬酸、磷酸、双氧水以及水根据指定配比配置腐蚀溶液;
对红外探测器件通过所述腐蚀溶液进行蚀刻。
本实施例中,在刻蚀步骤时,可以使用具有选择性的腐蚀液,如饱和柠檬酸、磷酸、双氧水以及水根据指定配比配置腐蚀溶液,其对InAsSb材料的腐蚀速率远大于对AlSb和AlAs的腐蚀速率,腐蚀到势垒层表面后停止,形成浅刻蚀台面,继续进行光刻、电极生长、钝化等步骤,由此制备出高温工作红外器件,通过上述刻蚀工艺使得吸收层不会裸露,器件的表面漏电流就会大幅降低,可以进一步提高探测器的工作温度。
综上,本发明方法主要包括如下几个阶段:
在材料生长阶段,AlAsSb势垒层可以看做由AlAs和AlSb两种材料组成的固溶体,由于势垒层的厚度很薄,可以交替地生长一定比例的AlAs和AlSb材料来代替AlAsSb材料。所需AlAsSb材料的As组分为8%,AlSb和AlAs材料的比例应为23:2。但是在实际生长时,由于As束流有残存,会混入AlSb层中,因此需要加大AlSb层所占的比例。
生长过程中,为了实现AlSb层的层数的控制,需要提前通过高能电子衍射仪测试AlSb的沉积速率,然后计算沉积所需层数需要的时间。AlAs层由于层数很少,使用该方法控制层数会有很大的误差,可以采用如下方法:先打开Al源快门停留若干秒,然后关闭Al源快门的同时打开As源快门再停留若干秒,之后关闭As源快门同时打开Al源快门,这样就保证了每次只生长一层AlAs。
在器件制备阶段,进行台面腐蚀时,使用浅刻蚀的方法,即台面腐蚀仅腐蚀到势垒层表面为止,虽然每个像元之间没有进行物理分隔,但由于载流子在吸收层中的横向迁移距离有限,像元之间并不会相互导通。这样,吸收层就不会裸露,器件的表面漏电流就会大幅降低,可以进一步提高探测器的工作温度。
本发明方法利用势垒层结构抑制器件复合暗电流,具体采用的结构为InAsSb/AlAsSb势垒层结构;通过交替地生长一定比例的AlAs和AlSb材料来代替AlAsSb势垒层以降低材料生长难度;通过采用浅刻蚀的方法进一步降低器件表面漏电流,本发明可以大幅度提高器件信噪比,使探测器在常规的液氮温度下具备更优异的探测性能,或者在更较高的工作温度(110~150K)下也具备媲美传统制冷型探测器的性能。本发明方法可以大大加快高温工作红外探测器材料的研究进程,加快三代红外焦平面探测器的工程化进程。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

1.一种红外探测器件制备方法,其特征在于,包括:
根据预先确定的厚度和掺杂浓度在衬底上顺次生长第一电极层和吸收层;
在所述吸收层上交替生长预设材料组合的势垒层;
在所述势垒层上生长第二电极层;
对完成生长的材料进行流片处理,以制备红外探测器件。
2.如权利要求1所述的红外探测器件制备方法,其特征在于,根据预先确定的厚度和掺杂浓度在衬底上顺次生长第一电极层和吸收层,包括:
根据预先确定的厚度和掺杂浓度使用分子束外延法在衬底上顺次生长第一电极层和吸收层。
3.如权利要求2所述的红外探测器件制备方法,其特征在于,在所述吸收层上交替生长预设材料组合的势垒层,包括:
通过预先确定的单层材料生长时间和材料组合的比例控制所述材料组合交替生长的层数,直至满足所述材料组合的厚度。
4.如权利要求3所述的红外探测器件制备方法,其特征在于,预先确定单层材料生长时间,包括:
选取所述材料组合中的一种在实验片上生长;
根据生长过程中材料衍射条纹的强度周期变化确定所述单层材料生长时间。
5.如权利要求1所述的红外探测器件制备方法,其特征在于,对完成生长的材料进行流片处理,包括:
通过饱和柠檬酸、磷酸、双氧水以及水根据指定配比配置腐蚀溶液;
通过所述腐蚀溶液对红外探测器件进行蚀刻。
6.如权利要求1-4任一项所述的红外探测器件制备方法,其特征在于,所述势垒层中材料组合为AlSb材料和AlAs材料的组合。
7.如权利要求6所述的红外探测器件制备方法,其特征在于,所述势垒层厚度范围为100-250nm,所述势垒层材料组合中AlAs材料不掺杂,AlSb材料的掺杂浓度为1×1016cm-3
8.如权利要求1-4任一项所述的红外探测器件制备方法,其特征在于,所述第一电极层采用InAs0.91Sb0.09材料,所述第一电极层的厚度范围为0.4μm-0.6μm,所述第一电极层的掺杂浓度大于1×1017cm-3
9.如权利要求1-4任一项所述的红外探测器件制备方法,其特征在于,所述吸收层采用InAs0.91Sb0.09材料,所述吸收层的厚度范围为2μm-4μm,掺杂浓度为1×1016cm-3
10.如权利要求1-4任一项所述的红外探测器件制备方法,其特征在于,所述第二电极层采用InAs0.91Sb0.09或GaSb材料,厚度为0.2-0.4μm;掺杂浓度大于1×1017cm-3
CN202010903991.XA 2020-09-01 2020-09-01 一种红外探测器件制备方法 Active CN112186070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010903991.XA CN112186070B (zh) 2020-09-01 2020-09-01 一种红外探测器件制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010903991.XA CN112186070B (zh) 2020-09-01 2020-09-01 一种红外探测器件制备方法

Publications (2)

Publication Number Publication Date
CN112186070A true CN112186070A (zh) 2021-01-05
CN112186070B CN112186070B (zh) 2022-04-19

Family

ID=73925331

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010903991.XA Active CN112186070B (zh) 2020-09-01 2020-09-01 一种红外探测器件制备方法

Country Status (1)

Country Link
CN (1) CN112186070B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594750A (en) * 1995-06-06 1997-01-14 Hughes Aircraft Company Selectively Si-doped InAs/A1AsSb short-period-superlattices as N-type cladding layers for mid-IR laser structures grown on InAs substrates
US20070090337A1 (en) * 2003-09-09 2007-04-26 Koichiro Ueno Infrared sensor ic, and infrared sensor and manufacturing method thereof
US20120145996A1 (en) * 2010-10-22 2012-06-14 California Institute Of Technology Barrier infrared detector
CN103872250A (zh) * 2012-12-11 2014-06-18 潘才法 一种电致发光器件
CN104818484A (zh) * 2015-04-02 2015-08-05 华南师范大学 一种InAsSb/AlAsSb材料红外探测器件的腐蚀液及器件制作方法
CN109217109A (zh) * 2018-08-29 2019-01-15 中国科学院半导体研究所 基于数字合金势垒的量子阱结构、外延结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594750A (en) * 1995-06-06 1997-01-14 Hughes Aircraft Company Selectively Si-doped InAs/A1AsSb short-period-superlattices as N-type cladding layers for mid-IR laser structures grown on InAs substrates
US20070090337A1 (en) * 2003-09-09 2007-04-26 Koichiro Ueno Infrared sensor ic, and infrared sensor and manufacturing method thereof
US20120145996A1 (en) * 2010-10-22 2012-06-14 California Institute Of Technology Barrier infrared detector
CN103872250A (zh) * 2012-12-11 2014-06-18 潘才法 一种电致发光器件
CN104818484A (zh) * 2015-04-02 2015-08-05 华南师范大学 一种InAsSb/AlAsSb材料红外探测器件的腐蚀液及器件制作方法
CN109217109A (zh) * 2018-08-29 2019-01-15 中国科学院半导体研究所 基于数字合金势垒的量子阱结构、外延结构及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周朋 等: "nBn型InAsSb探测器的材料及器件研究", 《红外》 *

Also Published As

Publication number Publication date
CN112186070B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN101971367B (zh) 红外线发光元件
Kaplar et al. Deep levels and their impact on generation current in Sn-doped InGaAsN
James et al. Photoemission from cesium‐oxide‐activated InGaAsP
Duschl et al. Epitaxially grown Si/SiGe interband tunneling diodes with high room-temperature peak-to-valley ratio
Jin et al. Diffusion barrier cladding in Si/SiGe resonant interband tunneling diodes and their patterned growth on PMOS source/drain regions
CN111446332A (zh) 一种AlGaN单极载流子日盲紫外探测器及其制备方法
Nanver et al. Pure-boron chemical-vapor-deposited layers: A new material for silicon device processing
US4494995A (en) Dual species ion implantation of ternary compounds based on In-Ga-As
CN112186070B (zh) 一种红外探测器件制备方法
JPS63100781A (ja) 半導体素子
WO2020192569A1 (en) Schottky-type heterojunction structure, method of making the same and schottky barrier diode device including the same
US20120073658A1 (en) Solar Cell and Method for Fabricating the Same
JPH0964386A (ja) 多接合太陽電池
Ramesh et al. Boron delta-doping dependence on Si/SiGe resonant interband tunneling diodes grown by chemical vapor deposition
JP6702673B2 (ja) 複数の変成層を備える反転変成多接合型ソーラーセル
Kim et al. Measurement and control of ion‐doping‐induced defects in cadmium telluride films
JP2005251820A (ja) ヘテロ接合型電界効果トランジスタ
Mohiuddin et al. Elimination of current blocking in ternary InAlAs-InGaAs-InAlAs double heterojunction bipolar transistors
Thomas et al. Time-resolved photoluminescence of MBE-grown 1 eV GaAsSbN for multi-junction solar cells
Parent et al. Photoassisted MOVPE grown (n) ZnSe/(p+) GaAs heterojunction solar cells
CN117476787A (zh) 一种碲镉汞平面pn结红外探测器半导体器件及其制备方法
CN118099257B (zh) 双色红外探测器及其制备方法
CN110911518B (zh) 一种iii族氮化物半导体雪崩光电探测器及其制备方法
JP2002050781A (ja) タンデム型太陽電池およびその製造方法
Noorzad A cost-effective liquid phase epitaxy process for high-efficiency AlGaAs/GaAs solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant