CN112183838B - 一种基于多约束修正c-w算法优化解决智能无人车路径规划问题的方法 - Google Patents

一种基于多约束修正c-w算法优化解决智能无人车路径规划问题的方法 Download PDF

Info

Publication number
CN112183838B
CN112183838B CN202011001255.1A CN202011001255A CN112183838B CN 112183838 B CN112183838 B CN 112183838B CN 202011001255 A CN202011001255 A CN 202011001255A CN 112183838 B CN112183838 B CN 112183838B
Authority
CN
China
Prior art keywords
vehicle
point
algorithm
time
constraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011001255.1A
Other languages
English (en)
Other versions
CN112183838A (zh
Inventor
邹娟
王求真
林瑞全
杨源
彭祯源
申显辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202011001255.1A priority Critical patent/CN112183838B/zh
Publication of CN112183838A publication Critical patent/CN112183838A/zh
Application granted granted Critical
Publication of CN112183838B publication Critical patent/CN112183838B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Strategic Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Development Economics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Genetics & Genomics (AREA)
  • Game Theory and Decision Science (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Physiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于多约束修正C‑W算法优化解决智能无人车路径规划问题的方法。本发明是通过对简单的C‑W算法进行修改,在已有的路径优化上添加限重、时间窗、车辆种类不同约束条件,对智能无人车派送路线进行规划形成的一种方法。本发明先是对实际问题进行建模,再使用修正的C‑W算法解决派送路线规划中限重、时间窗的约束问题,然后根据运输任务优化类型的不同对规划的路线进行不同处理,从而找到一种最佳的无人车派送方案。

Description

一种基于多约束修正C-W算法优化解决智能无人车路径规划 问题的方法
技术领域
本发明涉及物流派送领域,具体为一种基于多约束修正C-W算法优化解决智能无人车路径规划问题的方法。
背景技术
车辆调度问题是物流管理中非常重要的一个问题,通常指的是,在特定的约束条件下,企业通过调配一定的车辆,并且组织适当的行车线路为客户进行配送货物,力争实现一定的目标,例如运输距离、费用最小化。配送中仅考虑空间而不考虑时间的问题称为车辆路径问题(Vehicle routing Problem,简称VRP)。当配送时具有时间窗约束时,这样的问题为车辆调度问题(Vehicle Scheduling Problem,简称VSP)。VSP广泛应用于大型制造装配、钢铁、物流运输以及大型连锁零售等行业具有很强的现实应用背景。随着科技的快速发展,无人车送货技术即将出现在人们的生活中。未修正的C-W算法是解决TSP问题的一种算法,但将它运用到无人车派送路径优化调度上只能找到最短路径,而不能解决多无人车分配、无人车限重和时间窗问题。
为了解决多无人车分配、无人车限重和时间窗问题,出现了很多修正的算法。虽然它们能够地解决配送车辆调度问题,但是当存在多个约束条件时,这些算法就会存在计算量大、收敛速度慢等问题。尤其当存在硬约束的时间窗和车辆种类不同时,上述算法的缺点就更加突出。
发明内容
本发明的目的是为了解决无人车派送中限重、时间窗和车辆种类不同所产生的问题,提出了一种基于多约束修正C-W算法优化解决智能无人车路径规划问题的方法。
为实现上述目的,本发明提供如下技术方案:
步骤一:根据实际问题模型,对实际问题描述并建立模型。
步骤二:在C-W节约算法的基础上,添加限重、时间窗的约束对C-W算法修正优化,并在两个约束下的优化算法试解决实际路径优化。
步骤三:再添加车辆类型的约束再次实现路径优化,构成多约束下多无人车的路径优化系统,并测试算法性能。
步骤四:根据实际问题模型,确定运输任务优化类型。
步骤五:根据运输任务优化类型,做不同的处理,最后得到最佳路线。
优选的,所述步骤一:根据实际问题进行描述。
在由一个x个客户和m辆配送车辆数量组成的系统中,其中x个客户之间有有限的货物需要m辆配送车辆进行配送,而每种派送车辆载重不同。在满足配送车辆载重量、客户对货物运输的时间窗等约束条件下选择最适合的车辆,通过优化得到最小成本下的车辆调度方案。
优选的,所述步骤一:根据实际问题建立模型。
一个车场派出载重量为q(k)的货车为L个客户进行货物配送,每个客户i的货运量为g(i),i=1,2,,,n.其中,g(i)≤q(k),并且配送中心用0表示。每个客户i接受服务的时间窗为[ETi,LTi],其中ETi为客户所能容忍的任务最早开始时间,LTi为客户所能容忍的任务最迟开始时间,这样可以避免装卸时过多的人工、机械等待。RTi表示配送车辆到达点i的时间,客户i的时间窗约束需要满足约束ETi≤RTi≤LTi,即车辆到达时间不宜过早也不宜过晚。再定义指示变量xijk和yik,k=1,2,…,m,其中xijk和yik的值为:
根据费用最小化原则,建立路径规划问题的目标函数Z。
对于无人车的路径规划,最后要找到的是路径的最小值,即最小的Z,具体函数为:
其中相关的符号定义为:
i:第i个客户,i=0,1,2,,,其中0表示配送中心;
q(k):车辆载重量,j=(1,2....,n),用k区分不同的车辆种类;
g(i):客户i的货运量;
Cij:车辆从客户i到客户j的费用;
Ti:为客户i完成该任务所需的时间(装货或卸货);
ETi:客户所能容忍的任务最早开始时间S;
LTi:客户i所能容忍的任务最迟开始时间;
RTi:配送车辆到达点i的时间约束,即到i点的时间;
tij:车辆由点行驶到的时间;
k:配送车辆类型,k=1,2...,m;
xijk:客户i到客户j的货物是否由车辆类型k运载;
yik:客户i的货物是否由车辆k运载;
优选的,所述步骤二:在C-W节约算法的基础上,添加限重、时间窗的约束对C-W算法修正优化,并在两个约束下的优化算法试解决实际路径优化。
考虑到车辆限重和客户时间窗约束,则需满足以下条件;(1)所有用户的要求;(2)不使任何一辆车超载;(3)每辆车每天的总运行时间或行驶里程不超过规定的上限;(4)用户到货时间要求。
具体算法步骤:
步骤1:计算所有可能配送车辆可能涉及到的线路s(i,j),并收入到M集合中。
步骤2:将M中的元素进行排序,组成新的集合N。
步骤3:如果则计算终止。否则,由于集合M中的元素已经按照大小进行排列,因此对集合M第一项s(i,j),即集合M中的最大项考察,并且选出由此相对应的(i,j)。
若满足下述情形之一,则算法继续进行:
①点i和j均处在初始化线路中;
②点i和点j一个在初始化线路中,一个在已构点成线路中,且直接与车场相连;
③点i和点j均在已构成线路中,且都直接与车场相连;
步骤4:对经过点和点j线路上的总货运量进行计算,如果总货运量小于单个车辆装载量q,则转入步骤5;如果大于等于车辆装载量q,则转入步骤7。
步骤5:计算EF,并考虑三种情形,
①若EFj=0,则转入步骤6;
②若EFj<0,则计算当/>则转入步骤6;如果/>转EFj>0入步骤7;
③若EFj>0,则计算当/>则转入步骤6;如果/>转入步骤7。
步骤6:再次连接点i和点j,计算出配送车辆所需的新时间或费用,并且转步骤7。
步骤7:令M=M-s(i,j),转步骤3。
其中相关符号定义为:
s(i,j):点i和点j连接的节约值。计算公式:s(i,j)=Ci0+C0j-Cij
EFj:连接点i和点j后车辆到达点j的时间变化量,计算公式:EFj=RTi+Ti+tij-RTj
R:点j后面的各点;
车辆在线路上j点后面的个任务均不需要等待的j点的到达时间的最大可以提前量;
线路上j点后面的任务不违反时间窗约束的j点的到达时间的最大允许推迟量;
计算公式:
优选的,所述步骤三:再添加车辆类型的约束再次实现路径优化,构成多约束下多无人车的路径优化系统,并测试算法性能。
现实的车辆分配并不是统一类型的载重的车辆,所以就存在不同载重的车辆参与其中。对于该部分的问题解决,利用遗传算法改变遗传因子使分配方案中有多种解,找出本次派送中最便利的方案。
将构成多约束下多无人车的路径优化系统进行参数调整,使用数据分析工具测试算法性能。通过对最终形成系统的仿真,不断调整和修改方案,将其可视化达到最佳效果。
优选的,所述步骤四:根据实际问题模型,确定运输任务优化类型。
本步骤首先确定任务是属于何种运输优化类型,然后根据系统所确定运输优化类型,来选择不同的优化算法。运输优化类型区分为非规划型和规划型两大类型。非规划型优化这类任务的任务量比较少,大部分的车辆都处于停车场,这种类型结构比较简单。规划型优化主要是车辆都处于动态状态,货物数量非常多,而且车辆要少于货物数量的情况。
若采用非规划型的任务优化方式,这种任务因为车辆数要多于货物数,其优化方案是直接采用遗传算法决策出最佳的派送方案。
若采用规划型的任务优化方式,这种任务因为货物数要多于车辆数,其优化方案是采用限重、时间窗约束下修正的C-W算法进行路径规划,步骤二所使用的修正算法,然后再通过遗传算法解决车辆类型不同约束下路径规划问题,最后选出最佳的派送方案。
优选的,所述步骤五:根据运输任务优化类型,做不同的处理,最后得到最佳路线。
根据步骤四可确定运输任务优化类型,采用不同的处理,分为非规划型的任务优化方式和规划型的任务优化方式。当车辆数要多于货物数时,选择非规划型的任务优化方式,只需要遗传算法来得到最佳路线。当车辆数要远少于货物数时,选择规划型的任务优化方式,就需要先使用限重、时间窗约束下修正的C-W算法找到最佳路线,然后再通过遗传算法解决车辆类型不同约束下路径规划问题,最后选出最佳的派送方案。
与现有技术相比,本发明的有益效果是:
1.与未修正的C-W算法相比,修正后的C-W算法更加适合于车辆在多约束条件下的路径优化,主要体现在:①未修正的算法只能寻找到一条最短的路线,且只有一条路线,而对于车辆的调度肯定需要的是多无人车多条路线,并且无人车辆是限重的;②未修正的C-W算法中未体现时间窗问题,这不利于物流车辆中派送。所以经过对C-W算法的改进,使这种分配方法表现出较大的优势。
2.因为派送中心所分配的无人车种类是不同的,这导致每种车辆的限重不同。因此,采用遗传算法与修正后的C-W算法相结合后,使得多次迭代后能寻找到最优的路径规划。
3.针对任务的优化类型不同采取了不同的优化方式,即非规划型优化和规划性优化,分类处理可大大节约时间。
附图说明
图1为本发明的具体技术线路示意图。
图2为本发明根据实际问题建立模型的交通路线图。
图3为本发明限重、时间窗约束下修正C-W算法产生的具体派送路线图。
图4为本发明确定运输任务的优化类型及解决方案示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-4,本发明提供一种技术方案:
步骤一:根据实际问题模型,对实际问题描述并建立模型。
步骤二:在C-W节约算法的基础上,添加限重、时间窗的约束对C-W算法修正优化,并在两个约束下的优化算法试解决实际路径优化。
步骤三:再添加车辆类型等的约束再次实现路径优化,构成多约束下多无人车的路径优化系统,并测试算法性能。
步骤四:根据实际问题模型,确定运输任务优化类型。
步骤五:运行测试后的路径优化系统,从而解决任务。
如图1为本发明的具体技术线路示意图。
步骤一中,根据实际问题进行描述。
在由一个x个客户和m辆配送车辆数量组成的系统中,其中x个客户之间有有限的货物需要m辆配送车辆进行配送,而每种派送车辆载重不同。在满足配送车辆载重量、客户对货物运输的时间窗等约束条件下选择最适合的车辆,通过优化得到最小成本下的车辆调度方案。
步骤一中,根据实际问题建立模型。
如图2为本发明根据实际问题建立模型的交通路线图。一个车场派出载重量为q(k)的货车为L个客户进行货物配送,每个客户i的货运量为g(i),i=1,2,,,n.其中,g(i)≤q(k),并且配送中心用0表示。每个客户i接受服务的时间窗为[ETi,LTi],其中ETi为客户所能容忍的任务最早开始时间,LTi为客户所能容忍的任务最迟开始时间,这样可以避免装卸时过多的人工、机械等待。RTi表示配送车辆到达点i的时间,客户i的时间窗约束需要满足约束ETi≤RTi≤LTi,即车辆到达时间不宜过早也不宜过晚。再定义指示变量xijk和yik,k=1,2,…,m,其中xijk和yik的值为:
根据费用最小化原则,建立路径规划问题的目标函数Z。
对于无人车的路径规划,最后要找到的是路径的最小值,即最小的Z,具体函数为:
其中相关的符号定义为:
i:第i个客户,i=0,1,2,,,其中0表示配送中心;
q(k):车辆载重量,j=(1,2....,n),用k区分不同的车辆种类;
g(i):客户i的货运量;
Cij:车辆从客户i到客户j的费用;
Ti:为客户i完成该任务所需的时间(装货或卸货);
ETi:客户所能容忍的任务最早开始时间S;
LTi:客户i所能容忍的任务最迟开始时间;
RTi:配送车辆到达点i的时间约束,即到i点的时间;
tij:车辆由点行驶到的时间;
k:配送车辆类型,k=1,2...,m;
xijk:客户i到客户j的货物是否由车辆类型k运载;
yik:客户i的货物是否由车辆k运载;
步骤二中,在C-W节约算法的基础上,添加限重、时间窗的约束对C-W算法修正优化,并在两个约束下的优化算法试解决实际路径优化。
考虑到车辆限重和客户时间窗约束,则需满足以下条件;(1)所有用户的要求;(2)不使任何一辆车超载;(3)每辆车每天的总运行时间或行驶里程不超过规定的上限;(4)用户到货时间要求。
具体算法步骤:
步骤1:计算所有可能配送车辆可能涉及到的线路s(i,j),并收入到M集合中。
步骤2:将M中的元素进行排序,组成新的集合N。
步骤3:如果则计算终止。否则,由于集合M中的元素已经按照大小进行排列,因此对集合M第一项s(i,j),即集合M中的最大项考察,并且选出由此相对应的(i,j)。
若满足下述情形之一,则算法继续进行:
①点i和j均处在初始化线路中;
②点i和点j一个在初始化线路中,一个在已构点成线路中,且直接与车场相连;
③点i和点j均在已构成线路中,且都直接与车场相连;
步骤4:对经过点和点j线路上的总货运量进行计算,如果总货运量小于单个车辆装载量q,则转入步骤5;如果大于等于车辆装载量q,则转入步骤7。
步骤5:计算EF,并考虑三种情形,
①若EFj=0,则转入步骤6;
②若EFj<0,则计算当/>则转入步骤6;如果/>转EFj>0入步骤7;
③若EFj>0,则计算当/>则转入步骤6;如果/>转入步骤7。
步骤6:再次连接点i和点j,计算出配送车辆所需的新时间或费用,并且转步骤7。
步骤7:令M=M-s(i,j),转步骤3。
根据以上的步骤可以得到如图3为本发明限重、时间窗约束下修正C-W算法产生的具体派送路线图。
其中相关符号定义为:
s(i,j):点i和点j连接的节约值。计算公式:s(i,j)=Ci0+C0j-Cij
EFj:连接点i和点j后车辆到达点j的时间变化量,计算公式:EFj=RTi+Ti+tij-RTj
R:点j后面的各点;
车辆在线路上j点后面的个任务均不需要等待的j点的到达时间的最大可以提前量;
线路上j点后面的任务不违反时间窗约束的j点的到达时间的最大允许推迟量;
计算公式:
步骤三中,再添加车辆类型的约束再次实现路径优化,构成多约束下多无人车的路径优化系统,并测试算法性能。
现实的车辆分配并不是统一类型的载重的车辆,所以就存在不同载重的车辆参与其中。对于该部分的问题解决,利用遗传算法改变遗传因子使分配方案中有多种解,找出本次派送中最便利的方案。
将构成多约束下多无人车的路径优化系统进行参数调整,使用数据分析工具测试算法性能。通过对最终形成系统的仿真,不断调整和修改方案,将其可视化达到最佳效果。
步骤四中,根据实际问题模型,确定运输任务优化类型。
本步骤首先确定任务是属于何种运输优化类型,然后根据系统所确定运输优化类型,来选择不同的优化算法。运输优化类型区分为非规划型和规划型两大类型。非规划型优化这类任务的任务量比较少,大部分的车辆都处于停车场,这种类型结构比较简单。规划型优化主要是车辆都处于动态状态,货物数量非常多,而且车辆要少于货物数量的情况。
若采用非规划型的任务优化方式,这种任务因为车辆数要多于货物数,其优化方案是直接采用遗传算法决策出最佳的派送方案。
若采用规划型的任务优化方式,这种任务因为货物数要多于车辆数,其优化方案是采用限重、时间窗约束下修正的C-W算法进行路径规划,步骤二所使用的修正算法,然后再通过遗传算法解决车辆类型不同约束下路径规划问题,最后选出最佳的派送方案。如图4为本发明确定运输任务的优化类型及解决方案示意图。
步骤五中,根据运输任务优化类型,做不同的处理,最后得到最佳路线。
根据步骤四可确定运输任务优化类型,采用不同的处理,分为非规划型的任务优化方式和规划型的任务优化方式。当车辆数要多于货物数时,选择非规划型的任务优化方式,只需要遗传算法来得到最佳路线。当车辆数要远少于货物数时,选择规划型的任务优化方式,就需要先使用限重、时间窗约束下修正的C-W算法找到最佳路线,然后再通过遗传算法解决车辆类型不同约束下路径规划问题,最后选出最佳的派送方案。
本发明的工作原理为:根据实际问题模型,对实际问题描述并建立模型,在C-W节约算法的基础上,添加限重、时间窗以及车辆类型的约束对C-W算法修正优化,共同构成多约束下多无人车的路径优化系统,智能无人车在接收到传过来的相关信息进行分析,确定任务优化类型,并运行此路径优化系统,然后能找到最佳派送路线,最后无人车完成派送任务。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (4)

1.一种基于多约束修正C-W算法优化解决智能无人车路径规划问题的方法,其特征在于:
步骤一:根据实际问题模型,对实际问题描述并建立模型;
步骤二:在C-W节约算法的基础上,添加限重、时间窗的约束对C-W算法修正优化,并在两个约束下的优化算法试解决实际路径优化;
步骤三:再添加车辆类型的约束再次实现路径优化,构成多约束下多无人车的路径优化系统,并测试算法性能;具体包括:
由于存在不同载重的车辆参与,利用遗传算法改变遗传因子使分配方案中有多种解,找出本次派送中最便利的方案;
将构成多约束下多无人车的路径优化系统进行参数调整,使用数据分析工具测试算法性能;通过对最终形成系统的仿真,不断调整和修改方案,将其可视化达到最佳效果;
步骤四:根据实际问题模型,确定运输任务优化类型;具体包括:
当车辆数多于货物数时,任务优化类型为非规划型;当货物数多于车辆数时,任务优化类型为规划型;
步骤五:根据运输任务优化类型,做不同的处理,最后得到最佳路线;具体包括:
当任务优化类型为非规划型时,只需要遗传算法来得到最佳路线;当任务优化类型为规划型时,需要先使用限重、时间窗约束下修正的C-W算法找到最佳路线,再通过遗传算法解决车辆类型不同约束下路径规划问题,最后选出最佳的派送方案。
2.根据权利要求1所述的一种基于多约束修正C-W算法优化解决智能无人车路径规划问题的方法,其特征在于:所述步骤一:根据实际问题进行描述;
在由一个x个客户和m辆配送车辆数量组成的系统中,其中x个客户之间有有限的货物需要m辆配送车辆进行配送,而每种派送车辆载重不同;在满足配送车辆载重量、客户对货物运输的时间窗约束条件下选择最适合的车辆,通过优化得到最小成本下的车辆调度方案。
3.根据权利要求1所述的一种基于多约束修正C-W算法优化解决智能无人车路径规划问题的方法,其特征在于:所述步骤一:根据实际问题建立模型;
一个车场派出载重量为q(k)的货车为L个客户进行货物配送,每个客户i的货运量为g(i),i=1,2,……,n,其中,g(i)≤q(k),并且配送中心用0表示;每个客户i接受服务的时间窗为[ETi,LTi],其中ETi为客户所能容忍的任务最早开始时间,LTi为客户所能容忍的任务最迟开始时间,这样避免装卸时过多的人工、机械等待;RTi表示配送车辆到达点i的时间,客户i的时间窗约束需要满足约束ETi≤RTi≤LTi,即车辆到达时间不宜过早也不宜过晚;再定义指示变量xijk和yik,k=1,2,…,m,其中xijk和yik的值为:
根据费用最小化原则,建立路径规划问题的目标函数Z;
对于无人车的路径规划,最后要找到的是路径的最小值,即最小的Z,具体函数为:
其中相关的符号定义为:
i:第i个客户,i=0,1,2,,,其中0表示配送中心;
q(k):车辆载重量,j=1,2....,n,用k区分不同的车辆种类;
g(i):客户i的货运量;
Cij:车辆从客户i到客户j的费用;
Ti:为客户i完成装货或卸货所需的时间;
ETi:客户i所能容忍的任务最早开始时间;
LTi:客户i所能容忍的任务最迟开始时间;
RTi:配送车辆到达点i的时间约束,即到i点的时间;
tij:车辆由点i行驶到点j的时间;
k:配送车辆类型,k=1,2...,m;
xijk:客户i到客户j的货物是否由车辆类型k运载;
yik:客户i的货物是否由车辆k运载。
4.根据权利要求1所述的一种基于多约束修正C-W算法优化解决智能无人车路径规划问题的方法,其特征在于:所述步骤二:在C-W节约算法的基础上,添加限重、时间窗的约束对C-W算法修正优化,并在两个约束下的优化算法试解决实际路径优化;
考虑到车辆限重和客户时间窗约束,则需满足以下条件;(1)所有用户的要求;(2)不使任何一辆车超载;(3)每辆车每天的总运行时间或行驶里程不超过规定的上限;(4)用户到货时间要求;
具体算法步骤:
步骤1:计算所有可能配送车辆可能涉及到的线路的s(i,j),并收入到M集合中;
步骤2:将M中的元素进行由大到小排序,组成新的集合N;
步骤3:如果则计算终止;否则,由于集合M中的元素已经按照大小进行排列,因此对集合M第一项s(i,j),即集合M中的最大项考察,并且选出由此相对应的(i,j),i表示第i个客户,j表示第j个客户;
若满足下述情形之一,则算法继续进行:
①点i和j均处在初始化线路中;
②点i和点j一个在初始化线路中,一个在已构点成线路中,且直接与车场相连;
③点i和点j均在已构成线路中,且都直接与车场相连;
步骤4:对经过点i和点j线路上的总货运量进行计算,如果总货运量小于单个车辆装载量q,则转入步骤5;如果大于等于车辆装载量q,则转入步骤7;
步骤5:计算EF,并考虑三种情形,
①若EFj=0,则转入步骤6;
②若EFj<0,则计算当/>则转入步骤6;如果/>转EFj>0入步骤7;
③若EFj>0,则计算当/>则转入步骤6;如果/>转入步骤7;
步骤6:再次连接点i和点j,计算出配送车辆所需的新时间或费用,并且转步骤7;
步骤7:令M=M-s(i,j),转步骤3;
其中相关符号定义为:
s(i,j):点i和点j连接的节约值,计算公式:s(i,j)=Ci0+C0j-Cij,Ci0表示车辆从客户i到配送中心0的费用,C0j表示车辆从配送中心0到客户j的费用,Cij表示车辆从客户i到客户j的费用;
EFj:连接点i和点j后车辆到达点j的时间变化量,计算公式:EFj=RTi+Ti+tij-RTj
RTi:配送车辆到达点i的时间约束,即到i点的时间;
Ti:为客户i完成装货或卸货所需的时间;
tij:车辆由点i行驶到点j的时间;
RTj:配送车辆到达点j的时间约束,即到j点的时间;
R:点j后面的各点;
车辆在线路上j点后面的各任务均不需要等待的j点的到达时间的最大提前量;
线路上j点后面的任务不违反时间窗约束的j点的到达时间的最大允许推迟量;
计算公式:
RTr:配送车辆到达点r的时间约束,即到r点的时间;
ETr:客户r所能容忍的任务最早开始时间;
LTr:客户r所能容忍的任务最迟开始时间。
CN202011001255.1A 2020-09-22 2020-09-22 一种基于多约束修正c-w算法优化解决智能无人车路径规划问题的方法 Active CN112183838B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011001255.1A CN112183838B (zh) 2020-09-22 2020-09-22 一种基于多约束修正c-w算法优化解决智能无人车路径规划问题的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011001255.1A CN112183838B (zh) 2020-09-22 2020-09-22 一种基于多约束修正c-w算法优化解决智能无人车路径规划问题的方法

Publications (2)

Publication Number Publication Date
CN112183838A CN112183838A (zh) 2021-01-05
CN112183838B true CN112183838B (zh) 2024-02-02

Family

ID=73956755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011001255.1A Active CN112183838B (zh) 2020-09-22 2020-09-22 一种基于多约束修正c-w算法优化解决智能无人车路径规划问题的方法

Country Status (1)

Country Link
CN (1) CN112183838B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112749842B (zh) * 2021-01-11 2024-05-03 中国工商银行股份有限公司 一种押运路径的规划方法及装置
CN113077106A (zh) * 2021-04-16 2021-07-06 北京京东振世信息技术有限公司 一种基于时间窗的物品运输方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110052054A (ko) * 2009-11-12 2011-05-18 부산대학교 산학협력단 운송 물류 네트워크 관리 시스템 및 그 방법
CN107358326A (zh) * 2017-07-20 2017-11-17 深圳市凯立德科技股份有限公司 一种单车多点配送线路处理方法
CN109978471A (zh) * 2019-04-11 2019-07-05 聊城大学 一种带时间窗的冷链物流路径优化方法
CN110490429A (zh) * 2019-07-29 2019-11-22 湘潭大学 基于ssa算法智能楼宇微电网家用负荷快速调度方法
CN110689174A (zh) * 2019-09-16 2020-01-14 深圳市威豹联合金融服务有限公司 基于公共交通的人员路线规划方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110052054A (ko) * 2009-11-12 2011-05-18 부산대학교 산학협력단 운송 물류 네트워크 관리 시스템 및 그 방법
CN107358326A (zh) * 2017-07-20 2017-11-17 深圳市凯立德科技股份有限公司 一种单车多点配送线路处理方法
CN109978471A (zh) * 2019-04-11 2019-07-05 聊城大学 一种带时间窗的冷链物流路径优化方法
CN110490429A (zh) * 2019-07-29 2019-11-22 湘潭大学 基于ssa算法智能楼宇微电网家用负荷快速调度方法
CN110689174A (zh) * 2019-09-16 2020-01-14 深圳市威豹联合金融服务有限公司 基于公共交通的人员路线规划方法及装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Optimal scheduling of electric vehicles carsharing service with multi-temporal and multi-task operation;Kexing Lai etal.;《Energy》;全文 *
一种带有时间窗的非满载VSP的修正C-W节约算法;罗绮;;物流技术(23);全文 *
一种求解随机需求库存 - 路径问题的分解算法;赵达等;《物流技术》;第第31卷卷(第第9期期);全文 *
带时间窗车辆调度问题的启发式算法研究与应用;杨燕霞等;《计算机应用》;第第33卷卷(第第S1期期);全文 *
罗绮.一种带有时间窗的非满载VSP的修正C-W节约算法.《物流技术》.2014,33(12),摘要和第1-5节. *

Also Published As

Publication number Publication date
CN112183838A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
CN112183838B (zh) 一种基于多约束修正c-w算法优化解决智能无人车路径规划问题的方法
CN109002902A (zh) 分区域多阶段生鲜农产品动态车辆路径优化方法
CN116187896B (zh) 绿色车辆路径问题求解方法、装置、计算机设备以及介质
CN106203739B (zh) 一种多配送中心物流运输调度的方法及系统
CN102136104A (zh) 基于负载均衡和lk算法的车辆路径规划方法
CN102542395A (zh) 一种应急物资调度系统及计算方法
CN110619441A (zh) 基于领导者的ga-pso的软时间窗车辆路径优化方法
CN111582691A (zh) 基于双层规划的客运枢纽多交通方式的运力匹配方法
CN114331220B (zh) 基于订单动态优先级的乘用车运输车辆调度方法及装置
CN112085271B (zh) 一种基于众包模式的传统产业集群集货路径优化方法
CN112733272A (zh) 一种解决带软时间窗的车辆路径问题的方法
CN112950128A (zh) 一种基于大数据融合的智能物流运输系统及方法
CN108256969A (zh) 一种公共自行车租赁点调度区域划分方法
CN108564211A (zh) 物流运输路径规划方法及系统
CN114897217A (zh) 一种生鲜电商前置仓选址-路径规划方法
CN113469471A (zh) 聚类方法、运输车辆路径规划方法、电子设备及存储介质
CN112766611A (zh) 一种三维装车方法及装置
CN112766614A (zh) 一种基于两阶段启发式算法的动态车辆路径优化方法
CN112613701B (zh) 一种成品卷烟物流调度方法
CN116358593B (zh) 考虑非线性能耗的电动车辆路径规划方法、装置和设备
CN115062868B (zh) 一种预聚类的车辆配送路径规划方法和装置
CN108197879A (zh) 一种多模式客货共运方法及系统
CN115526492A (zh) 一种多车型网络甩挂运输调度的优化方法
CN115310676A (zh) 一种时变路网下的路径优化方法、装置及存储介质
CN114626755A (zh) 一种基于马尔可夫决策的钢铁物流智能调度方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant