CN112173085A - Hydraulic control system and method for retraction and release of helicopter undercarriage - Google Patents

Hydraulic control system and method for retraction and release of helicopter undercarriage Download PDF

Info

Publication number
CN112173085A
CN112173085A CN202011020899.5A CN202011020899A CN112173085A CN 112173085 A CN112173085 A CN 112173085A CN 202011020899 A CN202011020899 A CN 202011020899A CN 112173085 A CN112173085 A CN 112173085A
Authority
CN
China
Prior art keywords
port
landing gear
valve
retraction
electromagnetic valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011020899.5A
Other languages
Chinese (zh)
Other versions
CN112173085B (en
Inventor
张学雷
徐折贵
曾燕
刘瑞杰
谭伦
陈国鹏
杨宇
金鑫锐
严雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Helicopter Research and Development Institute
Original Assignee
China Helicopter Research and Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Helicopter Research and Development Institute filed Critical China Helicopter Research and Development Institute
Priority to CN202011020899.5A priority Critical patent/CN112173085B/en
Publication of CN112173085A publication Critical patent/CN112173085A/en
Application granted granted Critical
Publication of CN112173085B publication Critical patent/CN112173085B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • B64C25/18Operating mechanisms
    • B64C25/22Operating mechanisms fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/041Removal or measurement of solid or liquid contamination, e.g. filtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Abstract

The invention belongs to the technical field of helicopter undercarriage control, and discloses a hydraulic control system for retraction and release of a helicopter undercarriage, which comprises: the landing gear emergency lowering system comprises a flow limiting valve, a landing gear lowering electromagnetic valve, a landing gear retracting electromagnetic valve, a landing gear emergency lowering electromagnetic valve, a first throttle valve, a second throttle valve, a third throttle valve, a conversion valve and an oil filter; the control device can realize the retraction control of the undercarriage, and has the function of controlling the undercarriage to be put down in an emergency when the hydraulic system is normally retracted and fails.

Description

Hydraulic control system and method for retraction and release of helicopter undercarriage
Technical Field
The invention belongs to the technical field of helicopter undercarriage control, and particularly relates to a hydraulic control system for retraction and extension of a helicopter undercarriage.
Background
With the increase of the flight speed of the helicopter, higher requirements are put forward for reducing the aerodynamic resistance of the helicopter. The starting resistance of the landing gear of a common helicopter accounts for 15% -20% of the total resistance, and the aerodynamic resistance of the helicopter can be effectively reduced by adopting a retractable landing gear. At present, the extension and retraction of a helicopter undercarriage are mostly realized by adopting a hydraulic mode.
Disclosure of Invention
In view of the above problems, an object of the present invention is to provide a hydraulic control system for retraction and extension of a landing gear of a helicopter, which can realize retraction and extension control of the landing gear and has a landing gear emergency lowering control function when the hydraulic system is normally retracted and extended and fails.
In order to achieve the purpose, the invention is realized by adopting the following technical scheme.
Technical scheme one
A helicopter landing gear retraction hydraulic control system, said system comprising:
the landing gear emergency landing device comprises a flow limiting valve 1, a landing gear lowering electromagnetic valve 2, a landing gear retracting electromagnetic valve 3, a landing gear emergency lowering electromagnetic valve 4, a first throttle valve 5, a second throttle valve 6, a third throttle valve 7, a conversion valve 8 and an oil filter 10;
a port P0 is defined as a normal retraction pressure supply port of the landing gear, a port R0 is a retraction oil return port of the landing gear, and a port P1 is a pressure supply port for emergency lowering of the landing gear; the ports S1, S2 and S3 are pressure supply ports when the landing gear is folded, and the ports F1, F2 and F3 are oil return ports when the landing gear is folded;
defining a port P of an undercarriage down electromagnetic valve 2, an undercarriage retracting electromagnetic valve 3 and an undercarriage emergency down electromagnetic valve 4 as input ports, wherein a port A is a first outlet port, and a port B is a second outlet port;
the port P0 is communicated with an input port of the flow limiting valve 1, an output port of the flow limiting valve 1 is communicated with a port A of the landing gear lowering electromagnetic valve 2 and a port A of the landing gear retracting electromagnetic valve 3, a port P of the landing gear lowering electromagnetic valve 2 is communicated with a port A of the conversion valve 8, and a port T of the conversion valve 8 is respectively communicated with a port F1, a port F2 and a port F3;
the P port of the landing gear retraction electromagnetic valve 3 is respectively communicated with the input ports of a first throttle valve 5, a second throttle valve 6 and a third throttle valve 7, and the output ports of the first throttle valve 5, the second throttle valve 6 and the third throttle valve 7 are respectively communicated with the S1, the S2 and the S3 ports;
the port P1 is communicated with an input port of the oil filter 10, and an output port of the oil filter 10 is communicated with a port A of the landing gear emergency lowering solenoid valve 4;
the port R0 is communicated with the ports B of the landing gear lowering electromagnetic valve 2, the landing gear retracting electromagnetic valve 3 and the landing gear emergency lowering electromagnetic valve 4; and a port B of the conversion valve 8 is communicated with a port P of the landing gear emergency lowering electromagnetic valve 4.
Further, in the above-mentioned case,
the system further comprises: a pressure supply solenoid valve 12;
defining a port P of the pressure supply electromagnetic valve 12 as an input port and a port A as an outlet port;
the port P0 is also communicated with the port A of the pressure supply electromagnetic valve 12;
the port P1 is also in communication with the port P of the pressure supply solenoid valve 12.
Further, in the above-mentioned case,
the system further comprises: a safety valve 9, a pressure sensor 11;
a port P of the safety valve 9 is defined as an input port, and a port T is defined as a pressure relief port;
the output port of the oil filter 10 is also respectively communicated with the pressure sensor 11 and the port P of the safety valve 9;
the port R0 also communicates with the port T of the relief valve 9.
The second technical scheme is as follows:
a hydraulic control method for retraction and release of a helicopter landing gear, which is applied to the system in the first technical scheme, comprises the following steps:
when the undercarriage is retracted, the undercarriage retraction electromagnetic valve 3 is electrified, the port P is communicated with the port A, the port B is closed, the undercarriage extension electromagnetic valve 2 is powered off, the port P is communicated with the port B, and the port A is closed;
pressure oil is supplied to three landing gear retraction cavities from a port P0 through a port A, P of a landing gear retraction electromagnetic valve 3 and from ports S1, S2 and S3 respectively, landing gear return oil passes through a port F1, a port F2 and a port F3 through a switching valve 8T and a port A, and the landing gear is lowered from a port P and a port B of the electromagnetic valve 2 and returns to an onboard hydraulic oil tank through a port R0.
Further, when the landing gear is retracted in place, the landing gear retraction electromagnetic valve 3 is powered off.
Further, when the undercarriage is put down, the undercarriage putting down electromagnetic valve 2 is powered on, the port P is communicated with the port A, the port B is closed, the undercarriage retracting electromagnetic valve 3 is powered off, the port P is communicated with the port B, and the port A is closed;
the pressure oil is supplied to the three landing gear lower cavities from a port P0 through a port A, P of the landing gear lower electromagnetic valve 2, a port A and a port T of the conversion valve 8 and ports F1, F2 and F3 respectively;
the return oil of the landing gear passes through ports S1, S2 and S3, passes through ports P and B of the landing gear retraction electromagnetic valve 3, and returns to an onboard hydraulic oil tank through a port R0.
Furthermore, the first throttle valve 5, the second throttle valve 6 and the third throttle valve 7 respectively adjust the retraction speeds of the three landing gears through throttling, so that the three landing gears move coordinately and stably.
Further, when pressure of a port P0 is lost, the landing gear emergency lowering solenoid valve 4 is electrified, the port P is communicated with the port A, pressure oil passes through the oil filter 10 from the port P1, and the port A and the port P of the landing gear emergency lowering solenoid valve 4 and reaches the conversion valve 8, the conversion valve 8 is converted, the port B and the port T are communicated, the port A is closed, the pressure oil reaches the ports F1, F2 and F3 from the port T, and pressure is supplied to lowering cavities of the three landing gears respectively, so that the landing gear emergency lowering is realized.
Furthermore, when the pressure of the port P0 is lost and pressure needs to be supplied to other equipment using hydraulic energy on the machine, the pressure supply electromagnetic valve 12 is electrified, the port P and the port A are communicated, and pressure oil passes through the oil filter 10 and the pressure supply electromagnetic valve 12 from the port P1 to the port P0.
The undercarriage control assembly can be applied to helicopters adopting hydraulic retractable undercarriages, can provide undercarriage control functions, and has dual-redundancy undercarriage control. The invention adopts an integrated design and has the advantages of light weight, high reliability and good maintainability.
Drawings
FIG. 1 is a schematic block diagram of a hydraulic control system for retraction and extension of a landing gear of a helicopter according to an embodiment of the present invention;
1-a current limiting valve, 2-an undercarriage down electromagnetic valve, 3-an undercarriage up electromagnetic valve, 4-an undercarriage emergency discharge electromagnetic valve, 5-a throttle valve, 6-a throttle valve, 7-a throttle valve, 8-a conversion valve, 9-a safety valve, 10-an oil filter, 11-a pressure sensor and 12-a ground pressure supply electromagnetic valve.
Detailed Description
The principle of the landing gear retraction control assembly according to the present invention is shown in fig. 1. The port P0 is a pressure supply port for normal retraction of the landing gear, the port R0 is an oil retraction port for retraction of the landing gear, and the port P1 is a pressure supply port for emergency lowering of the landing gear. Ports S1, S2 and S3 are landing gear retraction pressure supply ports, and ports F1, F2 and F3 are landing gear retraction pressure supply ports.
The invention relates to an undercarriage retraction control assembly, which consists of a shell, a ground pressure supply electromagnetic valve 12, a safety valve 9, an oil filter 10, an undercarriage retraction electromagnetic valve 3, an undercarriage lowering electromagnetic valve 2, an undercarriage emergency lowering electromagnetic valve 4, a flow limiting valve 1, a conversion valve 8, a pressure sensor 11 and throttle valves 5,6 and 7 embedded in the shell.
Defining the P ends of the electromagnetic valves 2, 3 and 4 as input ports, the A end as a first outlet and the B end as a second outlet; defining the P end of the safety valve 9 as an input port and the T end as a pressure relief port; defining the P end of the electromagnetic valve 12 as an input port and the A end as an outlet; the end of the switching valve 8A, B is defined as an alternative inlet, and the T port is defined as an outlet.
The port P0 is communicated with the end A of the ground pressure supply electromagnetic valve 12 and the input end of the flow limiting valve 1, the output port of the flow limiting valve 1 is communicated with the ports 2 and 3A of the electromagnetic valve, the port 2P of the electromagnetic valve is communicated with the end A of the conversion valve 8, and the end T of the conversion valve 8 is respectively communicated with the ports F1, F2 and F3. The P port of the electromagnetic valve 3 is respectively communicated with the input ends of the throttle valves 5,6 and 7, and the output ends of the throttle valves 5,6 and 7 are respectively communicated with the S1, S2 and S3 ports.
The port P1 is communicated with the input end of the oil filter 10, and the output end of the oil filter 10 is respectively communicated with the port P of the pressure sensor 11 and the safety valve 9, the port P of the electromagnetic valve 12 and the port 4A of the electromagnetic valve.
The port R0 communicates with the port T of the relief valve 9 and the ports 2, 3, and 4B of the electromagnetic valves. The port B of the switching valve 8 is communicated with the port P of the electromagnetic valve 4.
According to the landing gear retraction control assembly, a port P0 is communicated with pressure oil of an onboard hydraulic system, a port R0 is communicated with return oil of the onboard hydraulic system, and the total flow distributed to the retraction of the landing gear by the onboard hydraulic system is limited through the flow limiting valve 1.
When the landing gear is retracted, the landing gear retraction electromagnetic valve 3 is electrified, pressure oil passes through the port P0, pressure is respectively supplied to the three landing gears through the ports S1, S2 and S3 by the landing gear retraction electromagnetic valve 3, and landing gear return oil passes through the landing gear lowering electromagnetic valve 2 through the ports F1, F2 and F3 and returns to an onboard hydraulic oil tank through the port R0.
When the landing gear is put down, the landing gear put-down electromagnetic valve 2 is electrified, pressure oil passes through the port P0, pressure is supplied to the three landing gears through the ports F1, F2 and F3 through the landing gear put-down electromagnetic valve 2 and the switching valve 8 respectively, landing gear return oil passes through the ports S1, S2 and S3, passes through the landing gear put-down electromagnetic valve 3 and returns to an onboard hydraulic oil tank through the port R0. The throttle valves 5,6 and 7 adjust the retraction speed of the landing gears, so that the three landing gears move coordinately and stably.
The undercarriage control assembly has a dual-redundancy undercarriage extension function, when the undercarriage normally extends and retracts and has a fault, the undercarriage emergency extension solenoid valve 4 is electrified, pressure oil passes through the oil filter 10, the safety valve 9, the pressure sensor 11 and the undercarriage emergency extension solenoid valve 4 from a port P1, and supplies pressure to three undercarriages through ports F1, F2 and F3 respectively, so that the undercarriage is put down emergently.
The invention relates to a landing gear retraction control assembly which simultaneously provides a ground pressure supply function for equipment using hydraulic energy on the aircraft, and pressure oil passes through an oil filter 10, a safety valve 9, a pressure sensor 11 and a ground pressure supply electromagnetic valve 12 from a port P1 to supply pressure for other equipment using hydraulic energy on the aircraft.
The undercarriage control assembly is designed in an integrated mode, and a ground pressure supply electromagnetic valve 12, an undercarriage retraction electromagnetic valve 3, an undercarriage extension electromagnetic valve 2, an undercarriage emergency extension electromagnetic valve 4 and a pressure sensor 11 are connected in a plug-in mode and are installed on a shell through screws. The safety valve 9, the oil filter 10, the flow limiting valve 1 and the conversion valve 8 are connected in a screw-in mode and are screwed into the shell through threads.

Claims (9)

1. A helicopter landing gear retraction hydraulic control system, said system comprising:
the landing gear emergency landing system comprises a flow limiting valve (1), a landing gear lowering electromagnetic valve (2), a landing gear retracting electromagnetic valve (3), a landing gear emergency lowering electromagnetic valve (4), a first throttle valve (5), a second throttle valve (6), a third throttle valve (7), a conversion valve (8) and an oil filter (10);
a port P0 is defined as a normal retraction pressure supply port of the landing gear, a port R0 is a retraction oil return port of the landing gear, and a port P1 is a pressure supply port for emergency lowering of the landing gear; the ports S1, S2 and S3 are pressure supply ports when the landing gear is folded, and the ports F1, F2 and F3 are oil return ports when the landing gear is folded;
defining a P port of an undercarriage down electromagnetic valve (2), an undercarriage retracting electromagnetic valve (3) and an undercarriage emergency down electromagnetic valve (4) as input ports, an A port as a first outlet port and a B port as a second outlet port;
the port P0 is communicated with an input port of a flow limiting valve (1), an output port of the flow limiting valve (1) is communicated with a port A of an undercarriage down electromagnetic valve (2) and an undercarriage up electromagnetic valve (3), the port P of the undercarriage down electromagnetic valve (2) is communicated with a port A of a conversion valve (8), and a port T of the conversion valve (8) is respectively communicated with ports F1, F2 and F3;
the P port of the landing gear retraction electromagnetic valve (3) is respectively communicated with the input ports of a first throttle valve (5), a second throttle valve (6) and a third throttle valve (7), and the output ports of the first throttle valve (5), the second throttle valve (6) and the third throttle valve (7) are respectively communicated with the S1, the S2 and the S3 ports;
the port P1 is communicated with an input port of the oil filter (10), and an output port A of the landing gear emergency lowering solenoid valve (4) of the oil filter (10) is communicated;
the port R0 is communicated with the ports B of the landing gear lowering electromagnetic valve (2), the landing gear retracting electromagnetic valve (3) and the landing gear emergency lowering electromagnetic valve (4); the port B of the conversion valve (8) is communicated with the port P of the landing gear emergency lowering electromagnetic valve (4).
2. A helicopter landing gear retraction hydraulic control system according to claim 1 wherein said system further comprises: a pressure supply solenoid valve (12);
a P port of the pressure supply electromagnetic valve (12) is defined as an input port, and an A port is defined as an outlet port;
the port P0 is also communicated with a port A of the pressure supply electromagnetic valve (12);
the port P1 is also communicated with a port P of a pressure supply electromagnetic valve (12).
3. A helicopter landing gear retraction hydraulic control system according to claim 1 wherein said system further comprises: a safety valve (9) and a pressure sensor (11);
a P port of the safety valve (9) is defined as an input port, and a T port is defined as a pressure relief port;
the output port of the oil filter (10) is also respectively communicated with the pressure sensor (11) and the port P of the safety valve (9);
the port R0 is also communicated with a port T of the safety valve (9).
4. A helicopter landing gear retraction hydraulic control method for use in a system according to any of claims 1 to 3, the method comprising:
when the undercarriage is retracted, the undercarriage retraction electromagnetic valve (3) is powered on, the port P is communicated with the port A, the port B is closed, the undercarriage extension electromagnetic valve (2) is powered off, the port P is communicated with the port B, and the port A is closed;
pressure oil is supplied to three landing gear retraction cavities from a port P0 through a port A, P of a landing gear retraction electromagnetic valve (3) and from ports S1, S2 and S3 respectively, landing gear return oil passes through a port T and a port A of a conversion valve (8) through ports F1, F2 and F3, and the port P and the port B of the landing gear retraction electromagnetic valve (2) return to an onboard hydraulic oil tank through a port R0.
5. A hydraulic helicopter landing gear retraction control method according to claim 4, characterized in that the landing gear retraction solenoid valve (3) is de-energized when the landing gear is retracted into position.
6. The hydraulic control method for the retraction and extension of the landing gear of the helicopter according to claim 4, characterized in that when the landing gear is retracted, the landing gear retraction solenoid valve (2) is energized, the port P is communicated with the port A, the port B is closed, the landing gear retraction solenoid valve (3) is de-energized, the port P is communicated with the port B, and the port A is closed;
the pressure oil is supplied to the three landing gear releasing cavities from a port P0, a port A and a port T of the switching valve (8) through a port A, P of the landing gear releasing electromagnetic valve (2), and ports F1, F2 and F3 respectively;
the return oil of the landing gear passes through ports S1, S2 and S3, passes through ports P and B of the landing gear retraction electromagnetic valve (3) and returns to an onboard hydraulic oil tank through a port R0.
7. The hydraulic control method for the retraction and extension of the landing gear of the helicopter according to claim 4, characterized in that the first throttle valve (5), the second throttle valve (6) and the third throttle valve (7) respectively adjust the retraction and extension speeds of three landing gears by throttling, so that the three landing gears move coordinately and stably.
8. The hydraulic control method for the retraction and extension of the landing gear of the helicopter according to claim 4, characterized in that when the pressure of the port P0 is lost, the landing gear emergency retraction solenoid valve (4) is energized, the port P is communicated with the port A, pressure oil passes through the oil filter (10) from the port P1, the port A and the port P of the landing gear emergency retraction solenoid valve (4) and reaches the conversion valve (8), the conversion valve (8) is converted, the port B and the port T are communicated, the port A is closed, and the pressure oil reaches the ports F1, F2 and F3 from the port T, so that the pressure oil is respectively supplied to the retraction chambers of the three landing gears, and the landing gear emergency retraction is realized.
9. The hydraulic control method for the retraction and extension of the landing gear of the helicopter according to claim 4, characterized in that when the pressure at port P0 is lost and pressure needs to be supplied to other equipment on the helicopter using hydraulic energy, the pressure supply solenoid valve (12) is energized, port P and port A are connected, and pressure oil passes through the oil filter (10) and the pressure supply solenoid valve (12) from port P1 to port P0.
CN202011020899.5A 2020-09-25 2020-09-25 Hydraulic control system and method for retraction and release of helicopter undercarriage Active CN112173085B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011020899.5A CN112173085B (en) 2020-09-25 2020-09-25 Hydraulic control system and method for retraction and release of helicopter undercarriage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011020899.5A CN112173085B (en) 2020-09-25 2020-09-25 Hydraulic control system and method for retraction and release of helicopter undercarriage

Publications (2)

Publication Number Publication Date
CN112173085A true CN112173085A (en) 2021-01-05
CN112173085B CN112173085B (en) 2023-03-28

Family

ID=73943895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011020899.5A Active CN112173085B (en) 2020-09-25 2020-09-25 Hydraulic control system and method for retraction and release of helicopter undercarriage

Country Status (1)

Country Link
CN (1) CN112173085B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113928543A (en) * 2021-11-19 2022-01-14 中国直升机设计研究所 Helicopter undercarriage control system that receive and releases

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040015399A (en) * 2002-08-12 2004-02-19 현대자동차주식회사 Hydraulic control system of automatic transmission
EP1495961A1 (en) * 2003-07-08 2005-01-12 Liebherr-Aerospace Lindenberg GmbH Retractable undercarriage actuation system
WO2007015104A1 (en) * 2005-08-04 2007-02-08 Messier-Dowty Limited Landing gear
US20080087766A1 (en) * 2006-10-17 2008-04-17 Messier-Bugatti Architecture for a hydraulic system for operating aircraft landing gear
US20100078089A1 (en) * 2008-09-30 2010-04-01 Alstom Technology Ltd Hydraulic trip unit for a valve unit in a prime mover plant, especially for a fast-acting shut-off valve of a turbine plant
US20100264265A1 (en) * 2009-04-15 2010-10-21 Evans Royston Alan Landing gear actuation control system
CN202624630U (en) * 2012-06-18 2012-12-26 中国航空工业集团公司西安飞机设计研究所 Universal aircraft undercarriage control system
CN202914422U (en) * 2012-11-30 2013-05-01 南车四方车辆有限公司 Emergency hydraulic control system and road-rail vehicle
CA2794947A1 (en) * 2011-11-09 2013-05-09 Messier-Bugatti-Dowty Emergency mode aircraft landing gear deployment process
WO2013111705A1 (en) * 2012-01-25 2013-08-01 カヤバ工業株式会社 Circuit pressure control apparatus, hydraulic pressure control circuit using this circuit pressure control apparatus, and hydraulic pressure control circuit of construction equipment
US20140151501A1 (en) * 2012-12-04 2014-06-05 Sumitomo Precision Products Co., Ltd. Electro hydrostatic actuator system for retracting/extending landing gear
CN103953599A (en) * 2014-04-25 2014-07-30 哈尔滨飞机工业集团有限责任公司 Hydraulic adjusting module for undercarriage lowering and hoisting test
CN104648661A (en) * 2013-11-22 2015-05-27 中国航空工业集团公司西安飞机设计研究所 Normal releasing and retracting isolation system for plane undercarriage
CN104890862A (en) * 2015-06-24 2015-09-09 中国航空工业集团公司西安飞机设计研究所 Undercarriage emergency putting control system
CN105782148A (en) * 2016-04-01 2016-07-20 哈尔滨飞机工业集团有限责任公司 Undercarriage rising and landing control hydraulic device for helicopter
WO2016165722A1 (en) * 2015-04-13 2016-10-20 Djellabi Mohamed Pyrotechnic emergency device for landing gear
CN106697266A (en) * 2016-12-28 2017-05-24 中国航空工业集团公司西安飞机设计研究所 Retracting control system of aircraft landing gear
CN107697273A (en) * 2017-09-12 2018-02-16 陕西飞机工业(集团)有限公司 A kind of control system actively prevented undercarriage and fail to lay down Single Point of Faliure
CN108167242A (en) * 2016-12-07 2018-06-15 中国航空工业集团公司成都飞机设计研究所 A kind of high-pressure fluid drive system
US20180370616A1 (en) * 2017-06-23 2018-12-27 Airbus Operations Limited Aircraft hydraulics
CN109204787A (en) * 2018-10-25 2019-01-15 中航飞机起落架有限责任公司 Vehicle frame folding and unfolding buffer unit and undercarriage
CN208544412U (en) * 2018-06-04 2019-02-26 四川航泰航空装备有限公司 A kind of comprehensive folding and unfolding brake dual system of unmanned plane undercarriage
CN109606651A (en) * 2018-12-07 2019-04-12 江西洪都航空工业集团有限责任公司 A kind of aircraft strut formula undercarriage of controllable length
CN109733594A (en) * 2019-03-06 2019-05-10 成都飞机工业(集团)有限责任公司 A kind of cold air operation of landing gear system and its method of rising and falling
CN110626493A (en) * 2019-10-30 2019-12-31 中航通飞华南飞机工业有限公司 Electric retraction control system based on large aircraft landing gear
CA3062434A1 (en) * 2018-11-23 2020-05-23 Safran Landing Systems Hydraulic manoeuvering system for aircraft undercarriage

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040015399A (en) * 2002-08-12 2004-02-19 현대자동차주식회사 Hydraulic control system of automatic transmission
EP1495961A1 (en) * 2003-07-08 2005-01-12 Liebherr-Aerospace Lindenberg GmbH Retractable undercarriage actuation system
WO2007015104A1 (en) * 2005-08-04 2007-02-08 Messier-Dowty Limited Landing gear
US20080087766A1 (en) * 2006-10-17 2008-04-17 Messier-Bugatti Architecture for a hydraulic system for operating aircraft landing gear
US20100078089A1 (en) * 2008-09-30 2010-04-01 Alstom Technology Ltd Hydraulic trip unit for a valve unit in a prime mover plant, especially for a fast-acting shut-off valve of a turbine plant
US20100264265A1 (en) * 2009-04-15 2010-10-21 Evans Royston Alan Landing gear actuation control system
CA2794947A1 (en) * 2011-11-09 2013-05-09 Messier-Bugatti-Dowty Emergency mode aircraft landing gear deployment process
WO2013111705A1 (en) * 2012-01-25 2013-08-01 カヤバ工業株式会社 Circuit pressure control apparatus, hydraulic pressure control circuit using this circuit pressure control apparatus, and hydraulic pressure control circuit of construction equipment
CN202624630U (en) * 2012-06-18 2012-12-26 中国航空工业集团公司西安飞机设计研究所 Universal aircraft undercarriage control system
CN202914422U (en) * 2012-11-30 2013-05-01 南车四方车辆有限公司 Emergency hydraulic control system and road-rail vehicle
US20140151501A1 (en) * 2012-12-04 2014-06-05 Sumitomo Precision Products Co., Ltd. Electro hydrostatic actuator system for retracting/extending landing gear
CN104648661A (en) * 2013-11-22 2015-05-27 中国航空工业集团公司西安飞机设计研究所 Normal releasing and retracting isolation system for plane undercarriage
CN103953599A (en) * 2014-04-25 2014-07-30 哈尔滨飞机工业集团有限责任公司 Hydraulic adjusting module for undercarriage lowering and hoisting test
WO2016165722A1 (en) * 2015-04-13 2016-10-20 Djellabi Mohamed Pyrotechnic emergency device for landing gear
CN104890862A (en) * 2015-06-24 2015-09-09 中国航空工业集团公司西安飞机设计研究所 Undercarriage emergency putting control system
CN105782148A (en) * 2016-04-01 2016-07-20 哈尔滨飞机工业集团有限责任公司 Undercarriage rising and landing control hydraulic device for helicopter
CN108167242A (en) * 2016-12-07 2018-06-15 中国航空工业集团公司成都飞机设计研究所 A kind of high-pressure fluid drive system
CN106697266A (en) * 2016-12-28 2017-05-24 中国航空工业集团公司西安飞机设计研究所 Retracting control system of aircraft landing gear
US20180370616A1 (en) * 2017-06-23 2018-12-27 Airbus Operations Limited Aircraft hydraulics
CN107697273A (en) * 2017-09-12 2018-02-16 陕西飞机工业(集团)有限公司 A kind of control system actively prevented undercarriage and fail to lay down Single Point of Faliure
CN208544412U (en) * 2018-06-04 2019-02-26 四川航泰航空装备有限公司 A kind of comprehensive folding and unfolding brake dual system of unmanned plane undercarriage
CN109204787A (en) * 2018-10-25 2019-01-15 中航飞机起落架有限责任公司 Vehicle frame folding and unfolding buffer unit and undercarriage
CA3062434A1 (en) * 2018-11-23 2020-05-23 Safran Landing Systems Hydraulic manoeuvering system for aircraft undercarriage
CN109606651A (en) * 2018-12-07 2019-04-12 江西洪都航空工业集团有限责任公司 A kind of aircraft strut formula undercarriage of controllable length
CN109733594A (en) * 2019-03-06 2019-05-10 成都飞机工业(集团)有限责任公司 A kind of cold air operation of landing gear system and its method of rising and falling
CN110626493A (en) * 2019-10-30 2019-12-31 中航通飞华南飞机工业有限公司 Electric retraction control system based on large aircraft landing gear

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
何晓刚;: "某型飞机起落架收放系统故障分析及解决措施" *
蒋远远;江德松;孙伟;: "某型飞机起落架控制系统的优化" *
谭伦: "基于六西格玛设计的直升机鱼叉液压系统改进优化设计", 《直升机技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113928543A (en) * 2021-11-19 2022-01-14 中国直升机设计研究所 Helicopter undercarriage control system that receive and releases
CN113928543B (en) * 2021-11-19 2023-09-08 中国直升机设计研究所 Helicopter undercarriage retraction control system

Also Published As

Publication number Publication date
CN112173085B (en) 2023-03-28

Similar Documents

Publication Publication Date Title
CN201220749Y (en) Hydraulic control system for folding and unfolding undercarriage
US7059563B2 (en) Systems, apparatuses, and methods for moving aircraft control surfaces
EP1218241B1 (en) Hydraulic system for aircraft landing gear
EP1565373B1 (en) Augmenting flight control surface actuation system and method
CN112173085B (en) Hydraulic control system and method for retraction and release of helicopter undercarriage
CN107697273A (en) A kind of control system actively prevented undercarriage and fail to lay down Single Point of Faliure
CN107787289A (en) Aircraft with distribution formula hydraulic system
CN211281453U (en) Hydraulic swing-reducing oil circuit system for turning front wheels of airplane
CN112339995B (en) Hydraulic retractable landing gear mechanism
CN2928680Y (en) Hydraulic allowance controller for airplane brake system
CN110475962B (en) Current limiting thrust reverser actuation
CN104806406A (en) Normally closed electro-mechanical hybrid high-pressure oil pump
CN111395906A (en) Hydraulic control mechanism for airplane cabin door
CN201521510U (en) Hydraulic power source system
CN108058815B (en) Simple and flexible control mechanism capable of realizing retraction of undercarriage
CN202674472U (en) Mechanically and electrically controlled pilot valve for unloading valve
CN200989345Y (en) Apparatus for manual regulating speed lowering hydraulic up-down equipment
CN113928543B (en) Helicopter undercarriage retraction control system
US20220194564A1 (en) Hydraulic actuation system for an aircraft
CN219007804U (en) Slide valve and hydraulic booster assembly system with slide valve
CN113530909B (en) Multifunctional control valve for variable pump of closed hydraulic system
US20220364526A1 (en) Limited flow thrust reverser actuating
CN114278626B (en) Onboard emergency hydraulic system and method for electric supercharging energy storage flow compensation
WO1999067537A1 (en) Actuator system for aerospace controls and functions
CN202468511U (en) Load sensitive energy saving control hydraulic system with double constant rate pumps

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant