CN112173084B - 无人高速直升机可收放主起落架承力结构及其设计方法 - Google Patents

无人高速直升机可收放主起落架承力结构及其设计方法 Download PDF

Info

Publication number
CN112173084B
CN112173084B CN202011028750.1A CN202011028750A CN112173084B CN 112173084 B CN112173084 B CN 112173084B CN 202011028750 A CN202011028750 A CN 202011028750A CN 112173084 B CN112173084 B CN 112173084B
Authority
CN
China
Prior art keywords
landing gear
main landing
retractable
rear frame
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011028750.1A
Other languages
English (en)
Other versions
CN112173084A (zh
Inventor
杨婵
田中强
吕乐丰
陈静
王影
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Helicopter Research and Development Institute
Original Assignee
China Helicopter Research and Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Helicopter Research and Development Institute filed Critical China Helicopter Research and Development Institute
Priority to CN202011028750.1A priority Critical patent/CN112173084B/zh
Publication of CN112173084A publication Critical patent/CN112173084A/zh
Application granted granted Critical
Publication of CN112173084B publication Critical patent/CN112173084B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Abstract

本发明属于直升机主起落架舱结构强度设计技术领域,公开了一种无人高速直升机可收放主起落架承力结构及其设计方法,主起落架承力结构由前框、后框、上平台、左斜纵梁、右斜纵梁、底部蒙皮、收放作动筒接头和缓冲支柱接头组成。主起落架通过收放作动筒接头和缓冲支柱接头与主起落架舱连接,收放作动筒接头和缓冲支柱接头负责将主起落架载荷传递到主起落架舱结构上、并向机体实现传递与扩散。本发明提出的设计方法提供了与主起落架连接的机身结构强度设计流程和步骤,该承力结构既能对主起落架连接提供足够的支撑刚度、也能保障主起落架载荷合理传递与扩散。

Description

无人高速直升机可收放主起落架承力结构及其设计方法
技术领域
本发明属于直升机主起落架舱结构强度设计技术领域,具体涉及一种无人高速直升机可收放主起落架承力结构及其设计方法,实现主起落架传载的支撑结构设计。
背景技术
为了实现某无人直升机的高速飞行,需要主起落架可收放,以减小飞行阻力。由于无人直升机机体结构狭长,要求主起落架采用纵向收放的方式。
主起落架通过缓冲支柱接头、收放作动筒接头与主起落架舱实现连接,缓冲支柱接头和收放作动筒接头负责将主起落架载荷传递到机体,接头是非常重要的传载结构。与接头连接的机体结构作为承力结构既需要提供足够的支撑刚度,也需保障载荷合理传递与扩散,因此需对可收放式主起落架承力结构进行刚度、载荷传递路径设计。
发明内容
本发明提供一种无人高速直升机可收放主起落架承力结构及其设计方法,实现主起落架传载的支撑结构设计。
为达到上述目的,本发明采用如下技术方案予以实现。
技术方案一:
一种无人高速直升机可收放主起落架承力结构,所述可收放主起落架承力结构位于主起落架舱内;
主起落架舱由前框、后框、左斜纵梁、右斜纵梁、上平台、底部蒙皮组成,所述前框、后框是机身上相邻的两个框,左斜纵梁、右斜纵梁为前框和后框之间的斜纵梁;
所述承力结构包括:设置在左斜纵梁上的左收放作动筒接头、右斜纵梁上的右收放作动筒接头,以及设置在后框左侧的两个缓冲支柱接头和设置在后框右侧的两个缓冲支柱接头。
本发明技术方案一的特点和进一步的改进为:
(1)所述可收放主起落架包含左主起落架和右主起落架;
所述左主起落架的收放作动筒与左收放作动筒接头连接,所述左主起落架的缓冲支柱的两端分别与后框左侧的两个缓冲支柱接头连接,所述右主起落架的缓冲支柱的两端分别与后框右侧的两个缓冲支柱接头连接。
(2)后框左侧的两个缓冲支柱接头分别位于后框左侧突缘处、后框左侧腹板与左斜纵梁腹板交汇处。
(3)后框右侧的两个缓冲支柱接头分别位于后框右侧突缘处、后框右侧腹板与右斜纵梁腹板交汇处。
(4)后框左侧的两个缓冲支柱接头、后框右侧的两个缓冲支柱接头与后框是整体机械加工成型的。
技术方案二:
一种无人高速直升机可收放主起落架承力结构的设计方法,所述方法用于如技术方案一所述的承力结构,所述方法包括:
S1,确定可收放主起落架的载荷传递路径;可收放主起落架的载荷传递路径包含:主起落架的收放作动筒在主起落架舱内的载荷传递路径、主起落架的缓冲支柱在主起落架舱内的载荷传递路径;
S2,根据所述主起落架的缓冲支柱在主起落架舱内的载荷传递路径,确定缓冲支柱接头的个数及每个缓冲支柱接头分布位置;
S3,根据所述主起落架的收放作动筒在主起落架舱内的载荷传递路径,确定收放作动筒接头的结构。
本发明技术方案二的特点和进一步的改进为:
(1)步骤S3还包括:根据所述主起落架的收放作动筒在收放过程中的行程确定收放作动筒接头的位置。
(2)收放作动筒接头的结构为单耳结构。
本发明技术方案提供了主起落架载荷传递路径分析与设计方法和流程;提供与可收放式主起落架连接的机身接头及承力结构设计思路;提供一种快速评估与验证所设计的机体重要连接接头及与接头连接的机体结构是否合理的方法。
附图说明
图1为一种无人高速直升机可收放主起落架承力结构的三维示意图;
图2为一种无人高速直升机可收放主起落架承力结构的正视图;
图3为主起落架舱可设计范围示意图;
图4为收放作动筒受力分析简化模型。
具体实施方式
下面对本发明技术方案进行相信说明。
本发明实施例提供一种无人高速直升机可收放主起落架承力结构,如图1和图2所示,所述可收放主起落架承力结构位于主起落架舱内;主起落架舱由前框、后框、左斜纵梁、右斜纵梁、上平台、底部蒙皮组成,所述前框、后框是机身上相邻的两个框,左斜纵梁、右斜纵梁为前框和后框之间的斜纵梁;所述承力结构包括:设置在左斜纵梁上的左收放作动筒接头、右斜纵梁上的右收放作动筒接头,以及设置在后框左侧的两个缓冲支柱接头和设置在后框右侧的两个缓冲支柱接头。
进一步的,所述可收放主起落架包含左主起落架和右主起落架;
所述左主起落架的收放作动筒与左收放作动筒接头连接,所述左主起落架的缓冲支柱的两端分别与后框左侧的两个缓冲支柱接头连接,所述右主起落架的缓冲支柱的两端分别与后框右侧的两个缓冲支柱接头连接。
进一步的,后框左侧的两个缓冲支柱接头分别位于后框左侧突缘处、后框左侧腹板与左斜纵梁腹板交汇处。
进一步的,后框右侧的两个缓冲支柱接头分别位于后框右侧突缘处、后框右侧腹板与右斜纵梁腹板交汇处。
进一步的,后框左侧的两个缓冲支柱接头、后框右侧的两个缓冲支柱接头与后框是整体机械加工成型的。
本发明实施例提供的一种无人高速直升机可收放主起落架承力结构由收放作动筒和缓冲支柱组成,其承力结构设计具体步骤如下:
1、开展着陆及地面工况下主起落架载荷传递路径分析与设计;
2、主起落架通过缓冲支柱接头、收放作动筒接头与主起落架舱连接,接头作为重要的传载结构将主起落架载荷传递于机体上;
3、缓冲支柱接头与主起落架舱后框为一体机械加工成型的,其结构设计过程如下:
3a、为满足规范中倾覆角度设计要求,主起落架缓冲支柱转轴接头的左右两侧不在同一垂直高度,右侧位于后框突缘处,左侧位于后框腹板与斜纵梁腹板的交汇处;
3b、为提高主起落架缓冲支柱转轴接头自身绕机体航向方向的抗弯刚度,缓冲支柱增加筋板;
4、主起落架中收放作动筒为二力杆构型,需要承受收起/放下时主起落架及地面工况的载荷。收放作动筒接头并未能落在前框腹板与斜纵梁腹板的交汇处,因此需要对收放作动筒接头及承力结构进行设计,参考图3,过程如下:
4a、收放作动筒设计载荷计算:收放作动筒出现最大载荷的工况为障碍有阻着陆工况,依据主起落架结构简化的受力模型分析,获取两点水平障碍有阻着陆和三点水平障碍有阻工况下收放作动筒接头交点载荷(沿收放作动筒轴向);
4b、为增加左、右主起落架跨距,收放作动筒轴向与垂向方向之间有夹角,需借助增加纵向件和水平件,将独立的收放作动筒接头底板与框腹板、平台和梁腹板形成封闭盒段,将Fx、Fz传递于机体并得以扩散;
4c、在收放作动筒接头底板处,左、右纵梁之间增加一个带有减轻孔的隔框,提供侧向支撑刚度。
下面结合在某型号中的应用实例,对本发明做进一步详细说明。
1、主起落架载荷传递路径分析与设计,航向载荷Px和垂向载荷Pz通过挤压与后框一体机械加工成型的左右两侧缓冲支柱接头耳片、由斜纵梁腹板和与后框突缘连接的外侧蒙皮的剪切载荷传递;侧向载荷Py通过后框一体机械加工成型的左右两侧缓冲支柱接头之间的连接螺栓、通过剪切后框腹板将侧向载荷传递于上平台和底部蒙皮;侧向载荷Py产生的附加力矩Mx由左右两侧缓冲支柱接头耳片的垂向载荷Pz平衡;由航向载荷Px和垂向载荷Pz产生的附加力矩My通过收放作动筒接头连接螺栓与左右两侧缓冲支柱接头之间的连接螺栓的剪切载荷平衡;由航向载荷Px和侧向载荷Py产生的附加力矩Mz由左右两侧缓冲支柱接头航向载荷Px平衡。
2、缓冲支柱接头结构设计:
2a、为满足规范中倾覆角度设计要求,缓冲支柱转轴接头的两侧不在同一垂直高度,缓冲支柱转轴接头的右侧与位于后框突缘处的右侧缓冲支柱接头连接,缓冲支柱转轴接头的左侧与位于后框腹板与斜纵梁腹板交汇处的左侧缓冲支柱接头连接;
2b、为提高缓冲支柱转轴接头绕航向的抗弯刚度,缓冲支柱增加筋板;
3、收放作动筒连接接头及承力结构进行设计:
3a、依据着陆载荷计算结果,能获得三点水平无阻力着陆和两点水平无阻力着陆情况下的垂向载荷Pz,则航向载荷Px=μPz,其中μ为静摩擦系数、取值为0.3。
3b、根据图4所示的收放作动筒受力分析简化模型,(图4中A点表示收放作动筒与收放作动筒接头连接交点,B、C点表示缓冲支柱转轴接头与后框左右两侧接头连接交点),根据力矩平衡原理:Px×l2=P收放作动筒×l1,获取两点水平障碍有阻和三点水平障碍有阻工况下收放作动筒与收放作动筒接头连接交点载荷P收放作动筒(沿收放作动筒轴向),如表1所示。
表1收放作动筒最大载荷计算
工况 静摩擦系数 <![CDATA[垂向载荷P<sub>z</sub>]]> <![CDATA[航向载荷P<sub>x</sub>]]> 工况 <![CDATA[P<sub>收放作动筒</sub>]]>
三点水平无阻力 0.3 18000 5400 三点水平障碍有阻 18000
3c、借助增加纵向件和水平件,将独立的收放作动筒接头底板与前框腹板、上平台和斜纵梁形成封闭盒段,将航向载荷Px、垂向载荷Pz传递于机体并得以扩散;在收放作动筒接头底板处,左、右纵梁之间增加一个带有减轻孔的隔框,提供侧向支撑刚度。
3d、采用共节点剪切板单元模拟收放作动筒接头及承力结构,提取剪切板单元载荷判断载荷传递扩散是否合理,确定接头及承力结构形式和尺寸定义。
4、采用杆单元、梁单元和壳单元模拟主起落架分载模型,获取主起落架与机身连接交点的载荷。以某一着陆工况为例说明主起落架与机身连接交点A、B、C(图4所示)的载荷计算结果,主起落架载荷如表2所示,主起落架与机身连接交点A、B、C(图4所示)载荷计算结果如表3所示。
表2某着陆工况下主起落架载荷
Figure BDA0002700964970000061
表3连接交点载荷
位置 <![CDATA[P<sub>x</sub>]]> <![CDATA[P<sub>y</sub>]]> <![CDATA[P<sub>z</sub>]]>
A 4100 -1400 -3500
B -650 18600 22000
C -3400 -14300 -38000
本发明技术方案提供了主起落架载荷传递路径分析与设计方法和流程;提供与可收放式主起落架连接的机身接头及承力结构设计思路;提供一种快速评估与验证所设计的机体重要连接接头及与接头连接的机体结构是否合理的方法。

Claims (4)

1.一种无人高速直升机可收放主起落架承力结构,其特征在于,所述可收放主起落架承力结构位于主起落架舱内;
主起落架舱由前框、后框、左斜纵梁、右斜纵梁、上平台、底部蒙皮组成,所述前框、后框是机身上相邻的两个框,左斜纵梁、右斜纵梁为前框和后框之间的斜纵梁;
所述承力结构包括:设置在左斜纵梁上的左收放作动筒接头、右斜纵梁上的右收放作动筒接头,以及设置在后框左侧的两个缓冲支柱接头和设置在后框右侧的两个缓冲支柱接头;
所述可收放主起落架包含左主起落架和右主起落架;
所述左主起落架的收放作动筒与左收放作动筒接头连接,所述左主起落架的缓冲支柱的两端分别与后框左侧的两个缓冲支柱接头连接,所述右主起落架的缓冲支柱的两端分别与后框右侧的两个缓冲支柱接头连接;
后框左侧的两个缓冲支柱接头分别位于后框左侧突缘处、后框左侧腹板与左斜纵梁腹板交汇处;
后框右侧的两个缓冲支柱接头分别位于后框右侧突缘处、后框右侧腹板与右斜纵梁腹板交汇处;
后框左侧的两个缓冲支柱接头、后框右侧的两个缓冲支柱接头与后框是整体机械加工成型的;
航向载荷Px和垂向载荷Pz通过挤压与后框一体机械加工成型的左右两侧缓冲支柱接头耳片、由斜纵梁腹板和与后框突缘连接的外侧蒙皮的剪切载荷传递;侧向载荷Py通过后框一体机械加工成型的左右两侧缓冲支柱接头之间的连接螺栓、通过剪切后框腹板将侧向载荷传递于上平台和底部蒙皮;侧向载荷Py产生的附加力矩Mx由左右两侧缓冲支柱接头耳片的垂向载荷Pz平衡;由航向载荷Px和垂向载荷Pz产生的附加力矩My通过收放作动筒接头连接螺栓与左右两侧缓冲支柱接头之间的连接螺栓的剪切载荷平衡;由航向载荷Px和侧向载荷Py产生的附加力矩Mz由左右两侧缓冲支柱接头航向载荷Px平衡。
2.一种无人高速直升机可收放主起落架承力结构的设计方法,所述方法用于设计如权利要求1所述的承力结构,其特征在于,所述方法包括:
S1,确定可收放主起落架的载荷传递路径;可收放主起落架的载荷传递路径包含:主起落架的收放作动筒在主起落架舱内的载荷传递路径、主起落架的缓冲支柱在主起落架舱内的载荷传递路径;
S2,根据所述主起落架的缓冲支柱在主起落架舱内的载荷传递路径,确定缓冲支柱接头的个数及每个缓冲支柱接头分布位置;
S3,根据所述主起落架的收放作动筒在主起落架舱内的载荷传递路径,确定收放作动筒接头的结构。
3.根据权利要求2所述的一种无人高速直升机可收放主起落架承力结构的设计方法,其特征在于,步骤S3还包括:根据所述主起落架的收放作动筒在收放过程中的行程确定收放作动筒接头的位置。
4.根据权利要求2所述的一种无人高速直升机可收放主起落架承力结构的设计方法,其特征在于,收放作动筒接头的结构为单耳结构。
CN202011028750.1A 2020-09-25 2020-09-25 无人高速直升机可收放主起落架承力结构及其设计方法 Active CN112173084B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011028750.1A CN112173084B (zh) 2020-09-25 2020-09-25 无人高速直升机可收放主起落架承力结构及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011028750.1A CN112173084B (zh) 2020-09-25 2020-09-25 无人高速直升机可收放主起落架承力结构及其设计方法

Publications (2)

Publication Number Publication Date
CN112173084A CN112173084A (zh) 2021-01-05
CN112173084B true CN112173084B (zh) 2023-04-07

Family

ID=73943622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011028750.1A Active CN112173084B (zh) 2020-09-25 2020-09-25 无人高速直升机可收放主起落架承力结构及其设计方法

Country Status (1)

Country Link
CN (1) CN112173084B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113911322B (zh) * 2021-11-19 2023-06-27 中国直升机设计研究所 一种大型直升机前起落架连接及载荷传递方法
CN114030592B (zh) * 2021-11-19 2023-10-20 中国直升机设计研究所 一种直升机可收放主起落架承力结构的构建方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB589450A (en) * 1945-02-16 1947-06-20 Reginald Thomas Wood Improvements in and relating to landing gear for aircraft
GB893013A (en) * 1958-12-02 1962-04-04 Dowty Rotol Ltd Improvements relating to multi-wheel aircraft undercarriages
EP2538096A2 (en) * 2011-06-21 2012-12-26 Airbus Operations Limited Pivot joint assembly
EP3141478A1 (en) * 2015-09-11 2017-03-15 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Compound helicopter
CN107521670A (zh) * 2017-07-28 2017-12-29 中国航空工业集团公司西安飞机设计研究所 桁架式主起落架对接框
CN209290670U (zh) * 2018-11-14 2019-08-23 中国航空工业集团公司沈阳飞机设计研究所 一种飞机起落架梁交点接头连接机构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884802B1 (fr) * 2005-04-22 2008-11-14 Eurocopter France Structure porteuse et aeronef a voilure tournante
FR2893587B1 (fr) * 2005-11-21 2009-06-05 Airbus France Sas Case de train a structure dissociee
DE102011112318B4 (de) * 2011-09-02 2016-04-21 Airbus Operations Gmbh Verfahren zur Montage eines Flugzeugbauteils und Flugzeugbaugruppe
CN104210651A (zh) * 2014-08-26 2014-12-17 中国直升机设计研究所 一种起落架连接结构
US9452827B2 (en) * 2014-09-26 2016-09-27 Goodrich Corporation Landing gear components having improved joints
CN105109673B (zh) * 2015-08-25 2017-05-03 中国运载火箭技术研究院 一种大传载多点协调起落架固定连接结构
EP3263449B1 (en) * 2016-07-01 2018-08-29 Safran Landing Systems UK Limited Aircraft landing gear
US10597146B2 (en) * 2017-02-28 2020-03-24 The Boeing Company Aircraft landing gear having a lever assembly, aircraft including the same, and related methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB589450A (en) * 1945-02-16 1947-06-20 Reginald Thomas Wood Improvements in and relating to landing gear for aircraft
GB893013A (en) * 1958-12-02 1962-04-04 Dowty Rotol Ltd Improvements relating to multi-wheel aircraft undercarriages
EP2538096A2 (en) * 2011-06-21 2012-12-26 Airbus Operations Limited Pivot joint assembly
EP3141478A1 (en) * 2015-09-11 2017-03-15 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Compound helicopter
CN107521670A (zh) * 2017-07-28 2017-12-29 中国航空工业集团公司西安飞机设计研究所 桁架式主起落架对接框
CN209290670U (zh) * 2018-11-14 2019-08-23 中国航空工业集团公司沈阳飞机设计研究所 一种飞机起落架梁交点接头连接机构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
大型民用飞机起落架关键技术;聂宏等;《南京航空航天大学学报》;20080815(第04期);全文 *
轻型直升机滑橇式起落架性能分析及优化设计;陈静等;《中国科技信息》;20191231(第023期);全文 *

Also Published As

Publication number Publication date
CN112173084A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
CN112173084B (zh) 无人高速直升机可收放主起落架承力结构及其设计方法
CN110929444A (zh) 一种滑橇式起落架仿真设计方法
CN105730671A (zh) 飞行器后部结构
US11753153B2 (en) Landing gear with reinforcing web
KR20190140572A (ko) 지상비행시험장치
Dutta Design and analysis of nose landing gear
CN113138070B (zh) 框与地板梁连接结构静力试验装置
CN112699462B (zh) 一种大跨度开剖面舱体空间桁架结构设计方法
Sullivan et al. Structural analysis and testing of an ultralight unmanned-aerial-vehicle carbon-composite wing
US11479336B2 (en) Diagonal pressure deck
CN105109673A (zh) 一种大传载多点协调起落架固定连接结构
Kaur et al. Spars and stringers-function and designing
CN105631084A (zh) 行星齿轮减速齿轮箱箱体轻量化结构方法
CN103192979B (zh) 飞机尾梁过渡段结构
EP2669193A2 (en) Landing gear for an aircraft
CN102765472A (zh) 一种飞机机身模块化连接装置
CN114065394A (zh) 一种直升机机体主承力结构应力分析方法
CN112623255A (zh) 一种飞机机身门框区截面扭转刚度的计算方法
CN114056537B (zh) 一种无人高速直升机中机身主承力结构
CN114030592B (zh) 一种直升机可收放主起落架承力结构的构建方法
Immanuvel et al. Stress analysis and weight optimization of a wing box structure subjected to flight loads
CN220842945U (zh) 一种折叠式滑橇起落架、机架以及飞行器
CN113051660A (zh) 一种飞机机身门框区截面侧向弯曲刚度的计算方法
CN112623258B (zh) 一种起落架摆振分析方法
CN113911322B (zh) 一种大型直升机前起落架连接及载荷传递方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant