CN112156769A - 一种Al/WO3 纳米复合薄膜及其制备方法和应用 - Google Patents

一种Al/WO3 纳米复合薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN112156769A
CN112156769A CN202010975851.3A CN202010975851A CN112156769A CN 112156769 A CN112156769 A CN 112156769A CN 202010975851 A CN202010975851 A CN 202010975851A CN 112156769 A CN112156769 A CN 112156769A
Authority
CN
China
Prior art keywords
composite film
nano composite
preparation
substrate
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010975851.3A
Other languages
English (en)
Other versions
CN112156769B (zh
Inventor
刘阳思
席晓丽
沈越岗
樊佑书
赵林艳
聂祚仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202010975851.3A priority Critical patent/CN112156769B/zh
Publication of CN112156769A publication Critical patent/CN112156769A/zh
Application granted granted Critical
Publication of CN112156769B publication Critical patent/CN112156769B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Emergency Management (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种Al/WO3纳米复合薄膜及其制备方法和应用,该Al/WO3纳米复合薄膜的制备方法包括:提供WO3基底,然后通过磁控溅射在所述WO3基底上负载Al,所述WO3基底为水热法制备的海胆状纳米WO3薄膜材料。本发明所提供的简易制备Al/WO3纳米复合薄膜的方法,具有镀膜效率高、纯度高、溅射产物与基底结合力强、薄膜结构紧密稳定、成膜均匀性好且可精确控制的优点。

Description

一种Al/WO3纳米复合薄膜及其制备方法和应用
技术领域
本发明涉及纳米材料的制备技术领域,尤其涉及一种Al/WO3纳米复合薄膜及其制备方法和应用。
背景技术
三氧化钨(WO3)半导体的禁带宽度约为2.4-2.8eV,作为光催化剂使用时,在可见光激发下即可产生光生电子和空穴参与氧化还原反应,因其原料丰富易制备,价带空穴具有强氧化能力,在酸性条件下稳定性好,耐光腐蚀,无毒和成本低越来越受到科研人员的关注。但WO3单独作为光催化剂使用时还面临着光生载流子复合较快、紫外-可见光波段吸收有限的问题。
贵金属负载(如Au、Ag和Pt等)是提升WO3光响应性能的有效方法之一,金属作为助催化剂可以促进光生载流子分离,而且其具有的局域表面等离子体共振(LSPR)特性可以产生局域增强场和高能热电子,引发对入射光的强吸收从而提高光能利用率,但贵金属比较稀缺和昂贵,大规模应用受到限制,并且在紫外光波段无法产生LSPR效应。Al作为地壳中储量最大的金属元素,来源广泛,价格低廉,并且具有高的等离子体能量(约15.6eV)和高电子密度,其LSPR波长范围可在紫外-近红外光谱区域进行调节,能覆盖较大的可见光区域。但目前对于Al/WO3纳米复合薄膜制备和性能的研究非常少。
发明内容
本发明实施例提供一种Al/WO3纳米复合薄膜的制备方法,该方法具有镀膜效率高、纯度高、溅射产物与基底结合力强、薄膜结构紧密稳定、成膜均匀性好且可精确控制的优点。
本发明实施例提供一种Al/WO3纳米复合薄膜的制备方法,包括:提供WO3基底,然后通过磁控溅射在所述WO3基底上负载Al,所述WO3基底为水热法制备的海胆状纳米WO3薄膜材料。本发明所提供的简易制备Al/WO3纳米复合薄膜的方法,具有效率高、纯度高、溅射产物与基底结合力强、薄膜结构紧密稳定、均匀性好且可精确控制工艺参数的优点。
发明人经研究发现,通过控制磁控溅射的时间和水热法的参数,可以获得不同形貌的Al/WO3纳米复合薄膜,尤其是,目前为光催化剂使用的WO3材料及其与金属复合的二元光催化材料,一般是粉末状的纳米颗粒,存在着在环境应用时较为分散,不易回收,再生性差,重复使用率低,容易引起二次污染的技术难题,本领域中目前还没有固载型的金属/WO3复合纳米薄膜材料,而用湿化学法制备的纳米金属材料很难实现与WO3材料构成复合薄膜。本发明通过采用特定的WO3纳米结构基体与Al纳米颗粒二者复合而成的成纳米复合薄膜材料还可循环使用,避免粉体形式催化剂不易回收、流失危害环境,具有环境友好的特点。
在一些实施例中,所述磁控溅射包括以下步骤:
1)放置所述WO3基底和Al靶材,并通入惰性气体;
2)调节电流和电压至溅射功率为100~200W,在所述WO3基底上溅射Al。
在一些实施例中,步骤1)中,所述惰性气体为Ar气,所述Ar气的气体流量为10~30sccm;和/或,溅射气压控制在0.3~0.8Pa;优选的,所述Ar气的气体流量为25sccm,溅射气压控制在0.5Pa。
在一些实施例中,步骤2)中,在WO3基底材料上溅射Al的溅射时间控制在20min以内;优选的,所述溅射时间为10~20min。本发明中,使基片台匀速旋转,在WO3基底上溅射Al不同时间,溅射反应完成后,取出所述复合薄膜材料,降温至室温留待使用。
在一些实施例中,步骤2)中,所述溅射功率为130~145W;优选的,调节所述电流为0.2~0.5A,所述电压为380~480V。本发明中,开启直流溅射电源,调节电流I和电压V至所需溅射功率W(W=I×V),优选的方案中,所述电流为0.3A,所述电压为450V;和/或,溅射功率为135W。
在一些实施例中,所述WO3基底材料的制备包括:以钨酸铵为钨源,以柠檬酸为控形剂,在预处理后的FTO玻璃上进行水热反应。
在一些实施例中,所述水热反应的反应温度为160~190℃;和/或,所述水热反应的反应时间为10~15h;优选的,所述水热反应的反应温度为180℃;和/或,所述水热反应的反应时间为12h。
在一些实施例中,所述FTO玻璃的预处理包括:
S1、将NaOH、水和丙酮混合,制得前处理液;
S2、将FTO玻璃放入所述前处理液中,进行超声处理,清洗、干燥;其中,所述NaOH、水和丙酮的质量体积比为0.5~2g:5~20ml:10~30ml;和/或,所述超声处理的时间为5~30min;所述干燥的温度为40~65℃;优选的,所述NaOH、水和丙酮的质量体积比为1.5g:10ml:20ml;和/或,所述超声处理的时间为20min;所述干燥的温度为60℃。
根据本发明,以钨酸铵为钨源,柠檬酸为控形剂,在特定水热反应条件下获得海胆状纳米WO3基底材料。进一步在上述制备产物基础上采用优选条件下的磁控溅射方法负载金属Al颗粒及Al纳米棒,所得到的Al纳米结构能有均予地覆盖在WO3基底材料的表面,并且实现Al与WO3的界面结合,得到Al/WO3纳米复合薄膜材料,所制备的Al/WO3纳米复合薄膜具有形貌稳定、尺寸分布较均匀和方便回收二次利用等优点,能很好解决粉末形式催化剂带来的环境问题,可应用于污染物降解等光催化领域。
本发明实施例还提供所述的Al/WO3纳米复合薄膜的制备方法制备得到的Al/WO3纳米复合薄膜。
本发明实施例还提供所述的Al/WO3纳米复合薄膜的制备方法制备得到的Al/WO3纳米复合薄膜或所述的Al/WO3纳米复合薄膜作为光催化材料的应用。
本发明的有益效果至少在于:
(1)本发明提供了一种简易的Al/WO3纳米复合薄膜的制备方法,该方法具有镀膜效率高、纯度高、溅射产物与基底结合力强、薄膜结构紧密稳定、成膜均匀性好且可精确控制工艺参数的优点;
(2)本发明所制备的Al/WO3纳米复合薄膜具有形貌稳定、尺寸分布较均匀和固载形式方便回收再利用等优点,能很好解决粉末形式催化剂因回收不完全的二次污染的环境问题,可应用于污染物降解等光催化领域。
附图说明
图1为本发明实施例1所制备的海胆状WO3基底材料的SEM图(放大倍率为4000倍);
图2为本发明实施例1所制备的海胆状WO3基底材料的SEM图(放大倍率为20000倍);
图3为本发明实施例1所制备的磁控溅射Al 10min后的Al/WO3纳米复合薄膜SEM图(放大倍率为10000倍);
图4为本发明实施例1所制备的磁控溅射Al 10min后的Al/WO3纳米复合薄膜SEM图(放大倍率为50000倍);
图5为本发明实施例1所制备的磁控溅射Al 10min后的Al/WO3纳米复合薄膜EDS图;
图6为本发明实施例2所制备的磁控溅射Al 15min后的Al/WO3纳米复合薄膜SEM图(放大倍率为10000倍);
图7为本发明实施例2所制备的磁控溅射Al 15min后的Al/WO3纳米复合薄膜SEM图(放大倍率为50000倍);
图8为本发明实施例3所制备的磁控溅射Al 20min后的Al/WO3纳米复合薄膜SEM图(放大倍率为10000倍)。
图9为本发明实施例3所制备的磁控溅射Al 20min后的Al/WO3纳米复合薄膜SEM图(放大倍率为50000倍)。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。
本发明中,所用仪器等未注明生产厂商者,均为可通过正规渠道商购买得到的常规产品。所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径而得。本发明中,所用的磁控溅射设备为JCP-350M3高真空多靶磁控溅射镀膜,北京泰科诺科技有限公司。
实施例1
本实施例提供一种称取0.931g钨酸铵和0.192g柠檬酸溶于15ml去离子水中,混合搅拌20min获得WO3前驱体溶液;将预处理后的FTO玻璃和上述前驱体溶液置入水热釜中于180℃保温12h,反应完成后取出、干燥,即可获得WO3基底材料。
具体地,所述FTO玻璃的预处理过程如下:
S1、称取1.5g NaOH溶于10ml水和20ml丙酮中,超声混合制得NaOH的丙酮-水前处理液;
S2、将FTO玻璃置入前处理液中,超声处理20min,取出后用去离子水反复清洗并在60℃下干燥即得。
取WO3基底材料和高纯Al靶材置于磁控溅射设备的基片台和靶材座上,通入高纯Ar气,调节气体流量为25sccm,使溅射腔室达到所需真空度,溅射气压控制在0.5Pa。开启直流溅射电源,调节电流为0.3A、电压为450V,此时溅射功率为135W。打开基片台旋转按钮,使放置在基片台上的WO3基底材料匀速旋转,以Ar气为主离化气体进行辉光放电,使高纯Al靶材溅射出Al粒子生长沉积在WO3基底上,溅射时间为10min,形成Al/WO3纳米复合薄膜。
图1-图2为本发明实施例1所制备的海胆状WO3基底材料的SEM图(图1放大倍率为4000倍,图2放大倍率为20000倍),三维海胆状WO3是由纳米棒组装而成,纳米棒表面光滑;图3-图4为磁控溅射Al 10min后的Al/WO3纳米复合薄膜SEM图(图3放大倍率为10000倍,图4放大倍率为50000倍),从图中可以看出,溅射Al并未改变海胆状WO3基底的形貌,并且有细小的Al颗粒分布在WO3纳米棒上。图5为磁控溅射Al 10min后的Al/WO3纳米复合薄膜EDS图,样品只含W、O和Al元素,无其他杂质存在,说明复合材料纯度较高,其中Al元素均匀分布在WO3上,证实了Al/WO3纳米复合薄膜的形成。
实施例2
取WO3基底材料和高纯Al靶材置于磁控溅射设备的基片台和靶材座上,通入高纯Ar气,调节气体流量为25sccm,使溅射腔室达到所需真空度,溅射气压控制在0.5Pa。开启直流溅射电源,调节电流为0.3A、电压为450V,此时溅射功率为135W。打开基片台旋转按钮,使放置在基片台上的WO3基底材料匀速旋转,以Ar气为主离化气体进行辉光放电,使高纯Al靶材溅射出Al粒子生长沉积在WO3基底上,溅射时间为15min,形成Al/WO3纳米复合薄膜。
图6-图7为本发明实施例2所制备的磁控溅射Al 15min后的Al/WO3纳米复合薄膜SEM图,其中图6放大倍率为10000倍,图7放大倍率为50000倍,从图中可以看出,在海胆状WO3基底上溅射Al 15min后,Al的形貌由Al颗粒变化为Al纳米棒,Al/WO3纳米复合薄膜的形貌呈树枝状分布。
实施例3
取WO3基底材料和高纯Al靶材置于磁控溅射设备的基片台和靶材座上,通入高纯Ar气,调节气体流量为25sccm,使溅射腔室达到所需真空度,溅射气压控制在0.5Pa。开启直流溅射电源,调节电流为0.3A、电压为450V,此时溅射功率为135W。打开基片台旋转按钮,使放置在基片台上的WO3基底材料匀速旋转,以Ar气为主离化气体进行辉光放电,使高纯Al靶材溅射出Al粒子生长沉积在WO3基底上,溅射时间为20min,形成Al/WO3纳米复合薄膜。
图8-图9为本发明实施例3所制备的磁控溅射Al 20min后的Al/WO3纳米复合薄膜SEM图,其中图8放大倍率为10000倍,图9放大倍率为50000倍,从图中可以看出,在海胆状WO3基底上溅射Al更长时间后,WO3基底几乎完全被Al覆盖,复合材料表面更加粗糙。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种Al/WO3纳米复合薄膜的制备方法,其特征在于,包括:提供WO3基底,然后通过磁控溅射在所述WO3基底上负载Al,所述WO3基底为水热法制备的海胆状纳米WO3薄膜材料。
2.根据权利要求1所述的Al/WO3纳米复合薄膜的制备方法,其特征在于,所述磁控溅射包括以下步骤:
1)放置所述WO3基底和Al靶材,并通入惰性气体;
2)调节电流和电压至溅射功率为100~200W,在所述WO3基底上溅射Al。
3.根据权利要求2所述的Al/WO3纳米复合薄膜的制备方法,其特征在于,步骤1)中,所述惰性气体为Ar气,所述Ar气的气体流量为10~30sccm;和/或,溅射气压控制在0.3~0.8Pa。
4.根据权利要求2或3所述的Al/WO3纳米复合薄膜的制备方法,其特征在于,步骤2)中,在WO3基底材料上溅射Al的溅射时间控制在20min以内;优选的,所述溅射时间为10~20min。
5.根据权利要求4所述的Al/WO3纳米复合薄膜的制备方法,其特征在于,步骤2)中,所述溅射功率为130~145W。
6.根据权利要求1所述的Al/WO3纳米复合薄膜的制备方法,其特征在于,所述WO3基底材料的制备包括:以钨酸铵为钨源,以柠檬酸为控形剂,在预处理后的FTO玻璃上进行水热反应。
7.根据权利要求7所述的Al/WO3纳米复合薄膜的制备方法,其特征在于,所述水热反应的反应温度为160~190℃;和/或,所述水热反应的反应时间为10~15h。
8.根据权利要求6或7所述的Al/WO3纳米复合薄膜的制备方法,其特征在于,所述FTO玻璃的预处理包括:
S1、将NaOH、水和丙酮混合,制得前处理液;
S2、将FTO玻璃放入所述前处理液中,进行超声处理,清洗、干燥;其中,所述NaOH、水和丙酮的质量体积比为0.5~2g:5~20ml:10~30ml;和/或,所述超声处理的时间为5~30min;所述干燥的温度为40~65℃。
9.权利要求1-8任一项所述的Al/WO3纳米复合薄膜的制备方法制备得到的Al/WO3纳米复合薄膜。
10.权利要求1-8任一项所述的Al/WO3纳米复合薄膜的制备方法制备得到的Al/WO3纳米复合薄膜或权利要求9所述的Al/WO3纳米复合薄膜作为光催化材料的应用。
CN202010975851.3A 2020-09-16 2020-09-16 一种Al/WO3纳米复合薄膜及其制备方法和应用 Active CN112156769B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010975851.3A CN112156769B (zh) 2020-09-16 2020-09-16 一种Al/WO3纳米复合薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010975851.3A CN112156769B (zh) 2020-09-16 2020-09-16 一种Al/WO3纳米复合薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112156769A true CN112156769A (zh) 2021-01-01
CN112156769B CN112156769B (zh) 2023-08-29

Family

ID=73859041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010975851.3A Active CN112156769B (zh) 2020-09-16 2020-09-16 一种Al/WO3纳米复合薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112156769B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101660124A (zh) * 2009-09-08 2010-03-03 中国科学院广州能源研究所 一种多孔氧化钨薄膜的制备方法
JP2011214067A (ja) * 2010-03-31 2011-10-27 Ulvac Japan Ltd 成膜方法及びターゲット
CN103246119A (zh) * 2013-05-10 2013-08-14 南京理工大学 一种wo3电致变色薄膜的制备方法
CN104711528A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种片状三氧化钨光电极及其制备方法
CN106492774A (zh) * 2016-12-02 2017-03-15 陕西环珂生物科技有限公司 一种玻璃负载纳米光催化膜的制备方法
CN109364910A (zh) * 2018-12-14 2019-02-22 青岛大学 一种同质异相三氧化钨纳米带光催化剂及其制备方法与应用
CN109991286A (zh) * 2019-05-05 2019-07-09 河北工业大学 一种铝掺杂氧化钨基的双选择性气敏传感器的制备方法
CN110078126A (zh) * 2019-03-26 2019-08-02 北京工业大学 不同形貌的固载型三氧化钨纳米材料及其制备方法和应用
CN110090638A (zh) * 2019-03-26 2019-08-06 北京工业大学 一种固载型三氧化钨空心球及其制备方法和应用
CN111559873A (zh) * 2020-04-30 2020-08-21 北京工业大学 固载型三氧化钨纳米片阵列及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101660124A (zh) * 2009-09-08 2010-03-03 中国科学院广州能源研究所 一种多孔氧化钨薄膜的制备方法
JP2011214067A (ja) * 2010-03-31 2011-10-27 Ulvac Japan Ltd 成膜方法及びターゲット
CN103246119A (zh) * 2013-05-10 2013-08-14 南京理工大学 一种wo3电致变色薄膜的制备方法
CN104711528A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种片状三氧化钨光电极及其制备方法
CN106492774A (zh) * 2016-12-02 2017-03-15 陕西环珂生物科技有限公司 一种玻璃负载纳米光催化膜的制备方法
CN109364910A (zh) * 2018-12-14 2019-02-22 青岛大学 一种同质异相三氧化钨纳米带光催化剂及其制备方法与应用
CN110078126A (zh) * 2019-03-26 2019-08-02 北京工业大学 不同形貌的固载型三氧化钨纳米材料及其制备方法和应用
CN110090638A (zh) * 2019-03-26 2019-08-06 北京工业大学 一种固载型三氧化钨空心球及其制备方法和应用
CN109991286A (zh) * 2019-05-05 2019-07-09 河北工业大学 一种铝掺杂氧化钨基的双选择性气敏传感器的制备方法
CN111559873A (zh) * 2020-04-30 2020-08-21 北京工业大学 固载型三氧化钨纳米片阵列及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIJUN PAN ET AL.: "Reactively sputtered WO3 thin films for the application in all thin film electrochromic devices", vol. 328, pages 135107 *

Also Published As

Publication number Publication date
CN112156769B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
Saroja et al. Optical Studies of Ag 2 O thin film prepared by electron beam evaporation method
CN109612976B (zh) 一种三维多层结构表面增强拉曼基底及其制备方法
Badillo-Ávila et al. Cu2O thin films obtained from sol-gel cuo films using a simple argon/dry-air microwave plasma
CN102350364B (zh) 一种泡沫金属载体负载掺氮二氧化钛光催化剂的制备方法
Yu et al. Photocatalytic TiO2 films deposited on cenosphere particles by pulse magnetron sputtering method
CN1223514C (zh) 鳞状碳纳米管、制备方法和专用装置
CN111822001B (zh) 一种多层复合光催化薄膜材料及其制备方法和应用
Xu et al. Rapid fabrication of luminescent Eu: YVO4 films by microwave-assisted chemical solution deposition
JP2000096212A (ja) 光触媒膜被覆部材およびその製造方法
CN110714187A (zh) 一种钒离子空位型钒酸铋光阳极薄膜及其制备方法
CN112844384B (zh) 一种基于二氧化钛/铜复合薄膜的光催化器件及其制备方法和应用
CN112156769A (zh) 一种Al/WO3 纳米复合薄膜及其制备方法和应用
CN110331367B (zh) 一种钨酸亚锡薄膜的制备方法
Sirghi Plasma synthesis of photocatalytic TiOx thin films
CN110136966B (zh) 一种Al2O3-Ag@TiO2纳米棒光阳极复合材料及其制备方法
CN112458418A (zh) 磁控溅射镀膜中降低极紫外多层膜表面粗糙度的方法
CN110444402B (zh) 一种提高BiVO4光阳极光电化学性能的方法
Ismail et al. Effect of annealing temperature on the properties of transition metal doped zinc oxide–A review
CN107601917B (zh) 一种二氧化钛基自清洁玻璃的制备方法
CN114807877B (zh) 一种黑色二氧化钛光催化薄膜及其制备方法和应用
Wang et al. Preparation and photoelectric properties of Pt/TiO2 nanotube electrodes by a pre-doping method
Chiou et al. Influence of oxygen flow rate on photocatalytic TiO 2 films deposited by rf magnetron sputtering
Pulsipher et al. O2 plasma treatment of mesoporous and compact TiO2 photovoltaic films: Revealing and eliminating effects of Si incorporation
WO2006126894A1 (en) Fabrication of metal oxide films
CN112981344B (zh) 一种基于Mo掺杂TaN的光催化薄膜的制备方法及其产品和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant