CN112154563A - 包括具有固体聚合物周边边缘绝缘体的双极电池单元的电池 - Google Patents

包括具有固体聚合物周边边缘绝缘体的双极电池单元的电池 Download PDF

Info

Publication number
CN112154563A
CN112154563A CN201980036233.8A CN201980036233A CN112154563A CN 112154563 A CN112154563 A CN 112154563A CN 201980036233 A CN201980036233 A CN 201980036233A CN 112154563 A CN112154563 A CN 112154563A
Authority
CN
China
Prior art keywords
active material
material layer
battery
substrate
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980036233.8A
Other languages
English (en)
Inventor
R·安格鲍尔
B·舒曼
F·施米德
J·蒂伦
C·迪斯纳
M·柯蒂克
D·诺顿
J·霍曼
A·布赫克雷默
L·鲍尔
S·斯科特
D·施耐德
G·莫斯利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN112154563A publication Critical patent/CN112154563A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/029Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种电池包括电化学电池单元的堆叠布置。每个电化学电池单元没有电池单元壳体并且包括双极板,该双极板具有基底、形成在基底的第一表面上的第一活性材料层、以及形成在基底的第二表面上的第二活性材料层。每个电池单元包括封装活性材料层中的至少一个的固体电解质层,并且该固体电解质层使电池单元堆叠中的给定电池单元与电池单元堆叠中的相邻电池单元电绝缘,包括沿着这些电池单元的周边。

Description

包括具有固体聚合物周边边缘绝缘体的双极电池单元的电池
背景技术
电池为范围从便携式电子设备到可再生能源系统和环境友好车辆的各种技术提供功率。例如,混合动力电动车辆(HEV)结合燃烧发动机使用电池和电动马达以提高燃料效率。电动车辆(EV)完全由电动马达供能,电动马达相应地由一个或多个电池供能。电池可包括若干个电化学电池单元,这些电化学电池单元以二维或三维阵列布置并且串联或并联电连接。在串联连接中,两个或更多个电池单元中的每一个的正极和负极彼此电连接,并且这些电池单元的电压相加以给予具有电池单元的电池更大的电压。例如,如果n个电池单元串联电连接,则电池电压是单个电池单元的电压乘以n,其中n是正整数。
各个电池单元通常围封在不透气的壳体中。常常,壳体可电连接到电池单元的一个极。在电池单元彼此串联电连接(例如,通过在一个电池单元的正极和相邻电池单元的负极之间提供连接)的应用中,电池单元电压是相加的,并且壳体必须彼此绝缘以防止短路。然而,在电池内,用于容纳电池单元壳体和对应的绝缘结构的空间、以及由电池单元壳体和对应的绝缘结构使用的材料降低了电池效率并且增加了制造复杂性和成本。
发明内容
在一些方面中,一种电池包括电化学电池单元的堆叠布置。每个电化学电池单元包括双极板和固体电解质层。双极板包括基底、形成在基底的第一表面上的第一活性材料层、以及形成在基底的第二表面上的第二活性材料层。第二表面与第一表面相对。第一活性材料层具有第一活性材料层周边边缘,该第一活性材料层周边边缘与基底周边边缘间隔开且安置成比基底周边边缘更接近基底的中心。第二活性材料层由与用于形成第一活性材料层的材料不同的材料形成。第二活性材料层具有第二活性材料层周边边缘,该第二活性材料层周边边缘与基底周边边缘间隔开。固体电解质层是离子传导的且电绝缘的。固体电解质层包括分离部分以及与该分离部分相连的边缘绝缘部分。分离部分沿电池单元堆叠方向安置在给定电池单元的第一活性材料层和相邻电池单元的第二活性材料层之间,并且促进给定电池单元的第一活性材料层和相邻电池单元的第二活性材料层之间的离子传导。边缘绝缘部分沿电池单元堆叠方向安置在给定电池单元的第一表面和相邻电池单元的第二活性材料层之间。分离部分和边缘绝缘部分协作以封装第一活性材料层。
在一些实施例中,除了固体电解质层之外,电化学电池单元的堆叠布置在每一对相邻的双极板之间没有电绝缘结构。
在一些实施例中,边缘绝缘部分安置成比分离部分更远离基底的中心,并且边缘绝缘部分包围分离部分的周边。
在一些实施例中,不管电池单元的电荷状态如何,边缘绝缘部分的厚度都大于分离部分的厚度并且小于第一活性材料层、分离部分和第二活性材料层的厚度之和,其中厚度对应于沿平行于电池单元的堆叠方向的方向的尺寸。
在一些实施例中,分离部分由一种材料形成且包括离子传导盐,并且边缘绝缘部分由该材料形成且没有离子传导盐。
在一些实施例中,第一活性材料层周边边缘安置成比基底周边边缘和第二活性材料层周边边缘两者都更接近基底的中心。
在一些实施例中,固体电解质层的周边边缘比第二活性材料层周边边缘更接近基底的中心,并且固体电解质层的周边边缘比第一活性材料层周边边缘更远离基底的中心。
在一些实施例中,固体电解质层的周边边缘比第二活性材料层周边边缘和第一活性材料层周边边缘更远离基底的中心。
在一些实施例中,边缘绝缘部分固定到第一表面。
在一些实施例中,边缘绝缘部分包围分离部分,并且当沿平行于电池单元的堆叠方向的方向观察时具有框架的形状。
在一些实施例中,电池包括围封电池单元的堆叠布置的电池壳体,该电池壳体被构造成防止污染物进入电池壳体的内部空间。
在一些实施例中,电池壳体由柔性材料形成,该柔性材料是夹在聚合物层之间的金属箔的层压件。
在一些实施例中,第一活性材料层与第一表面协作以提供电池单元阴极,并且第二活性材料层与第二表面协作以提供电池单元阳极。
在一些实施例中,固体电解质层由聚合物形成。
在一些实施例中,固体电解质层由陶瓷形成。
在一些实施例中,固体电解质层由聚合物和陶瓷的复合物形成。
在一些实施例中,固体电解质层固定到给定电池单元并且能够相对于相邻电池单元自由移动,或者固定到相邻电池单元并且能够相对于给定电池单元自由移动。
在一些方面中,一种电池包括电化学电池单元的堆叠布置。每个电化学电池单元包括双极板、固体电解质层和边缘绝缘装置,该边缘绝缘装置是固体电解质材料。双极板包括基底、形成在基底的第一表面上的第一活性材料层、以及形成在基底的第二表面上的第二活性材料层。第二表面与第一表面相对。第一活性材料层具有第一活性材料层周边边缘,该第一活性材料层周边边缘与基底周边边缘间隔开且安置成比基底周边边缘更接近基底的中心。第二活性材料层由与用于形成第一活性材料层的材料不同的材料形成。第二活性材料层具有第二活性材料层周边边缘,该第二活性材料层周边边缘与基底周边边缘间隔开。固体电解质层由固体电解质材料形成,并且安置在一个电池单元的第一活性材料层和与所述一个电池单元相邻的电池单元的第二活性材料层之间。边缘绝缘装置由固体电解质材料形成,围封第一活性材料层周边边缘并且与固体电解质层相连。
在一些实施例中,边缘绝缘装置被构造成使堆叠布置的给定电池单元的部分与堆叠布置的相邻电池单元的部分电绝缘。
在一些方面中,该布置(其中每个电池单元围封在不透气的壳体中)被若干个单个无壳体的电化学电池单元代替,这些电化学电池单元被堆叠使得每个电池单元与电池单元堆叠的相邻电池单元形成直接串联连接。每个电池单元具有平面形状,并且包括由对应的活性材料层提供的尺寸几乎相等的平面阳极和平面阴极。阳极和阴极由固体电解质层分离(例如,阳极和阴极不缠绕成卷或不折叠成z形折叠构型)。另外,每个电池单元在一个电池单元的阴极和相邻电池单元的连接的阳极之间具有双极板。在电池单元堆叠中,串联布置中的每个阴极都直接电连接到下一个阳极而没有居间的壳体。双极板代替了阴极和阳极集流器,并且还防止了在阳极活性材料和阴极活性材料之间的化学反应。在锂离子电池单元的情况下,双极板可例如在其一侧上包括提供阳极的铜箔,且在其相对侧上包括提供阴极的铝箔。这些箔可邻接,或者可提供居间的导电基底的最外层。
在一些实施例中,每个电化学电池单元可具有大约3 mAh/cm2的覆盖和锂金属阳极。在电池单元充电时,通过在阳极上生成沉积的锂金属层,锂金属阳极沿垂直于层的方向膨胀,例如大约13-15微米(μm)。因此,电池单元在充电和放电之间“呼吸”(例如,膨胀和收缩)大约13-15 μm。
当串联连接时,电池单元布置成使其活性材料层连同双极板相当紧密地在一起。例如,层的间距可仅对应于电池单元厚度的尺寸,该尺寸可仅在40 μm至120 μm之间。电池单元堆叠中的一个电池单元和相邻电池单元的双极板也类似地间隔。电池单元包括一种结构,其提供电池单元周边边缘绝缘并且仍然允许电池单元堆叠的电池单元膨胀和收缩而装置或电池单元自身不被破坏。
电池单元堆叠在电池单元堆叠的相邻双极电池单元之间具有串联电连接,并且电池单元堆叠的每个电池单元包括固体电解质层。固体电解质层包括安置在活性材料层之间的分离部分、以及与该分离部分相连并包围该分离部分的边缘绝缘部分。在一些实施例中,边缘绝缘部分被放置到第一活性材料层(例如,电池单元阴极)上并封装该第一活性材料层。在一些实施例中,通过将边缘绝缘部分放置到阴极上将该边缘绝缘部分与电池单元机械地组装在一起。在一些实施例中,边缘绝缘部分例如使用粘合剂仅固定到给定电池单元的双极板,并且相对于相邻电池单元不固定。通过仅固定到给定电池单元而不固定到相邻电池单元,容许每个电池单元和作为整体的电池单元堆叠在电荷循环期间膨胀和收缩。另外,避免了边缘绝缘部分和/或电池单元自身在电池单元膨胀和收缩时撕开的情况,如果边缘绝缘部分固定到相邻的一对电池单元中的两个电池单元,则可能发生这种情况。
在以下附图、详细描述和权利要求中阐述了本公开的一个或多个特征、方面、实施方式和优点的细节。
附图说明
图1是电池的示意性横截面图,该电池包括电池壳体和安置在电池壳体中的电池单元堆叠。
图2是图1的电池单元堆叠的周边部分的横截面图。
图2a是电池单元的在图2中由虚线标记的部分的放大图。
图3是如沿着图2的线3-3所见的图1的电池单元堆叠的示意图。
图4是替代性实施例电池单元堆叠的周边部分的横截面图。
图5是如沿着图4的线5-5所见的图4的电池单元堆叠的示意图。
图6是另一个替代性实施例电池单元堆叠的周边部分的横截面图。
具体实施方式
参考图1,电池1是功率生成和存储装置,其包括电池壳体2,该电池壳体2围封电化学电池单元3的堆叠布置。电池壳体2被构造成使得防止空气、湿气和/或其他污染物进入包含电池单元3的内部空间。例如,在一些实施例中,电池壳体2由柔性层压材料形成,该柔性层压材料包括夹在聚合物层之间的金属箔,并且以密封袋的形式提供。
电池单元3可以是锂离子二次电池单元,但不限于锂离子电池单元化学。电池单元3没有电池单元壳体,具有大致平面的低轮廓形状,并且沿着堆叠轴线5堆叠,使得每个电池单元3a与电池单元堆叠4的相邻电池单元3b形成直接串联连接。每个电池单元3包括:双极板12,其具有设置在其相对表面上的活性材料层30、40;以及固体电解质层50,其容许相邻电池单元3a、3b之间的离子交换,同时防止相邻电池单元3a、3b的活性材料层30、40之间的电接触。在图1和其他附图中,由于构成电池单元3的材料层的薄度,示意性地示出了电池单元3的各成分,并且这些成分未按比例绘制。
参考图2和图2A,示出了电池单元堆叠4的周边的一部分。在该图和其他图中,仅示出了电池单元堆叠4的四个完整电池单元3,并且所图示的电池单元3上方和/或下方的椭圆被用于指示附加电池单元驻留在所图示的电池单元的一侧或两侧上。双极板12包括板状基底20、形成在基底20的第一表面21上并提供阴极的第一活性材料层30、以及形成在基底20的第二相对表面22上并提供阳极的第二活性材料层40。
基底20是电导体和离子绝缘体,并且可以是包覆板,该包覆板在其一侧上具有提供第一表面21的第一金属箔,并且在其相对侧上具有提供第二表面22的第二金属箔(在图2A中示出)。当电池单元3采用锂离子电池单元化学时,基底20可例如在一侧上包括提供阴极基底的铝箔,并且在相对侧上包括提供阳极基底的铜箔。在一些实施例中,这些箔可邻接。例如,通过在一侧上提供铜箔和蒸发或镀覆铝,或者替代地通过在一侧上提供铝箔和蒸发或镀覆铜,能够实现基底20。在其他实施例中,基底20可以是由其他数对导电材料形成和/或经由其他适当的技术形成的包覆板。
在再其他实施例中,基底20可包括金属箔,这些金属箔形成居间的导电基底的相对的最外层。
在再其他实施例中,基底20可以是由导电材料形成的固体(例如,非包覆的并且由单一材料形成)板。例如,在一些实施例中,基底20可以是固体镍箔或固体不锈钢箔。
第一活性材料层30形成在基底第一表面21上。第一活性材料层30由活性材料形成。如本文中所使用的,术语“活性材料”指代电池单元内的参与充电或放电的电化学反应的电化学活性材料。第一活性材料层30具有第一活性材料层周边边缘31,该第一活性材料层周边边缘与基底20的周边边缘23间隔开并且安置成比基底20的周边边缘23更接近基底20的中心24。在第一表面21由铝形成的实施例中,第一活性材料层30可由例如锂化金属氧化物形成,其中锂化金属氧化物的金属部分能够是钴、锰、镍或这三者的复合物。
第二活性材料层40形成在基底第二表面22上。第二活性材料层40由与用于形成第一活性材料层30的活性材料不同的活性材料形成。第二活性材料层40具有第二活性材料层周边边缘41,该第二活性材料层周边边缘41与基底周边边缘23间隔开。具体地,第二活性材料层周边边缘41不沿着平行于堆叠轴线5的轴线与第一活性材料层周边边缘31对齐,以便避免在阳极的边缘处的边缘效应和电流集中。为此,第二活性材料层周边边缘41安置成比基底周边边缘23更接近基底20的中心24,并且安置在基底周边边缘23和第一活性材料层周边边缘31之间。在第二表面22由铜形成的实施例中,第二活性材料层40可由例如锂金属形成。
固体电解质层50由固体电解质(例如,离子传导且电绝缘的固体材料)形成,并且可被提供为膜。固体电解质层50包括分离部分54以及与分离部分54的周边相连的边缘绝缘部分56。分离部分54是固体电解质材料层50的一部分,其沿电池单元堆叠方向(例如,沿平行于堆叠轴线5的方向)安置在给定电池单元3a的第一活性材料层30(例如,第一活性材料层30a)和相邻电池单元3b的第二活性材料层40(例如,第二活性材料层40b)之间并且促进其间的离子传导。
边缘绝缘部分56是固体电解质材料层50的一部分,该部分侧向地安置在第一活性材料层30之外(比第一活性材料层30更远离基底20的中心24)并且包括固体电解质层周边边缘51。边缘绝缘部分56包围分离部分54,且因此当沿平行于堆叠轴线5的方向观察时具有框架的形状(图3)。沿电池单元堆叠方向,边缘绝缘部分56驻留在给定电池单元3a的第一表面21和相邻电池单元3b的第二活性材料层40、4b之间。边缘绝缘部分56比分离部分54相对更厚。然而,不管电池单元3的电荷状态如何,边缘绝缘部分56的厚度都小于第一活性材料层30、分离部分54和第二活性材料层40的厚度之和,其中厚度对应于沿平行于堆叠轴线5的方向的尺寸。
分离部分54和边缘绝缘部分56协作以封装第一活性材料层30。具体地,固体电解质层50围封包括周边边缘31的第一活性材料层30,并且固体电解质层50的周边边缘51比第一活性材料层周边边缘31更远离基底20的中心24且比第二活性材料层周边边缘41更接近基底20的中心。结果,固体电解质层50被构造成防止第一活性材料层30与空气和湿气接触并且用作给定电池单元3a的第一活性材料层30和相邻电池单元3b的第二活性材料层40之间的离子导体。另外,由于固体电解质层50的电绝缘性质,该固体电解质层50防止相邻电池单元3a、3b的基底20a、20b之间发生电短路。除了固体电解质层50之外,电化学电池单元的堆叠布置在每一对相邻的双极板之间没有电绝缘结构。
在所图示的实施例中,包括分离部分54和边缘绝缘部分56的固体电解质层50(即,安置在相邻电池单元3a、3b的基底20a、20b之间的固体电解质层50a)安置在电池单元3a的第一活性材料层30a上并固定到电池单元3a的第一活性材料层30a。因此,固体电解质层50a经由第一活性材料层30a间接地固定到一个电池单元3a的双极板12a的基底20a的第一表面21a,例如使用粘合剂或其他适当的方法。另一方面,虽然固体电解质层50a与相邻电池单元3b的第二活性材料层40b接触,但是该固体电解质层50a并不固定到相邻电池单元3b的第二活性材料层40b。由于固体电解质层50a仅固定到一对相邻电池单元3a、3b中的一个电池单元3a,因此该固体电解质层50a能够适应由于电荷循环引起的电池单元膨胀和收缩而不损坏其自身或相邻电池单元3a、3b。
在其他实施例中,包括分离部分54和边缘绝缘部分56的固体电解质层50a安置在相邻电池单元3b的第二活性材料层40b上并固定到相邻电池单元3b的第二活性材料层40b。因此,固体电解质层50a经由第二活性材料层40b间接地固定到相邻电池单元3b的基底第二表面22b,例如使用粘合剂或其他适当的方法。另一方面,虽然固体电解质层50b与电池单元3a的第一活性材料层30a接触,但是该固体电解质层50a并不固定到电池单元3a的第一活性材料层30a。由于固体电解质层50a仅固定到一对相邻电池单元3a、3b中的一个电池单元3b,因此该固体电解质层50a能够适应由于电荷循环引起的电池单元膨胀和收缩而不损坏其自身或相邻电池单元3a、3b。
固体电解质层50包括具有一长度(例如,沿横向于堆叠轴线5且平行于第一表面21的方向的尺寸)的边缘绝缘部分56,该长度足够大以防止相邻电池单元3a、3b的双极板基底20a、20b彼此接触并形成电短路。在一些实施例中,边缘绝缘部分56的长度可以是电池单元厚度的3至20倍。
在一些实施例中,固体电解质层50(包括分离部分54和边缘绝缘部分56两者)可由例如固体聚合物电解质形成,该固体聚合物电解质包括与用于形成活性材料层30、40的聚合物类似的聚合物、与用于形成活性材料层30、40的盐相同的盐、以及添加剂(诸如,由California(加利福尼亚州)Hayward(海沃德)的Seeo, Incorporated以名称DryLyte™出售的添加剂)。在其他实施例中,固体聚合物电解质层50可由其他材料形成,包括陶瓷或者陶瓷和聚合物材料的混合物。
在再其他实施例中,分离部分54可由包括离子传导盐的基底材料形成,并且边缘绝缘部分56可由相同的基底材料形成并且没有离子传导盐。
在再其他实施例中,固体聚合物层50可由陶瓷、陶瓷和聚合物的复合物、或者适合于具体应用的其他材料形成。
再次参考图1,电池1包括安置在电池单元堆叠4的一端(例如,第一端6)处的负极端端子100,该负极端端子100电连接到在电池单元堆叠4的第一端6处的最外电池单元3。另外,电池1包括安置在电池单元堆叠4的相对端(例如,第二端8)处的正极端端子110。正极端端子110电连接到在电池单元堆叠4的第二端8处的最外电池单元3。
负极端端子100包括:导电片材(例如,铜片材),其用作负极集流器102;以及负极集流器活性材料层104,其形成在负极集流器102的面向电池单元堆叠的表面上。负极集流器活性材料层104采用用于形成电池单元3的阳极的相同活性材料层。在涉及锂离子电池单元化学的所图示的实施例中,负极集流器活性材料层104可以是例如涂覆在固体电解质材料中的锂金属。在使用中,负极端端子100被堆叠到电池单元堆叠4的第一端8上,使得负极集流器活性材料层104与电池单元堆叠4的第一端6的最外电池单元的第一活性材料层30直接接触并与其形成电连接。
正极端端子110包括:导电片材(例如,铝片材),其用作正极集流器112;以及正极集流器活性材料层114,其形成在正极集流器112的面向电池单元堆叠的表面上。正极集流器活性材料层114采用用于形成电池单元3的阴极的相同活性材料层。在涉及锂离子电池单元化学的所图示的实施例中,正极集流器活性材料层114可以是例如锂化金属氧化物。在使用中,正极端端子110被堆叠到电池单元堆叠4的第二端8上,使得正极集流器活性材料层114接触固体电解质层50并且经由固体电解质层50与电池单元堆叠4的第二端的最外电池单元3的第二活性材料层40形成电连接。
参考图4和图5,替代性实施例电池单元堆叠104与上文关于图2和图3描述的电池单元堆叠4类似,并且共同的附图标记被用于指代共同的元件。图4和图5的替代性实施例电池单元堆叠104与上文关于图2和图3描述的电池单元堆叠4关于固体电解质层150的构型不同。像先前的实施例一样,固体电解质层150包括分离部分54和边缘绝缘部分156。在电池单元堆叠104中,边缘绝缘部分156的长度大于图2中所示的边缘绝缘部分56的长度。具体地,图4和图5的边缘绝缘部分156具有一长度,使得固体电解质层150的周边边缘51比第一活性材料层周边边缘31和第二活性材料层周边边缘41两者都更远离基底20的中心24。结果,固体电解质层150被构造成防止第一活性材料层30和第二活性材料层40与空气和湿气接触并且用作一个电池单元3a的第一活性材料层30和相邻电池单元3b的第二活性材料层40之间的离子导体。另外,由于固体电解质层150的电绝缘性质,该固体电解质层150防止相邻电池单元3a、3b的基底20a、20b之间的电短路。除了固体电解质层150之外,电化学电池单元的堆叠布置在每一对相邻的双极板之间没有电绝缘结构。
在一些实施例中,包括分离部分54和边缘绝缘部分156的固体电解质层150a(即,安置在相邻电池单元3a、3b的基底20a、20b之间的固体电解质层150)安置在电池单元3a的第一活性材料层30a上并且固定到电池单元3a的第一活性材料层30a。因此,固体电解质层150a经由第一活性材料层30a间接地固定到一个电池单元3a的双极板12a的基底第一表面21a,例如使用粘合剂或其他适当的方法。另一方面,虽然固体电解质层150a与相邻电池单元3b的第二活性材料层40b和基底第二表面22b接触,但是该固体电解质层150a并不固定到相邻电池单元3b的第二活性材料层40b或基底第二表面22b。由于固体电解质层150a仅固定到一对相邻电池单元3a、3b中的一个电池单元3a,因此该固体电解质层150a能够适应由于电荷循环引起的电池单元膨胀和收缩而不损坏其自身或相邻电池单元3a、3b。
在其他实施例中,包括分离部分54和边缘绝缘部分156的固体电解质层150a(即,安置在相邻电池单元3a、3b的基底20a、20b之间的固体电解质层150)安置在相邻电池单元3b的第二活性材料层40b和相邻电池单元3b的基底第二表面22b上并且固定到相邻电池单元3b的第二活性材料层40b和相邻电池单元3b的基底第二表面22b。因此,固体电解质层150a直接地和间接地固定到相邻电池单元3b的基底第二表面22b,例如使用粘合剂或其他适当的方法。另一方面,虽然固体电解质层150a与电池单元3a的第一活性材料层30a接触,但是该固体电解质层150a并不固定到电池单元3a的第一活性材料层30a。由于固体电解质层150a仅固定到一对相邻电池单元3a、3b中的一个电池单元3b,因此该固体电解质层150a能够适应由于电荷循环引起的电池单元膨胀和收缩而不损坏其自身或相邻电池单元3a、3b。
参考图6,如先前所讨论的,固体电解质层50物理地接触并直接固定到一个电池单元(例如,电池单元3a)的第一活性材料层30抑或相邻电池单元(例如,电池单元3b)的第二活性材料层40中的任一者,同时并不固定到所述一个电池单元3a的第一活性材料层30和所述相邻电池单元3b的第二活性材料层40中的另一者。由于固体电解质层50不固定到所述一个电池单元3a的第一活性材料层30和所述相邻电池单元3b的第二活性材料层40两者,因此空气或湿气有可能在固体电解质层50和所述一个电池单元3a的第一活性材料层30或所述相邻电池单元3b的第二活性材料层40之间进入电池单元3。出于这个原因,在一些实施例中,每个电池单元包括弹性密封装置80。密封装置80绕电池单元3的周边提供不透湿气的密封,并且安置在一个电池单元3a的基底第一表面21a和相邻电池单元3b的第二活性材料层40b之间的间隙g1中。更具体地,密封装置80安置在一个电池单元3a的基底第一表面21a和相邻电池单元3b的第二活性材料层40b之间,直接物理地接触这两者,并且与这两者形成密封。在一些实施例中,密封装置80可被定位成以便也与固体电解质层周边边缘51形成密封。结果,密封装置80提供了防止湿气和其他污染物接触固体电解质层50和电化学活性材料的屏障。另外,由于密封装置80的弹性并且因为密封装置80邻接固体电解质层周边边缘51,密封装置80可施加向外的力,该向外的力压缩周边边缘51并且用于防止电解质层50b从其基底20b剥离。
密封装置80通过闭合间隙g1来提供不可渗透性。密封装置80可例如以弹性材料的条的形式提供,或者以印刷或胶合在基底第一表面21上的闭孔弹性泡沫或聚合物的形式提供。密封装置80可绕电池单元3的周长延伸,由此当沿平行于电池单元3的堆叠方向的方向观察时,密封装置80可具有框架的形状。
密封装置80具有允许其补偿沿平行于堆叠轴线5的方向的电池单元尺寸变化(包括与电荷循环相关联的膨胀和收缩)的弹性性质。由于膨胀或收缩的量能够对应于高达电池单元厚度的10%或更多,因此密封装置80必须具有足够的弹性,以便无论电池单元尺寸变化如何均维持密封。
除了具有足够的弹性以适应由于电荷循环所引起的电池单元膨胀和收缩之外,用于形成密封装置80的材料还必须是不透湿气的。在一些实施例中,密封装置80可以是闭孔弹性泡沫橡胶,其中闭孔弹性泡沫的孔隙分数(pore fraction)足以补偿电池单元3的高达电池单元厚度的10%或更多的膨胀和收缩。在其他实施例中,密封装置80可由解决特定应用的要求的其他材料形成,包括但不限于开孔泡沫橡胶。
虽然电池壳体2可由以密封袋的形式提供的柔性层压材料形成,但是电池壳体不限于这种构型。例如,在其他实施例中,电池壳体2可以是由刚性材料形成的棱柱形(例如,矩形)壳体。
已通过示例示出了上文描述的实施例,并且应理解,这些实施例可易于实现各种改型和替代形式。应进一步理解,权利要求并不旨在限于所公开的具体形式,而是覆盖落入本公开的精神和范围内的所有改型、等同物和替代方案。

Claims (19)

1. 一种电池,其包括电化学电池单元的堆叠布置,每个电化学电池单元包括:
双极板,其包括基底、形成在所述基底的第一表面上的第一活性材料层、以及形成在所述基底的第二表面上的第二活性材料层,所述第二表面与所述第一表面相对,所述第一活性材料层具有第一活性材料层周边边缘,所述第一活性材料层周边边缘与基底周边边缘间隔开且安置成比所述基底周边边缘更接近所述基底的中心,所述第二活性材料层由与用于形成所述第一活性材料层的材料不同的材料形成,所述第二活性材料层具有第二活性材料层周边边缘,所述第二活性材料层周边边缘与所述基底周边边缘间隔开,以及
离子传导的且电绝缘的固体电解质层,所述固体电解质层包括分离部分以及与所述分离部分相连的边缘绝缘部分,其中
所述分离部分沿电池单元堆叠方向安置在给定电池单元的第一活性材料层和相邻电池单元的第二活性材料层之间,并且促进所述给定电池单元的第一活性材料层和所述相邻电池单元的第二活性材料层之间的离子传导,
所述边缘绝缘部分沿所述电池单元堆叠方向安置在所述给定电池单元的第一表面和所述相邻电池单元的第二活性材料层之间,
所述分离部分和所述边缘绝缘部分协作以封装所述第一活性材料层。
2.根据权利要求1所述的电池,其中,除了所述固体电解质层之外,电化学电池单元的所述堆叠布置在每一对相邻的双极板之间没有电绝缘结构。
3.根据权利要求1所述的电池,其中,所述边缘绝缘部分安置成比所述分离部分更远离所述基底的中心,并且所述边缘绝缘部分包围所述分离部分的周边。
4.根据权利要求1所述的电池,其中,无论所述电池单元的电荷状态如何,所述边缘绝缘部分的厚度都大于所述分离部分的厚度并且小于所述第一活性材料层、所述分离部分和所述第二活性材料层的厚度之和,其中厚度对应于沿平行于所述电池单元的堆叠方向的方向的尺寸。
5.根据权利要求1所述的电池,其中,所述分离部分由一材料形成且包括离子传导盐,并且所述边缘绝缘部分由所述材料形成且没有离子传导盐。
6.根据权利要求1所述的电池,其中,所述第一活性材料层周边边缘安置成比所述基底周边边缘和所述第二活性材料层周边边缘两者都更接近所述基底的中心。
7.根据权利要求1所述的电池,其中,所述固体电解质层的周边边缘比所述第二活性材料层周边边缘更接近所述基底的中心,并且所述固体电解质层的周边边缘比所述第一活性材料层周边边缘更远离所述基底的中心。
8.根据权利要求1所述的电池,其中,所述固体电解质层的周边边缘比所述第二活性材料层周边边缘和所述第一活性材料层周边边缘更远离所述基底的中心。
9.根据权利要求1所述的电池,其中,所述边缘绝缘部分固定到所述第一表面。
10.根据权利要求1所述的电池,其中,所述边缘绝缘部分包围所述分离部分,并且当沿平行于所述电池单元的堆叠方向的方向观察时具有框架的形状。
11.根据权利要求1所述的电池,其包括围封电池单元的所述堆叠布置的电池壳体,所述电池壳体被构造成防止污染物进入所述电池壳体的内部空间。
12.根据权利要求11所述的电池,其中,所述电池壳体由柔性材料形成,所述柔性材料是夹在聚合物层之间的金属箔的层压件。
13.根据权利要求1所述的电池,其中,所述第一活性材料层与所述第一表面协作以提供电池单元阴极,并且所述第二活性材料层与所述第二表面协作以提供电池单元阳极。
14.根据权利要求1所述的电池,其中,所述固体电解质层由聚合物形成。
15.根据权利要求1所述的电池,其中,所述固体电解质层由陶瓷形成。
16.根据权利要求1所述的电池,其中,所述固体电解质层由聚合物和陶瓷的复合物形成。
17.根据权利要求1所述的电池,其中,所述固体电解质层固定到所述给定电池单元并且能够相对于所述相邻电池单元自由移动,或者固定到所述相邻电池单元并且能够相对于所述给定电池单元自由移动。
18.一种电池,其包括电化学电池单元的堆叠布置,每个电化学电池单元包括:
双极板,其包括基底、形成在所述基底的第一表面上的第一活性材料层、以及形成在所述基底的第二表面上的第二活性材料层,所述第二表面与所述第一表面相对,所述第一活性材料层具有第一活性材料层周边边缘,所述第一活性材料层周边边缘与基底周边边缘间隔开且安置成比所述基底周边边缘更接近所述基底的中心,所述第二活性材料层由与用于形成所述第一活性材料层的材料不同的材料形成,所述第二活性材料层具有第二活性材料层周边边缘,所述第二活性材料层周边边缘与所述基底周边边缘间隔开,
固体电解质层,其由固体电解质材料形成并且安置在一个电池单元的第一活性材料层和与所述一个电池单元相邻的电池单元的第二活性材料层之间,以及
边缘绝缘装置,其由所述固体电解质材料形成、围封所述第一活性材料层周边边缘并且与所述固体电解质层相连。
19.根据权利要求18所述的电池,其中,所述边缘绝缘装置被构造成使所述堆叠布置的给定电池单元的部分与所述堆叠布置的相邻电池单元的部分电绝缘。
CN201980036233.8A 2018-05-30 2019-05-17 包括具有固体聚合物周边边缘绝缘体的双极电池单元的电池 Pending CN112154563A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862677979P 2018-05-30 2018-05-30
US62/677979 2018-05-30
PCT/EP2019/062795 WO2019228826A1 (en) 2018-05-30 2019-05-17 Battery including bipolar cells that have a solid polymer peripheral edge insulator

Publications (1)

Publication Number Publication Date
CN112154563A true CN112154563A (zh) 2020-12-29

Family

ID=66676478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980036233.8A Pending CN112154563A (zh) 2018-05-30 2019-05-17 包括具有固体聚合物周边边缘绝缘体的双极电池单元的电池

Country Status (6)

Country Link
US (1) US20210313612A1 (zh)
EP (1) EP3804016A1 (zh)
JP (1) JP7280287B2 (zh)
KR (1) KR20210014636A (zh)
CN (1) CN112154563A (zh)
WO (1) WO2019228826A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238645B2 (ja) * 2003-06-12 2009-03-18 日産自動車株式会社 バイポーラ電池
JP2010272266A (ja) * 2009-05-20 2010-12-02 Tokai Rubber Ind Ltd リチウムイオン電池用電極部材、リチウムイオン電池およびその製造方法
JP2011100623A (ja) * 2009-11-06 2011-05-19 Toyota Motor Corp 積層型電池
US9818996B2 (en) * 2011-03-17 2017-11-14 Toyota Jidosha Kabushiki Kaisha Solid battery and method for manufacturing solid battery
CN103548196B (zh) * 2011-05-27 2016-03-02 丰田自动车株式会社 双极全固体电池

Also Published As

Publication number Publication date
JP7280287B2 (ja) 2023-05-23
KR20210014636A (ko) 2021-02-09
WO2019228826A1 (en) 2019-12-05
EP3804016A1 (en) 2021-04-14
JP2021525442A (ja) 2021-09-24
US20210313612A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
KR20140026504A (ko) 증가된 용량을 가지는 바이폴라 전기화학 리튬 이온 배터리
US10991985B2 (en) Secondary battery
US20240063515A1 (en) Secondary battery
CN108886162B (zh) 包括电极隔离框架的电化学电池
EP3804017B1 (en) Battery including bipolar cells that have a cell edge seal
EP3804019B1 (en) Battery including bipolar cells that have an edge insulating device supported by a support frame
JP7105924B2 (ja) 位置決め表面特徴部を備える基板を有するバイポーラセルを含むバッテリ
JP2020030899A (ja) 二次電池
JP7280287B2 (ja) 固体ポリマー周縁部絶縁体を有するバイポーラセルを含むバッテリ
JP7098189B2 (ja) 二次電池及び電池モジュール
US20210218065A1 (en) Battery Including Bipolar Cells that have an Edge Insulating Device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination