CN112142894B - 有机硅烷在制备高密度聚乙烯中的应用和高密度聚乙烯及其制备方法和应用 - Google Patents

有机硅烷在制备高密度聚乙烯中的应用和高密度聚乙烯及其制备方法和应用 Download PDF

Info

Publication number
CN112142894B
CN112142894B CN201910911659.5A CN201910911659A CN112142894B CN 112142894 B CN112142894 B CN 112142894B CN 201910911659 A CN201910911659 A CN 201910911659A CN 112142894 B CN112142894 B CN 112142894B
Authority
CN
China
Prior art keywords
density polyethylene
high density
organosilane
branched
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910911659.5A
Other languages
English (en)
Other versions
CN112142894A (zh
Inventor
董金勇
刘秀明
秦亚伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Lianke New Materials Co.,Ltd.
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN201910911659.5A priority Critical patent/CN112142894B/zh
Publication of CN112142894A publication Critical patent/CN112142894A/zh
Application granted granted Critical
Publication of CN112142894B publication Critical patent/CN112142894B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及高密度聚乙烯树脂的改性技术领域,公开了一种有机硅烷在制备高密度聚乙烯树脂中的应用、一种高密度聚乙烯树脂的制备方法以及由该方法制备得到的高密度聚乙烯树脂。所述有机硅烷的结构通式为R1SiX2R2,其中,R1为C2‑C20的α‑烯烃基,X为卤素,R2为C1‑C20的直链、支链或异构化的烷基。采用本发明提供的方法制得的高密度聚乙烯树脂具有结晶温度高、结晶速率快、结晶度高以及熔体强度高等特点,可用于以二氧化碳或氮气为发泡剂的挤出发泡,制备高发泡聚乙烯材料,代替低密度聚乙烯以丁烷或戊烷等烷烃为发泡剂挤出发泡制备发泡聚乙烯材料。

Description

有机硅烷在制备高密度聚乙烯中的应用和高密度聚乙烯及其 制备方法和应用
技术领域
本发明涉及聚乙烯树脂的改性技术,具体涉及一种有机硅烷在制备高密度聚乙烯中的应用、一种高密度聚乙烯的制备方法以及由该方法制备得到的高密度聚乙烯中的应用。
背景技术
聚乙烯作为一种性能优良的热塑性高分子材料,具有无毒、无味、耐低温、化学稳定性好、吸水性小、电绝缘性能优良等特点,可用来制造薄膜、容器、管道、电线电缆、日用品等,并可作为电视、雷达等的高频绝缘材料,用途十分广泛,是产量最大、发展最快、品种开发最活跃的合成树脂。因不同分子结构和性能的差异,聚乙烯主要有三大品种:高密度聚乙烯(HDPE)、线性低密度聚乙烯(LLDPE)和高压反应器制备的低密度聚乙烯(LDPE)。
目前,可用于发泡的聚乙烯树脂只有LDPE,主要是因为LDPE含有大量长链支化结构,熔体强度高、熔体拉伸过程中拉伸应变硬化现象显著。但是,大量短支链和长支链结构导致其结晶度低,结晶速率慢,发泡过程中泡孔无法及时定型,尤其是在用于挤出发泡时只适合以高度易燃且对环境危害极大的丁烷或戊烷等烷烃为发泡剂,无法使用绿色环保的超临界二氧化碳或氮气为发泡剂。
高密度聚乙烯(HDPE)结晶速率快,结晶温度高,有较高的耐温、耐油性、耐寒性、耐蒸汽渗透性、电绝缘性及抗环境应力开裂性,在吹塑、注塑、吹膜、发泡等领域应用广泛。但由于普通HDPE以线性结构为主,在熔融状态下熔体强度低,熔体拉伸应变硬化现象不明显,限制了其在挤出发泡领域的应用,在应用时一般需对其进行交联改性,以获得长链支化结构,增强熔体的应变强化,提高其熔体强度和加工性能。开发具有高熔体强度特性的高密度聚乙烯树脂,可使高密度聚乙烯同时具有低密度聚乙烯的高熔体强度以及高密度聚乙烯的高结晶性能,可在挤出发泡领域获得新的应用,以绿色化发泡剂如二氧化碳或氮气代替烷烃为发泡剂,使聚乙烯发泡技术发生绿色化重大变革。
目前,高熔体强度高密度聚乙烯的制备主要有两种途径:(1)后反应改性法和(2)反应器法。后反应改性法主要是通过高能射线辐照获得具有长链支化结构或交联结构的聚乙烯,容易实现工业化生产,也可控制支化程度和熔体强度,但在工程技术上还存在很多困难,且生产成本高。反应器法则是在聚合釜中通过调控聚合反应直接制备得到高熔体强度聚乙烯,目前主要有聚丁二烯加氢改性法和茂金属催化剂溶液聚合法。但聚丁二烯改性方法成本太高,无法在聚烯烃装置上实现。以茂金属催化剂合成长链支化聚乙烯还存在很多困难,同时,茂金属聚乙烯支化程度较低,要达到较高熔体强度仍需进行后改性。目前,没有基于Ziegler-Natta催化剂和铬系催化剂制备高熔体强度长链支化聚乙烯的成熟技术。国内外聚烯烃生产商也均不能提供能够用于以超临界二氧化碳或氮气为发泡剂的高熔体强度聚乙烯产品。而且,在使用反应器法制备高熔体强度聚乙烯过程中,需要末端为乙烯基的大分子单体或者α,ω-非共轭二烯烃等作为共单体参与乙烯聚合反应,而共单体的利用效率较低,加入量高且残留单体会影响聚合物性能,因此很多时候需要将残留单体除去,过程复杂。
发明内容
本发明的目的是提供一种有机硅烷在制备高密度聚乙烯中的应用、一种高密度聚乙烯的制备方法以及由该方法制备得到的高密度聚乙烯,为聚乙烯挤出发泡提供新原料,以促进以二氧化碳或氮气等绿色发泡剂代替烷烃在聚乙烯挤出发泡领域发生重大变革。
为了实现上述目的,本发明第一方面提供一种有机硅烷在制备高密度聚乙烯树脂中的应用,所述有机硅烷的结构通式为R1SiX2R2,其中,R1为C2-C20的α-烯烃基,X为卤素,R2为C1-C20的直链、支链或异构化的烷基。
本发明第二方面提供一种制备高密度聚乙烯树脂的方法,该方法包括将乙烯单体在催化剂和氢气的存在下进行乙烯聚合反应得到聚合物,然后将聚合物进行水蒸气处理,其中,该方法还包括在将所述乙烯单体进行聚合反应之前和/或在所述乙烯单体进行聚合反应过程中向聚合体系中加入有机硅烷,所述有机硅烷的结构通式为R1SiX2R2,其中,R1为C2-C20的α-烯烃基,X为卤素,R2为C1-C20的直链、支链或异构化的烷基。
本发明第三方面提供了由上述方法制备得到的高密度聚乙烯。
本发明第四方面提供一种高密度聚乙烯,其中,所述高密度聚乙烯的长支链密度为每10000个碳原子中含有0.1-50个长支链,密度大于0.93g/cm3,熔体强度为12cN以上。
本发明第五方面提供本发明制备方法制备得到的高密度聚乙烯在作为聚乙烯挤出发泡原料中的应用。
本发明的发明人经过大量的实验研究后发现,上述结构通式为R1SiX2R2的有机硅烷与结构通式为SiR’4(其中,R’为C1-C20的直链、支链或异构化的烷基)的有机硅烷以及结构通式为SiX’4(其中,X’为卤素)的卤化硅烷在乙烯聚合反应过程中表现出了完全不同的效果,在乙烯聚合反应之前和/或在乙烯聚合反应过程中向聚合反应体系中加入结构通式为R1SiX2R2的有机硅烷,在聚合反应后对聚合物进行水蒸气处理,能够实现通过反应器法制备具有高熔体强度和高结晶性能的高密度聚乙烯树脂,在保持其高结晶性能的同时,有效改善了传统的线性结构的高密度聚乙烯的熔体强度和应变硬化效应,同时,整个聚乙烯的制备过程中不产生凝胶,保障了所述聚乙烯树脂产品具有良好的加工性。制得的聚乙烯无小分子残留,所述结构通式为R1SiX2R2的有机硅烷全部参与反应并进入到聚合物中去。此外,本发明提供的制备聚乙烯树脂的方法可以通过有机硅烷的种类和用量而实现可控调节所得聚乙烯树脂的支化程度的目的,这样可以根据实际应用需要获得熔体强度可控的系列高熔体强度高密度聚乙烯树脂。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
图1为实施例1中高密度聚乙烯在不同拉伸速率下粘度与时间的关系曲线。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明一方面提供了提供一种有机硅烷在制备高密度聚乙烯树脂中的应用,所述有机硅烷的结构通式为R1SiX2R2,其中,R1为C2-C20的α-烯烃基,X为卤素,R2为C1-C20的直链、支链或异构化的烷基。
在本发明中,所述有机硅烷的结构通式为R1SiX2R2,其中,R1为C2-C20的α-烯烃基,同一结构通式中的2个X可以相同,也可以不同,并可以各自独立地为卤素(包括F、Cl、Br、I),R2为C1-C20的直链、支链或异构化的烷基。
根据本发明,不同的有机硅烷对聚乙烯树脂的熔体强度的增强效果不同,随着所述结构通式为R1SiX2R2的有机硅烷中R1基团中碳原子个数的适当变化和R2基团中碳原子个数的减小,所述结构通式为R1SiX2R2的有机硅烷对聚乙烯的熔体强度增强效果逐渐增强。优选地,所述结构通式为R1SiX2R2的有机硅烷中,R1为C2-C20的α-烯烃基,同一结构通式中的2个X可以相同,也可以不同,并可以各自独立地为卤素(包括氟、氯、溴、碘),R2为C1-C10的直链、支链或异构化的烷基。更优选地,所述结构通式为R1SiX2R2的有机硅烷中,R1为C4-C10的α-烯烃基,同一结构通式中的2个X可以相同,也可以不同,并可以各自独立地为Cl或B,R2为C1-C5的直链、支链或异构化的烷基。进一步优选地,所述结构通式为R1SiX2R2的有机硅烷中,R1为C4-C10的α-烯烃基,同一结构通式中的2个X可以相同,也可以不同,并可以各自独立地为Cl,R2为C1-C3的直链、支链或异构化的烷基。采用上述优选的有机硅烷作为支化助剂,有利于进一步提高所述聚乙烯的熔体强度。
优选地,所述有机硅烷为9-癸烯基甲基二氯硅烷、9-癸烯基乙基二氯硅烷、8-壬烯基甲基二氯硅烷、8-壬烯基甲基二氯硅烷、7-辛烯基甲基二氯硅烷、7-辛烯基乙基二氯硅烷、6-庚烯基甲基二氯硅烷、6-庚烯基乙基二氯硅烷、5-己烯基甲基二氯硅烷、5-己烯基乙基二氯硅烷、4-戊烯基甲基二氯硅烷、4-戊烯基乙基二氯硅烷、3-丁烯基甲基二氯硅烷和3-丁烯基乙基二氯硅烷中的至少一种;优选地,所述有机硅烷为3-丁烯基甲基二氯硅烷、4-戊烯基甲基二氯硅烷、5-己烯基甲基二氯硅烷、6-庚烯基甲基二氯硅烷和7-辛烯基甲基二氯硅烷中的至少一种。采用上述优选的有机硅烷作为聚乙烯制备过程中的支化助剂,更有利于聚乙烯的熔体强度的提高。
本发明的第二方面提供一种制备聚乙烯的方法,该方法包括将乙烯单体在催化剂和氢气的存在下进行乙烯聚合反应得到聚合物,然后将聚合物进行水蒸气处理,其中,该方法还包括在将所述乙烯单体进行聚合反应之前和/或在所述乙烯单体进行聚合反应过程中向聚合体系中加入有机硅烷,所述有机硅烷的结构通式为R1SiX2R2,其中,R1为C2-C20的α-烯烃基,X为卤素,R2为C1-C20的直链、支链或异构化的烷基。
其中,所述有机硅烷的具体选择已经在上文中加以描述,此处不再赘述。
根据本发明,所述有机硅烷的用量越高,获得的聚乙烯的熔体强度越高,但如果所述有机硅烷的用量过高,会引起所述聚乙烯的过度支化,导致凝胶的产生,因此,所述有机硅烷的用量可以根据具体需要获得的聚乙烯的熔体强度进行选择,具体地,相对于100重量份的所述乙烯单体,所述有机硅烷的用量为1×10-6-20重量份,优选地,相对于100重量份的所述乙烯单体,所述有机硅烷的用量为1×10-4-10重量份,进一步优选为0.01-2重量份,更进一步优选为0.05-1重量份,更进一步优选为0.05-0.1重量份。通过在上述范围内使用有机硅烷能够进一步在提高聚乙烯的熔体强度的同时,保障整个聚乙烯的制备过程中不产生凝胶。
本发明提供的制备高密度聚乙烯的方法的主要改进之处为,在所述乙烯聚合反应之前和/或在所述乙烯聚合反应过程中往聚合反应体系中加入结构通式为R1SiX2R2的有机硅烷,在聚合反应完成后对聚合物进行水蒸气处理。催化剂选择Ziegler-Natta催化剂和铬系催化剂,乙烯聚合方式和条件均可以为本领域的常规选择。
根据本发明,可以为现有的各种能够用于催化烯烃单体进行聚合反应的物质,其具体实例包括但不限于:Ziegler-Natta催化剂或铬系催化剂。
上述Ziegler-Natta催化剂包括钛系催化剂和钒系催化剂,所述钛系和钒系催化体系中含有MgCl2、TiCl4或VCl4、四氢呋喃以及烷基铝。优选地,相对于催化剂固体部分的总重量100重量份,MgCl2为5-85重量份,TiCl4或VCl4为15-40重量份,四氢呋喃为0-15重量份。
优选地,上述Ziegler-Natta催化剂还含有烷基铝,相对于催化剂固体部分的总重量100重量份,烷基铝10-1000重量份。所述烷基铝可以单独加入到反应体系中。
上述铬系催化剂含有铬化合物、SiO2和烷基铝。所述铬化合物可以为无机铬化合物或有机铬化合物,例如可以为CrO3或双三苯基硅烷铬酸酯。优选地,相对于催化剂固体部分的总重量100总量份,铬化合物为0.2-50重量份,SiO2为50-99重量份。
优选地,上述铬系催化剂还含有烷基铝,相对于催化剂固体部分的总重量100重量份,烷基铝为0.2-1000重量份。所述烷基铝可以单独加入到反应体系中。
在本发明中,所述烷基铝例如可以为三乙基铝或一氯二乙基铝等。另外,所述催化剂的用量可以为本领域的常规用量,在此不作赘述。
根据本发明,优选地,所述乙烯聚合反应的条件包括:聚合压力为0.1-3MPa,聚合温度为30-150℃,聚合时间为0.1-6小时,优选为0.2-3小时;更优选地,所述乙烯聚合反应的条件包括:聚合压力为0.1-2.Mpa,聚合温度为60-120℃,聚合时间为0.2-3小时。此外,所述聚合反应的方式可以为淤浆聚合,也可以为气相聚合。当所述聚合反应的方式为淤浆聚合时,所述聚合反应还应该在有机溶剂的存在下进行。所述有机溶剂可以为C5-C10的烷烃或者C6-C8的芳香烃,其中,所述C5-C10的烷烃优选为庚烷、正己烷和环己烷中的至少一种,所述C6-C8的芳香烃优选为甲苯。此外,所述有机溶剂的用量可以为本领域的常规选择,此处不再赘述。
根据本发明,为了调节所述高密度聚乙烯的熔融指数,使所述高密度聚乙烯具有更好的加工性,在所述高密度聚乙烯的制备过程中向聚合反应体系中通入氢气。聚合过程中氢气的加入量过高会导致所述高密度聚乙烯的熔体强度变弱。所述氢气的加入量可以根据实际需要获得的高密度聚乙烯的功能来进行选择,例如,相对于100重量份的所述乙烯单体,所述氢气的用量可以为1×10-4-10重量份,优选为1×10-4-1.0重量份,更优选为0.01-0.5重量份,更进一步优选为0.01-0.1重量份,特别优选为0.05-0.1重量份。
根据本发明提供的高密度聚乙烯的制备方法,在聚合反应完成后对聚合物进行水蒸气处理,所述水蒸气处理的条件包括:水蒸气处理的温度80-120℃,水蒸气处理的时间为5-60分钟。
根据本发明,优选地,在聚合反应完成后,反应釜中气体放空,过滤得到所述聚合物。
根据本发明,优选地,在进行所述水蒸气处理之后进行干燥,所述干燥可以采用本领域通常使用的各种方法进行,例如可以在40-100℃下进行真空干燥。
本发明的第三方面提供了由上述方法制备得到的高密度聚乙烯。
本发明的高密度聚乙烯分子链中含有长链支化结构,长支链密度为每10000个碳原子中含有0.1-50个长支链,优选为3-10个长支链。
优选地,所述高密度聚乙烯的密度大于0.93g/cm3,更优选为0.940-0.960g/cm3
优选地,所述高密度聚乙烯的熔融温度高于125℃,更优选为130-140℃。
优选地,所述高密度聚乙烯的结晶度大于50%,更优选为60-80%。
优选地,所述高密度聚乙烯的熔体强度为12cN以上,更优选为14-55cN。
并且,本发明的高密度聚乙烯的拉伸应变硬化现象显著。此外,上述物性的测定方法请见后述的实施例。
本发明提供的高密度聚乙烯高熔体强度和熔体拉伸应变硬化特性,适合作为聚乙烯挤出发泡原料使用。
以下将通过实施例对本发明进行详细描述。
以下实施例和对比例中,高密度聚乙烯的凝胶含量按照以下方法测定:
将高密度聚乙烯在真空干燥箱中于50℃干燥至恒重,称重,记为W1,然后用二甲苯溶解干燥后的聚烯烃树脂,在135℃振荡充分溶解,用200目的不锈钢网进行过滤,收集残留在不锈钢网上不溶解的聚合物,将不锈钢网上不溶解的聚合物在真空干燥箱中于100℃干燥4小时,称重,记为W2,高密度聚乙烯的凝胶含量的计算公式如下:
凝胶含量(重量%)=(W2/W1)×100(重量%)。
高密度聚乙烯的支化度通过流变学方法进行表征。高密度聚乙烯的长支化指数的计算公式如下:
Figure BDA0002214918130000091
式中:k3和a3分别是线型聚合物η0-[η]指数关系中的常数,满足
Figure BDA0002214918130000092
对于线型聚合物,LCBI为0。
高密度聚乙烯的熔体动态剪切流变性能采用美国TA公司高级流变拓展系统应变控制型ARES-G2进行测试,平板直径为25mm,平板间隙为1000μm。
高密度聚乙烯的密度根据测试标准GB/T 1103-2008测得。
高密度聚乙烯的熔融温度、结晶温度及结晶度采用TA公司的型号为Q2000的示差扫描量热仪进行测试。
高密度聚乙烯的熔体强度采用Goettfert公司的型号为71.97的Rheotens熔体强度测试仪进行测试。
高密度聚乙烯的拉伸流变性能采用TA公司ARES-G2型旋转流变仪进行测试。测试选用UXF转子,设置1s-1、0.1s-1、0.01s-1
高密度聚乙烯的熔融指数采用德国Haake公司的型号为556-0031的Haake-SWO熔融指数仪进行测试。
Ziegler-Natta催化剂1(钛系催化剂):以所述催化剂的总重量为基准,所述催化剂1的组成中Ti的含量为4.96重量%,Mg的含量为15.8重量%。
Ziegler-Natta催化剂2(钛系催化剂):以所述催化剂的总重量为基准,所述催化剂2的组成中Ti的含量为1.10重量%,Mg的含量为1.80重量%,四氢呋喃的含量为12.50重量%。
Ziegler-Natta催化剂3(钒系催化剂):以所述催化剂的总重量为基准,所述催化剂3的组成中V的含量为6.24重量%,Mg的含量为20.5重量%。
铬系催化剂4:以所述催化剂的总重量为基准,所述催化剂4的组成中Cr的含量为1.0重量%,SiO2的含量为95.5重量%。
实施例1
聚合反应在装有机械搅拌的2L聚合釜中进行。反应体系抽真空30分钟后,在80℃下,通入乙烯至常压。随后向釜内加入1L正己烷、0.01mol的三乙基铝、0.2g的3-丁烯基甲基二氯硅烷和100mg催化剂1,通入0.15g氢气,再通入乙烯,并保持乙烯在0.4MPa下进行反应,反应温度控制在80℃,聚合反应时间为30分钟,聚合完成后,将反应釜中气体放空,过滤得到聚合物,之后在100℃水蒸气中处理30分钟,最后于50℃下真空干燥,得到252g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例2
聚合反应在装有机械搅拌的2L聚合釜中进行。反应体系抽真空30分钟后,在80℃下,通入乙烯至常压。随后向釜内加入1L正己烷、0.01mol的三乙基铝、0.2g的5-己烯基甲基二氯硅烷和100mg催化剂1,通入0.15g氢气,再通入乙烯,并保持乙烯在0.4MPa下进行反应,反应温度控制在80℃,聚合反应时间为30分钟,聚合完成后,将反应釜中气体放空,过滤得到聚合物,之后在100℃水蒸气中处理10分钟,最后并于50℃下真空干燥,得到245g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例3
聚合反应在装有机械搅拌的2L聚合釜中进行。反应体系抽真空30分钟后,在80℃下,通入乙烯至常压。随后向釜内加入1L正己烷、0.01mol的三乙基铝、0.2g的7-辛烯基甲基二氯硅烷和100mg催化剂1,通入0.15g氢气,再通入乙烯,并保持乙烯在0.4MPa下进行反应,反应温度控制在80℃,聚合反应时间为30分钟,聚合完成后,将反应釜中气体放空,过滤得到聚合物,之后在100℃水蒸气中处理60分钟,最后于50℃下真空干燥,得到247g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例4
按照实施例1的方法,不同的是,所述乙烯聚合过程中加入0.25g氢气,最终得到300g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例5
按照实施例2的方法,不同的是,所述乙烯聚合过程中加入0.25g氢气,最终得到303g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例6
按照实施例3的方法,不同的是,所述乙烯聚合过程中加入0.25g氢气,最终得到305g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例7
按照实施例1的方法,不同的是,所述乙烯聚合过程中加入0.35g氢气,最终得到360g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例8
按照实施例2的方法,不同的是,所述乙烯聚合过程中加入0.35g氢气,最终得到353g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例9
按照实施例3的方法,不同的是,所述乙烯聚合过程中加入0.35g氢气,最终得到355g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例10
按照实施例2的方法,不同的是,所述乙烯聚合过程中加入的有机硅烷为相同用量的3-丁烯基乙基二氯硅烷,最终得到249g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例11
按照实施例2的方法,不同的是,所述乙烯聚合过程中加入的有机硅烷为相同用量的5-己烯基乙基二氯硅烷,最终得到252g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例12
按照实施例2的方法,不同的是,所述乙烯聚合过程中加入的有机硅烷为相同用量的7-辛烯基乙基二氯硅烷,最终得到260g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例13
按照对实施例2的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂2,最终得到205g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例14
按照对实施例5的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂2,最终得到255g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例15
按照对实施例8的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂2,最终得到345g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例16
按照对实施例2的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂3,最终得到200g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例17
按照对实施例5的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂3,最终得到240g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例18
按照对实施例8的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂3,最终得到340g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例19
按照对实施例2的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂4,最终得到210g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例20
按照对实施例5的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂4,最终得到260g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
实施例21
按照对实施例8的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂4,最终得到358g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例1
按照实施例2的方法,不同的是,所述乙烯聚合过程中未加入有机硅烷,最终得到251g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例2
按照实施例5的方法,不同的是,所述乙烯聚合过程中未加入有机硅烷,最终得到304g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例3
按照实施例8的方法,不同的是,所述乙烯聚合过程中未加入有机硅烷,最终得到354g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例4
按照对比例1的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂2,最终得到245g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例5
按照对比例2的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂2,最终得到300g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例6
按照对比例3的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂2,最终得到345g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例7
按照对比例1的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂3,最终得到240g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例8
按照对比例2的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂3,最终得到300g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例9
按照对比例3的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂3,最终得到340g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例10
按照对比例1的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂4,最终得到255g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例11
按照对比例2的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂4,最终得到305g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例12
按照对比例3的方法,不同的是,所述乙烯聚合过程中加入的催化剂为相同用量的催化剂4,最终得到355g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例13
按照实施例2的方法,不同的是,所述乙烯聚合过程中加入的有机硅烷为相同用量的四氯硅烷,最终得到240g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
对比例14
按照实施例2的方法,不同的是,所述乙烯聚合过程中加入的有机硅烷为相同用量的四甲基硅烷,最终得到245g高密度聚乙烯。
对上述制得的高密度聚乙烯的熔融温度、结晶温度、结晶度、熔体强度、熔融指数以及凝胶含量进行测试,测试结果如表1所示。
Figure BDA0002214918130000201
Figure BDA0002214918130000211
Figure BDA0002214918130000221
通过表1的结果可以看出,采用本发明提供的方法制备得到的高密度聚乙烯分子链中含有长链支化结构,树脂密度大于0.93g/cm3,熔融温度高于125℃,结晶度大于50%,熔体强度高。并且,图1为实施例1中线性低密度聚乙烯在不同拉伸速率下粘度与时间的关系曲线,通过图1可知,随着横坐标拉伸时间的延长,熔体拉伸粘度出现“快速增加”,由此可见,本发明的线性低密度聚乙烯的拉伸应变硬化现象显著。此外,在整个线性低密度聚乙烯的制备过程中不产生凝胶。
比较实施例2和实施例10-12的结果可以看出,在所述结构通式为R1SiX2R2的有机硅烷中,R1的碳原子个数为6和R2的碳原子个数越少,所述有机硅烷对聚乙烯的熔体强度增强的效果越明显。
比较实施例1-21和对比例13-14的结果可以看出,本发明提供的有机硅烷与四卤化硅和四烷基硅烷在乙烯聚合反应过程中发挥支化助剂的效果不同,采用本发明提供的有机硅烷得到的聚乙烯具有更高的熔体强度。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。尤其是在催化剂的选择方面,本发明优选Zielger-Natta催化剂和铬系催化剂,但不限于催化剂的制备方法和本发明未提及的含有其它组成的Zielger-Natta催化剂或铬系催化剂。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (27)

1.一种有机硅烷在制备支化的高密度聚乙烯树脂中的应用,其特征在于,所述有机硅烷的结构通式为R1SiX2R2,其中,R1为C2-C20的α-烯烃基,X为卤素,R2为C1-C20的直链、支链或异构化的烷基。
2.根据权利要求1所述的应用,其中,R1为C3-C12的α-烯烃基,X为F、Cl或Br,R2为C1-C10的直链、支链或异构化的烷基。
3.根据权利要求2所述的应用,其中,R1为C4-C10的α-烯烃基,X为Cl或Br,R2为C1-C5的直链、支链或异构化的烷基。
4.根据权利要求3所述的应用,其中,R1为C4-C10的α-烯烃基,X为Cl,R2为C1-C3的直链、支链或异构化的烷基。
5.根据权利要求2-4中任意一项所述的应用,其中,所述有机硅烷为9-癸烯基甲基二氯硅烷、9-癸烯基乙基二氯硅烷、8-壬烯基甲基二氯硅烷、8-壬烯基甲基二氯硅烷、7-辛烯基甲基二氯硅烷、7-辛烯基乙基二氯硅烷、6-庚烯基甲基二氯硅烷、6-庚烯基乙基二氯硅烷、5-己烯基甲基二氯硅烷、5-己烯基乙基二氯硅烷、4-戊烯基甲基二氯硅烷、4-戊烯基乙基二氯硅烷、3-丁烯基甲基二氯硅烷和3-丁烯基乙基二氯硅烷中的至少一种。
6.根据权利要求5所述的应用,其中,所述有机硅烷为3-丁烯基甲基二氯硅烷、4-戊烯基甲基二氯硅烷、5-己烯基甲基二氯硅烷、6-庚烯基甲基二氯硅烷和7-辛烯基甲基二氯硅烷中的至少一种。
7.一种制备高密度聚乙烯树脂的方法,该方法包括将乙烯单体在催化剂和氢气的存在下进行乙烯聚合反应得到聚合物,然后将聚合物进行水蒸气处理,其特征在于,该方法还包括在将所述乙烯单体进行聚合反应之前和/或在所述乙烯单体进行聚合反应过程中向聚合体系中加入有机硅烷,所述有机硅烷的结构通式为R1SiX2R2,其中,R1为C2-C20的α-烯烃基,X为卤素,R2为C1-C20的直链、支链或异构化的烷基。
8.根据权利要求7所述的方法,其中,R1为C3-C12的α-烯烃基,X为F、Cl或Br,R2为C1-C10的直链、支链或异构化的烷基。
9.根据权利要求8所述的方法,R1为C4-C10的α-烯烃基,X为Cl或Br,R2为C1-C5的直链、支链或异构化的烷基。
10.根据权利要求9所述的方法,R1为C4-C10的α-烯烃基,X为Cl,R2为C1-C3的直链、支链或异构化的烷基。
11.根据权利要求8所述的方法,其中,所述有机硅烷为9-癸烯基甲基二氯硅烷、9-癸烯基乙基二氯硅烷、8-壬烯基甲基二氯硅烷、8-壬烯基甲基二氯硅烷、7-辛烯基甲基二氯硅烷、7-辛烯基乙基二氯硅烷、6-庚烯基甲基二氯硅烷、6-庚烯基乙基二氯硅烷、5-己烯基甲基二氯硅烷、5-己烯基乙基二氯硅烷、4-戊烯基甲基二氯硅烷、4-戊烯基乙基二氯硅烷、3-丁烯基甲基二氯硅烷和3-丁烯基乙基二氯硅烷中的至少一种。
12.根据权利要求11所述的方法,其中,所述有机硅烷为3-丁烯基甲基二氯硅烷、4-戊烯基甲基二氯硅烷、5-己烯基甲基二氯硅烷、6-庚烯基甲基二氯硅烷和7-辛烯基甲基二氯硅烷中的至少一种。
13.根据权利要求7-12中任意一项所述的方法,其中,相对于100重量份的所述乙烯单体,所述有机硅烷的用量为1×10-6-20重量份。
14.根据权利要求13所述的方法,其中,所述有机硅烷的用量为1×10-4-10重量份。
15.根据权利要求7-12中任意一项所述的方法,其中,所述催化剂为Ziegler-Natta催化剂和铬系催化剂。
16.根据权利要求7-12中任意一项所述的方法,其中,相对于100重量份的所述乙烯单体,所述氢气的用量为1×10-4-10重量份。
17.根据权利要求16所述的方法,其中,所述氢气的用量为1×10-4-1重量份。
18.根据权利要求7-12中任意一项所述的方法,其中,所述聚合反应的条件包括:聚合压力为0.1-3MPa,聚合温度为30-150℃,聚合时间为0.1-6小时。
19.根据权利要求18所述的方法,其中,所述聚合反应的条件包括:聚合压力为0.1-2MPa,聚合温度为60-120℃,聚合时间为0.2-3小时。
20.根据权利要求7-12中任意一项所述的方法,其中,所述水蒸气处理的条件包括:水蒸气处理的温度80-120℃,水蒸气处理的时间为5-60分钟。
21.由权利要求7-20中任意一项所述的方法制备得到的支化的高密度聚乙烯。
22.根据权利要求21所述的高密度聚乙烯,其中,所述高密度聚乙烯的长支链密度为每10000个碳原子中含有0.1-50个长支链。
23.根据权利要求21所述的高密度聚乙烯,其中,所述高密度聚乙烯的密度为0.915-0.940g/cm3
24.根据权利要求21所述的高密度聚乙烯,其中,所述高密度聚乙烯的熔融温度高于110℃。
25.根据权利要求21所述的高密度聚乙烯,其中,所述高密度聚乙烯的结晶度大于30%。
26.根据权利要求21所述的高密度聚乙烯,其中,所述高密度聚乙烯的熔体强度为18-45cN。
27.权利要求7-20中任意一项所述的方法制备得到的支化的高密度聚乙烯在作为聚乙烯挤出发泡原料中的应用。
CN201910911659.5A 2019-09-25 2019-09-25 有机硅烷在制备高密度聚乙烯中的应用和高密度聚乙烯及其制备方法和应用 Active CN112142894B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910911659.5A CN112142894B (zh) 2019-09-25 2019-09-25 有机硅烷在制备高密度聚乙烯中的应用和高密度聚乙烯及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910911659.5A CN112142894B (zh) 2019-09-25 2019-09-25 有机硅烷在制备高密度聚乙烯中的应用和高密度聚乙烯及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112142894A CN112142894A (zh) 2020-12-29
CN112142894B true CN112142894B (zh) 2021-05-25

Family

ID=73891751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910911659.5A Active CN112142894B (zh) 2019-09-25 2019-09-25 有机硅烷在制备高密度聚乙烯中的应用和高密度聚乙烯及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112142894B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063763B (zh) * 2021-11-01 2024-07-19 中国石油化工股份有限公司 聚乙烯组合物和过氧化物交联聚乙烯管材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1289343A (zh) * 1998-02-11 2001-03-28 陶氏化学公司 改进的烯烃聚合方法
WO2018021656A1 (ko) * 2016-07-28 2018-02-01 한화케미칼 주식회사 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법
WO2019117443A1 (ko) * 2017-12-14 2019-06-20 한화케미칼 주식회사 장기 내압 특성이 우수한 에틸렌계 중합체 및 이를 이용한 파이프

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1289343A (zh) * 1998-02-11 2001-03-28 陶氏化学公司 改进的烯烃聚合方法
WO2018021656A1 (ko) * 2016-07-28 2018-02-01 한화케미칼 주식회사 혼성 담지 메탈로센 촉매를 이용한 고가공성 고밀도 에틸렌계 중합체 및 제조방법
WO2019117443A1 (ko) * 2017-12-14 2019-06-20 한화케미칼 주식회사 장기 내압 특성이 우수한 에틸렌계 중합체 및 이를 이용한 파이프

Also Published As

Publication number Publication date
CN112142894A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
US9169343B2 (en) Long chain branched (LCB), block, or interconnected copolymers of ethylene in combination with one other polymer
CA2993502C (en) Polyethylene compositions, process and closures
CN109415544B (zh) 聚合物组合物以及用于生产该聚合物组合物的方法
JPH02150406A (ja) 改良されたポリプロピレン、その製造方法およびこの改良されたポリプロピレンから製造された製品
JP2008505202A5 (zh)
CN108659150B (zh) 一种有机硅烷的应用以及聚丙烯及其制备方法
US20190352439A1 (en) Ethylene/Alpha-Olefin Copolymers for Better Optical and Mechanical Properties and Processability of Film Made Therefrom
JP2022516115A (ja) テレケリックポリオレフィンおよびこれを調製するための方法
CN112142894B (zh) 有机硅烷在制备高密度聚乙烯中的应用和高密度聚乙烯及其制备方法和应用
JPH11228629A (ja) プロピレン系重合体、その製造方法およびそれから得られる発泡成形体
JP2013227545A (ja) パイプ及び継手用ポリエチレン並びにその成形体
CN112142895B (zh) 有机硅烷的应用以及无规共聚聚丙烯及其制备方法
JPS59204605A (ja) エチレンの重合法
WO2009059780A1 (en) Polypropylene copolymer
CN112142897B (zh) 有机硅烷在制备线性低密度聚乙烯中的应用和线性低密度聚乙烯及其制备方法和应用
JPH0315645B2 (zh)
KR101924121B1 (ko) 저온-고신율 특성을 가지는 1-부텐계 공중합체 및 이의 제조방법
CN115181202B (zh) 乙烯连续聚合方法
JPH0558020B2 (zh)
CN105061647B (zh) 丙烯均聚物及其制备方法
JPH0379367B2 (zh)
JP2019522096A (ja) 半結晶性熱可塑性ブロックコポリマー
CN109134732B (zh) 催化剂前体组合物和催化剂及其应用以及乙烯共聚物及其制备方法
JPS6223768B2 (zh)
CN117903371A (zh) 具有支化或交联聚丙烯多相共聚物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240628

Address after: Room 301, Building 1, Yard 7, Yanshan East Liushui Road, Fangshan District, Beijing, 102502

Patentee after: Beijing Lianke New Materials Co.,Ltd.

Country or region after: China

Address before: 100190 No. 2 North First Street, Haidian District, Beijing, Zhongguancun

Patentee before: INSTITUTE OF CHEMISTRY, CHINESE ACADEMY OF SCIENCES

Country or region before: China

TR01 Transfer of patent right