CN112138719A - 一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法及应用 - Google Patents

一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法及应用 Download PDF

Info

Publication number
CN112138719A
CN112138719A CN202010966409.4A CN202010966409A CN112138719A CN 112138719 A CN112138719 A CN 112138719A CN 202010966409 A CN202010966409 A CN 202010966409A CN 112138719 A CN112138719 A CN 112138719A
Authority
CN
China
Prior art keywords
graphene oxide
catalyst
chitosan
composite film
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010966409.4A
Other languages
English (en)
Other versions
CN112138719B (zh
Inventor
曾敏峰
杨震
郑秀
杨帅
孙旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shaoxing
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN202010966409.4A priority Critical patent/CN112138719B/zh
Publication of CN112138719A publication Critical patent/CN112138719A/zh
Application granted granted Critical
Publication of CN112138719B publication Critical patent/CN112138719B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/04Substitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/321Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a non-metal atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法及应用,制备方法包括以下步骤:(1)制备氧化石墨烯分散液;(2)制备壳聚糖溶液;(3)制备氧化石墨烯/壳聚糖悬浮液;(4)向氧化石墨烯/壳聚糖悬浮液中滴加PdCl2‑NaCl溶液,超声处理;(5)将所得氧化石墨烯/壳聚糖/钯离子络合物混合液真空抽滤诱导自组装处理,经漂洗、干燥后再还原处理,干燥得到催化剂终产物。本发明通过将钯纳米钯粒子牢牢固载在氧化石墨烯与壳聚糖分子自组装而成的超强层状复合薄膜的内部,克服现有石墨烯基复合材料载钯催化剂稳定性差、可重复利用次数少、钯纳米粒子流失较快、反应条件绿色性较差、催化剂用量较大等的缺点。

Description

一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法及 应用
技术领域
本发明涉及负载型贵金属催化剂技术领域,特别是涉及一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法及应用。
背景技术
过渡金属催化的C-C偶联反应,包括Ullmann偶联、Heck偶联、Suzuki偶联、Sonogashira偶联等,被认为是一种简单有效的构建不同化学结构的方法,在天然产物分子、药物活性分子、杂环分子、共轭聚合物、精细化学品分子等的合成中得到了广泛的应用。钯是过渡金属催化最常使用的金属之一,其一般过程是在有机反应中,直接投入钯盐、配体、还原剂等,构成所谓的均相催化体系,其催化活性高。但是均相催化体系弊端也非常明显,例如钯盐不可回收、流失快、成本高、污染产品等,其在工业上的应用受到了限制。为了克服均相催化反应的缺点,开发可回收利用、催化效率高的负载型过渡金属催化剂是解决上述弊端的主要策略之一,近年来得到了迅速发展。载体一般选用具有优异热稳定性、高机械强度、耐溶剂性、扩散与吸附性能好、过渡金属络合能力强等性能的无机、有机或杂化材料。
石墨烯是一种由碳原子以sp2杂化形成呈六边形蜂巢晶格的二维碳纳米片层,氧化石墨烯则是石墨烯的一种衍生物,表面及边缘含有可与过渡金属形成强络合的大量含氧官能团,如羟基、羰基、羧基等,而且具有优异的机械性能、化学稳定性、大比表面积等优势。近年来,以氧化石墨烯为载体的过渡金属催化剂应用于Suzuki偶联反应正逐渐受到人们的关注,2009年,Mülhaupt等人(J.Am.Chem.Soc.2009,131,8262–8270)采用离子交换吸附与原位还原法制备了氧化石墨烯负载钯催化剂,在催化剂用量0.25mol%,乙醇/水(1/1)混合溶剂,80℃反应条件下可高效催化卤代芳烃与苯硼酸的偶联反应,但是催化剂重复使用4次后,反应收率就下降到19%,主要原因是,氧化石墨烯表面的钯颗粒在反应中易团聚或脱落而流失,为此,很多工作通过对氧化石墨烯表面进一步功能化改性以提高钯颗粒分散度和载钯的强度,如Wang等人(Catal.Commun.2013,40,111–115)将氧化石墨烯用多胺修饰后作为载体负载纳米钯颗粒,Suzuki偶联的反应产率71%~95%,催化剂重复使用10次后催化活性无明显降低。中国专利(CN 106582710 B)公开了一种石墨烯负载钯铜纳米催化Suzuki反应制备联苯的方法,通过氧化石墨烯和铜盐、钯盐溶液的水热还原,经洗涤、干燥得到石墨烯负载钯铜纳米胶囊催化剂,该催化剂在催化Suzuki偶联反应制备联苯反应中有较好的收率,但是可重复利用次数只有5次。因此,如何对氧化石墨烯基载体进一步的修饰或改性,提高其载钯催化剂的活性、稳定性、可重复使用型、降低催化剂的用量,是石墨烯负载钯催化材料进一步提升与发展的重要挑战。
由于氧化石墨烯碳原子层内的π-π堆积作用以及范德华力作用,使得氧化石墨烯具有良好的成膜性,可以制备成氧化石墨烯薄膜,适当的引入其他离子、交联剂分子、极性高分子等,可以使氧化石墨烯片层间具有更强的相互作用(Accounts Chem.Res.2014,47,1256-1266)。目前,以氧化石墨烯为基体,关于壳聚糖改性氧化石墨烯基体的专利和论文主要有:一种仿生层状强韧一体化导电石墨烯复合材料的制备方法(CN 104927080 B)和ACSNano 2015,9,9830-9836。这些工作主要侧重于壳聚糖高分子改性石墨烯基复合材料力学性能的提升,没有报道如何构筑超强石墨烯基复合薄膜负载钯催化剂的制备。
有基于此,提出本发明。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法及应用,通过将钯纳米粒子牢牢固载在氧化石墨烯与壳聚糖分子自组装而成的超强层状复合薄膜的内部,实现高综合性能催化材料的制备,克服了现有石墨烯基复合材料负载钯催化剂稳定性差、可重复利用次数少、钯纳米粒子流失较快、催化剂用量较大等的缺点。
为了实现上述目的,本发明采用如下技术方案:
一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法,包括以下步骤:
(1)采用磁力搅拌与超声分散并用方法将氧化石墨烯均匀分散在去离子水中,得到浓度为0.5mg/mL的氧化石墨烯分散液;
(2)通过磁力搅拌将壳聚糖溶解在2wt%的乙酸溶液中,得到浓度为10mg/mL的壳聚糖溶液;
(3)将步骤(2)制得的壳聚糖溶液滴加混合到步骤(1)制得的氧化石墨烯分散液中,磁力搅拌2-4小时,使壳聚糖分子与氧化石墨烯纳米片通过分子间氢键作用充分复合,得到氧化石墨烯/壳聚糖悬浮液;
(4)向步骤(3)得到的氧化石墨烯/壳聚糖悬浮液中滴加5~7.5mL的PdCl2的浓度为0.3~0.6wt%的PdCl2-NaCl溶液,超声处理2小时,使Pd2+与氧化石墨烯基相和有机高分子壳聚糖相形成强络合,得到氧化石墨烯/壳聚糖/钯离子络合物混合液;
(5)将步骤(4)得到的氧化石墨烯/壳聚糖/钯离子络合物混合液通过真空抽滤诱导自组装处理得到层状氧化石墨烯/壳聚糖/钯离子复合薄膜,进一步用去离子水漂洗至中性,干燥后采用乙二醇在80℃下还原处理0.5~2小时,使Pd2+原位还原生成Pd0纳米粒子并固载在氧化石墨烯纳米片层间,自然干燥后得到层状氧化石墨烯复合薄膜负载零价钯催化剂。制备的催化剂的活性组分钯纳米粒子尺寸在3~5nm,含量1~3wt%(按Pd2+含量计),膜厚度5-30μm,比表面积大于100m2/g,拉伸强度大于75MPa。
步骤(3)中,氧化石墨烯与壳聚糖的质量比为7/3~9.5/0.5。
一种层状氧化石墨烯复合薄膜负载钯催化剂的应用,所述层状氧化石墨烯复合薄膜负载钯催化剂应用于卤代芳烃与苯硼酸或其衍生物的Suzuki交叉偶联反应。卤代芳烃包括碘苯、4-碘苯甲醚、3-碘苯甲醚、4-碘代苯乙酮、2-甲基碘苯、溴苯、对溴甲苯、对溴苯乙酮、3-氯溴苯、4-氯溴苯等,苯硼酸衍生物包括4-甲基苯硼酸、3-甲氧基苯硼酸、4-三氟甲基苯硼酸、4-硝基苯硼酸等。
将卤代芳烃、苯硼酸或其衍生物、K2CO3、层状氧化石墨烯复合薄膜负载钯催化剂按照摩尔比1:1.2:2:0.001加入到6mL乙醇和水的混合溶剂中,在80℃空气氛围下进行Suzuki交叉偶联反应30min,经萃取分离得到偶联产物。
所述乙醇和水的混合溶剂中,乙醇与水的体积比1:2。
将Suzuki交叉偶联反应结束后的层状氧化石墨烯复合薄膜负载钯催化剂回收后继续应用于卤代芳烃与苯硼酸或其衍生物的Suzuki交叉偶联反应。
本发明制备催化剂的主要原理是:氧化石墨烯基体富含羧基、羟基等极性基团,壳聚糖分子富含羟基、氨基等极性基团,钯活性组分与极性基团络合能力强,氧化石墨烯基体/适量壳聚糖分子/钯活性组分之间形成强烈而丰富的氢键、离子键、范德华力、π-π堆积等界面作用,不仅能提升催化材料整体稳定性,而且钯活性组分可牢牢束缚在氧化石墨烯基体/壳聚糖层状复合材料的界面中,易于构筑高活性与超强稳定性兼具的高性能非均相催化材料。
利用本发明得到的催化剂应用于Suzuki反应,主要反应过程如下:
Figure BDA0002682475900000051
本发明的有益效果是:
1、原料易得,工艺过程简单与绿色性好。
2、钯纳米粒子尺寸较小,均匀分布在氧化石墨烯基体/壳聚糖层状复合材料的内部。
3、应用于Suzuki反应的催化剂用量少、活性高,催化剂用量低至0.1mol%时,可催化绝大多数卤代芳烃与苯硼酸或其衍生物的Suzuki反应,偶联产物收率90%以上,可重复使用10次以上。
附图说明
图1为本发明实施例1制备的层状氧化石墨烯复合薄膜负载钯催化剂的电子透射电镜图;
图2为本发明实施例1制备的层状氧化石墨烯复合薄膜负载钯催化剂的扫描电镜图;
图3为本发明实施例1制备的层状氧化石墨烯复合薄膜负载钯催化剂在Suzuki偶联反应中的可重复利用性能图;
图4为本发明实施例1制备的层状氧化石墨烯复合薄膜负载钯催化剂的氮气吸脱附曲线图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步描述:
层状氧化石墨烯复合薄膜负载钯催化剂的制备:
实施例1
首先称取26.635g氧化石墨烯分散液(固含量1.07%)于570mL去离子水中,利用磁力搅拌与超声分散并用方法将氧化石墨烯(GO)分散在去离子水中,得到浓度为0.5mg/mL的氧化石墨烯分散液。通过磁力搅拌将壳聚糖(CS)溶解在2wt%的乙酸溶液中,得到浓度为10mg/mL的壳聚糖溶液,接着将1.5mL壳聚糖溶液滴加混合到氧化石墨烯分散液中,磁力搅拌2小时,得到氧化石墨烯/壳聚糖悬浮液,然后向所得的氧化石墨烯/壳聚糖悬浮液中滴加5mL的PdCl2-NaCl溶液(PdCl2浓度:0.3wt%),超声处理2小时,得到氧化石墨烯/壳聚糖/钯离子络合物混合液,最后将此络合物混合液通过真空抽滤诱导自组装处理得到层状氧化石墨烯/壳聚糖/钯离子复合薄膜,进一步用去离子水漂洗至中性,干燥后用乙二醇在80℃还原处理0.5小时,自然干燥后得到层状氧化石墨烯复合薄膜负载零价钯催化剂,记为催化剂1(氧化石墨烯/壳聚糖悬浮液中,GO/CS质量比为9.5/0.5)。所制备催化剂1材料厚度约为15μm,拉伸强度为104MPa。
实施例2
首先称取25.234g氧化石墨烯分散液(固含量1.07%)于540mL去离子水中,利用磁力搅拌与超声分散并用方法将氧化石墨烯(GO)分散在去离子水中,得到浓度为0.5mg/mL的氧化石墨烯分散液。将3mL浓度为10mg/mL的壳聚糖溶液滴加混合到氧化石墨烯分散液中,磁力搅拌2小时,得到氧化石墨烯/壳聚糖悬浮液,然后向所得的氧化石墨烯/壳聚糖悬浮液中滴加5mL的PdCl2-NaCl溶液(PdCl2浓度:0.6wt%),超声处理2小时,得到氧化石墨烯/壳聚糖/钯离子络合物混合液,最后将此络合物混合液通过真空抽滤诱导自组装处理得到层状氧化石墨烯/壳聚糖/钯离子复合薄膜,进一步用去离子水漂洗至中性,干燥后用乙二醇在80℃还原处理2小时,自然干燥后得到层状氧化石墨烯复合薄膜负载零价钯催化剂,记为催化剂2(氧化石墨烯/壳聚糖悬浮液中,GO/CS质量比为9/1)。所制备催化剂2材料厚度17μm,拉伸强度为112MPa。
实施例3
首先称取19.63g氧化石墨烯分散液(固含量1.07%)于420mL去离子水中,利用磁力搅拌与超声分散并用方法将氧化石墨烯(GO)分散在去离子水中,得到浓度为0.5mg/mL的氧化石墨烯分散液。将9mL浓度为10mg/mL的壳聚糖溶液滴加混合到氧化石墨烯分散液中,磁力搅拌4小时,得到氧化石墨烯/壳聚糖悬浮液,然后向所得的氧化石墨烯/壳聚糖悬浮液中滴加7.5mL的PdCl2-NaCl溶液(PdCl2浓度:0.3wt%),超声处理2小时,得到氧化石墨烯/壳聚糖/钯离子络合物混合液,最后将此络合物混合液通过真空抽滤诱导自组装处理得到层状氧化石墨烯/壳聚糖/钯离子复合薄膜,进一步用去离子水漂洗至中性,干燥后用乙二醇在80℃还原处理0.5小时,自然干燥后得到层状氧化石墨烯复合薄膜负载零价钯催化剂,记为催化剂3(氧化石墨烯/壳聚糖悬浮液中,GO/CS质量比为7/3)。所制备催化剂3材料厚度20μm,拉伸强度为107MPa。
如图1所示,由催化剂1的高分辨透射电镜照片说明,钯纳米颗粒在层状氧化石墨烯复合薄膜中有良好的分散与负载,尺寸在3-5nm;如图2所示,对催化剂1的扫描电镜分析结果说明氧化石墨烯形成了良好的层层自组装,膜的厚度约为15-20μm;对催化剂1、催化剂2、催化剂3进行了氮气吸脱附性能测定,氮气吸脱附曲线图如图3所示,测定结果如表1所示,各催化剂的BET比表面积分别为266.4m2/g、247.5m2/g、162.8m2/g,各催化剂的拉伸强度分别为104MPa、112MPa、107MPa;通过ICP电感耦合等离子光谱仪测定表明,催化剂1、催化剂2、催化剂3中钯的含量分别为1%,2%,1.5%。
表1本发明实施例1-3制备的层状氧化石墨烯复合薄膜负载钯催化剂的BET比表面积与力学强度
催化剂类别 BET比表面积(m<sup>2</sup>/g) 拉伸强度(MPa)
催化剂1 266.4 104
催化剂2 247.5 112
催化剂3 162.8 107
显然,本发明实施例提供的层状氧化石墨烯复合薄膜负载钯催化剂的载体是通过自组装复合而成氧化石墨烯/壳聚糖复合薄膜,活性组分为钯,催化剂的物理性能可以主要通过调控氧化石墨烯与壳聚糖的质量配比来调控,活性组分钯的含量也可通过钯离子溶液的添加量来调控。
层状氧化石墨烯复合薄膜负载钯催化剂的应用:
应用实施例1
分别以实施例1-3所制备的层状氧化石墨烯复合薄膜负载钯催化剂材料(催化剂1、催化剂2、催化剂3)为催化剂,用于碘苯与苯硼酸的Suzuki偶联反应:将碘苯、苯硼酸、K2CO3、层状氧化石墨烯复合薄膜负载钯催化剂按摩尔比1:1.2:2:0.0015加入到6mL乙醇和水的混合溶剂(乙醇和水体积比为1:2)中,在80℃空气氛围下反应30min,用乙酸乙酯进行萃取分离并对得到的偶联产物进行定性、定量分析,反应时碘苯实际用量为1mmol,产物结构以HPLC、1H NMR谱证实,催化剂1、催化剂2、催化剂3的催化活性相当,通过GC-MS定量分析偶联产物的收率分别为99%、98%、99%。
应用实施例2
分别以实施例1-3所制备的层状氧化石墨烯复合薄膜负载钯催化剂材料(催化剂1、催化剂2、催化剂3)为催化剂,用于4-碘代苯乙酮与苯硼酸的Suzuki偶联反应:将4-碘代苯乙酮、苯硼酸、K2CO3、层状氧化石墨烯复合薄膜负载钯催化剂按摩尔比1:1.2:2:0.0015加入到6mL乙醇和水的混合溶剂(乙醇和水体积比为1:2)中,在80℃空气氛围下反应30min,用乙酸乙酯进行萃取后进行定性、定量分析,反应时4-碘代苯乙酮实际用量为1mmol,产物结构以HPLC、1H NMR谱证实,催化剂1、催化剂2、催化剂3的催化活性相当,通过GC-MS定量分析偶联产物的收率分别为97%、95%、94%。
应用实施例3
分别以实施例1-3所制备的层状氧化石墨烯复合薄膜负载钯催化剂材料(催化剂1、催化剂2、催化剂3)为催化剂,用于2-甲基碘苯与苯硼酸的Suzuki偶联反应:将2-甲基碘苯、苯硼酸、K2CO3、层状氧化石墨烯复合薄膜负载钯催化剂按摩尔比1:1.2:2:0.0015加入到6mL乙醇和水的混合溶剂(乙醇和水体积比为1:2)中,在80℃空气氛围下反应30min,用乙酸乙酯进行萃取后进行定性、定量分析,反应时2-甲基碘苯实际用量为1mmol,产物结构以HPLC、1H NMR谱证实,催化剂1、催化剂2、催化剂3的催化活性相当,通过GC-MS定量分析偶联产物的收率分别为98%、95%、97%。
应用实施例4
分别以实施例1-3所制备的层状氧化石墨烯复合薄膜负载钯催化剂材料(催化剂1、催化剂2、催化剂3)为催化剂,用于溴苯与苯硼酸的Suzuki偶联反应:将溴苯、苯硼酸、K2CO3、层状氧化石墨烯复合薄膜负载钯催化剂按摩尔比1:1.2:2:0.0015加入到6mL乙醇和水的混合溶剂(乙醇和水体积比为1:2)中,在80℃空气氛围下反应30min,用乙酸乙酯进行萃取后进行定性、定量分析,反应时溴苯实际用量为1mmol,产物结构以HPLC、1H NMR谱证实,催化剂1、催化剂2、催化剂3的催化活性相当,通过GC-MS定量分析偶联产物的收率分别为95%、93%、91%。
应用实施例5
分别以实施例1-3所制备的层状氧化石墨烯复合薄膜负载钯催化剂材料(催化剂1、催化剂2、催化剂3)为催化剂,用于对溴甲苯与苯硼酸的Suzuki偶联反应:将对溴甲苯、苯硼酸、Na2CO3、层状氧化石墨烯复合薄膜负载钯催化剂按摩尔比1:1.2:2:0.0015加入到6mL乙醇和水的混合溶剂(乙醇和水体积比为1:2)中,在80℃空气氛围下反应30min,用乙酸乙酯进行萃取后进行定性、定量分析,反应时对溴甲苯实际用量为1mmol,以HPLC、1H NMR谱证实,催化剂1、催化剂2、催化剂3的催化活性相当,通过GC-MS定量分析偶联产物的收率分别为90%,83%,81%。
应用实施例6
分别以实施例1-3所制备的层状氧化石墨烯复合薄膜负载钯催化剂材料(催化剂1、催化剂2、催化剂3)为催化剂,用于3-氯溴苯与苯硼酸的Suzuki偶联反应:将3-氯溴苯、苯硼酸、K2CO3、层状氧化石墨烯复合薄膜负载钯催化剂按摩尔比1:1.2:2:0.0015加入到6mL乙醇和水的混合溶剂(乙醇和水体积比为1:2)中,用乙酸乙酯进行萃取后进行定性、定量分析,反应时3-氯溴苯实际用量为1mmol,产物结构以HPLC、1H NMR谱证实,催化剂1、催化剂2、催化剂3的催化活性相当,通过GC-MS定量分析偶联产物的收率分别为95%、95%、94%。
应用实施例7
分别以实施例1-3所制备的层状氧化石墨烯复合薄膜负载钯催化剂材料(催化剂1、催化剂2、催化剂3)为催化剂,用于碘苯与4-甲基苯硼酸的Suzuki偶联反应:将碘苯、4-甲基苯硼酸、K2CO3、层状氧化石墨烯复合薄膜负载钯催化剂按摩尔比1:1.2:2:0.0015加入到6mL乙醇和水的混合溶剂(乙醇和水体积比为1:2)中,用乙酸乙酯进行萃取后进行定性、定量分析,反应时碘苯实际用量为1mmol,产物结构以HPLC、1H NMR谱证实,催化剂1、催化剂2、催化剂3的催化活性相当,通过GC-MS定量分析偶联产物的收率分别为98%、98%、96%。
应用实施例8
分别以实施例1-3所制备的层状氧化石墨烯复合薄膜负载钯催化剂材料(催化剂1、催化剂2、催化剂3)为催化剂,用于碘苯与3-甲氧基苯硼酸的Suzuki偶联反应:将碘苯、3-甲氧基苯硼酸、K2CO3、层状氧化石墨烯复合薄膜负载钯催化剂按摩尔比1:1.2:2:0.0015加入到6mL乙醇和水的混合溶剂(乙醇和水体积比为1:2)中,用乙酸乙酯进行萃取后进行定性、定量分析,反应时碘苯实际用量为1mmol,产物结构以HPLC、1H NMR谱证实,催化剂1、催化剂2、催化剂3的催化活性相当,通过GC-MS定量分析偶联产物的收率分别为99%、98%、95%。
应用实施例9
分别以实施例1-3所制备的层状氧化石墨烯复合薄膜负载钯催化剂材料(催化剂1、催化剂2、催化剂3)为催化剂,用于碘苯与4-硝基苯硼酸的Suzuki偶联反应:将碘苯、4-硝基苯硼酸、K2CO3、层状氧化石墨烯复合薄膜负载钯催化剂按摩尔比1:1.2:2:0.0015加入到6mL乙醇和水的混合溶剂(乙醇和水体积比为1:2)中,用乙酸乙酯进行萃取后进行定性、定量分析,反应时碘苯实际用量为1mmol,产物结构以HPLC、1H NMR谱证实,催化剂1、催化剂2、催化剂3的催化活性相当,通过GC-MS定量分析偶联产物的收率分别为97%、97%、95%。
上述应用实施例1-9表明,利用实施例1-3制备的三种不同配比的催化剂在催化卤代芳烃与苯硼酸及苯硼酸衍生物的Suzuki偶联反应中表现出了优越的催化活性,不管是溴代芳烃还是碘代芳烃,带给电子取代基还是带吸电子取代基,绝大多数都实现了高于90%的反应收率。反应条件温和,温度80℃,无需额外添加相转移剂,溶剂绿色性好,时间短,催化剂用量只有底物的0.15mol%。显然,其催化活性、效率和催化条件绿色性明显优于现有技术,如“交联聚乙烯醇负载钯纳米催化剂及其制备和应用(中国发明专利,授权公告号CN103447088 B)”,其反应温度为100℃,反应时间4小时,使用相转移催化剂四丁基溴化铵TBAB,并以毒性较大二甲基乙酰胺DMAC与水为混合溶剂;催化效率也优于Wang等人(Catal.Commun.2013,40,111–115)将氧化石墨烯用多胺修饰后作为载体负载纳米钯颗粒,其Suzuki偶联的反应产率71%~95%。
层状氧化石墨烯复合薄膜负载钯催化剂的循环实验:
以实施例1所制备的层状氧化石墨烯复合薄膜负载钯催化剂材料(催化剂1)为催化剂,以碘苯与苯硼酸的Suzuki偶联反应为模板反应,反应在空气氛围中进行,以6mL乙醇和水的混合溶剂为反应溶剂(乙醇与水体积比1:2),反应温度为80℃,反应时间30min,n(碘苯)为1mmol,n(碘苯):n(苯硼酸):n(碳酸钾):n(催化剂)=1:1.2:2:0.0015,反应结束后,用乙酸乙酯进行偶联产物萃取并定性、定量分析产物收率,同时对层状氧化石墨烯复合薄膜负载钯催化剂过滤回收,用乙醇洗涤2-3次并干燥后,将该催化剂继续用于碘苯与苯硼酸的Suzuki偶联反应。由图4可知,该催化剂重复使用12次后,偶联产物的收率为84%,这说明催化剂具有很好的重复使用性能。显然,在反应条件基本相同的条件下,本发明提供的催化剂重复套用性能明显优于现有技术,如“交联聚乙烯醇负载钯纳米催化剂及其制备和应用(中国发明专利,授权号CN 103447088 B)”,其第5次套用后,收率仅为80%;“一种用于Suzuki-Miyaura偶联反应的负载型Pd催化剂及其制备方法”(中国发明专利,授权公告号CN105665017B),其只能套用4次;“一种石墨烯负载钯铜纳米催化Suzuki反应制备联苯的方法”(中国发明专利,授权公告号CN 106582710 B),其只能套用5次;Wang等人(Catal.Commun.2013,40,111–115)将氧化石墨烯用多胺修饰后作为载体负载纳米钯颗粒,其Suzuki偶联的重复套用次数为10次。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法,其特征在于:包括以下步骤:
(1)采用磁力搅拌与超声分散并用方法将氧化石墨烯均匀分散在去离子水中,得到浓度为0.5mg/mL的氧化石墨烯分散液;
(2)通过磁力搅拌将壳聚糖溶解在2wt%的乙酸溶液中,得到浓度为10mg/mL的壳聚糖溶液;
(3)将步骤(2)制得的壳聚糖溶液滴加混合到步骤(1)制得的氧化石墨烯分散液中,磁力搅拌2-4小时,得到氧化石墨烯/壳聚糖悬浮液;
(4)向步骤(3)得到的氧化石墨烯/壳聚糖悬浮液中滴加5~7.5mL的PdCl2的浓度为0.3~0.6wt%的PdCl2-NaCl溶液,超声处理2小时,得到氧化石墨烯/壳聚糖/钯离子络合物混合液;
(5)将步骤(4)得到的氧化石墨烯/壳聚糖/钯离子络合物混合液通过真空抽滤诱导自组装处理得到层状氧化石墨烯/壳聚糖/钯离子复合薄膜,进一步用去离子水漂洗至中性,干燥后采用乙二醇在80℃下还原处理0.5~2小时,自然干燥后得到层状氧化石墨烯复合薄膜负载零价钯催化剂。
2.如权利要求1所述一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法,其特征在于:步骤(3)中,氧化石墨烯与壳聚糖的质量比为7/3~9.5/0.5。
3.一种根据权利要求1~2中任意一项所述制备方法制得的层状氧化石墨烯复合薄膜负载钯催化剂的应用,其特征在于:所述层状氧化石墨烯复合薄膜负载钯催化剂应用于卤代芳烃与苯硼酸或其衍生物的Suzuki交叉偶联反应。
4.如权利要求3所述一种层状氧化石墨烯复合薄膜负载钯催化剂的应用,其特征在于:将卤代芳烃、苯硼酸或其衍生物、Na2CO3或K2CO3、层状氧化石墨烯复合薄膜负载钯催化剂按照摩尔比1:1.2:2:0.0015加入到6mL乙醇和水的混合溶剂中,在80℃空气氛围下进行Suzuki交叉偶联反应30min,经萃取分离得到偶联产物。
5.如权利要求4所述一种层状氧化石墨烯复合薄膜负载钯催化剂的应用,其特征在于:所述乙醇和水的混合溶剂中,乙醇与水的体积比1:2。
6.如权利要求4所述一种层状氧化石墨烯复合薄膜负载钯催化剂的应用,其特征在于:将Suzuki交叉偶联反应结束后的层状氧化石墨烯复合薄膜负载钯催化剂回收后继续应用于卤代芳烃与苯硼酸或其衍生物的Suzuki交叉偶联反应。
CN202010966409.4A 2020-09-15 2020-09-15 一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法及应用 Active CN112138719B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010966409.4A CN112138719B (zh) 2020-09-15 2020-09-15 一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010966409.4A CN112138719B (zh) 2020-09-15 2020-09-15 一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN112138719A true CN112138719A (zh) 2020-12-29
CN112138719B CN112138719B (zh) 2023-02-21

Family

ID=73892774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010966409.4A Active CN112138719B (zh) 2020-09-15 2020-09-15 一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN112138719B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115634718A (zh) * 2022-08-17 2023-01-24 湖北工程学院 氧化石墨烯/壳聚糖/聚乙烯醇复合微球固载铜催化剂的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101011669A (zh) * 2007-02-09 2007-08-08 上海大学 壳聚糖磁微球金属钯配合物催化剂的制备方法
CN104927080A (zh) * 2015-04-08 2015-09-23 北京航空航天大学 一种仿生层状强韧一体化导电石墨烯复合材料的制备方法
CN105562057A (zh) * 2016-01-30 2016-05-11 镇江市高等专科学校 一种氮掺杂三维石墨烯负载钯纳米复合催化剂及其制备方法和应用
CN105597821A (zh) * 2015-10-19 2016-05-25 华南理工大学 一种半纤维素-壳聚糖-钯催化剂及其制备方法与应用
CN111589443A (zh) * 2020-05-27 2020-08-28 贵研铂业股份有限公司 一种石墨烯负载钯纳米颗粒复合材料催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101011669A (zh) * 2007-02-09 2007-08-08 上海大学 壳聚糖磁微球金属钯配合物催化剂的制备方法
CN104927080A (zh) * 2015-04-08 2015-09-23 北京航空航天大学 一种仿生层状强韧一体化导电石墨烯复合材料的制备方法
CN105597821A (zh) * 2015-10-19 2016-05-25 华南理工大学 一种半纤维素-壳聚糖-钯催化剂及其制备方法与应用
CN105562057A (zh) * 2016-01-30 2016-05-11 镇江市高等专科学校 一种氮掺杂三维石墨烯负载钯纳米复合催化剂及其制备方法和应用
CN111589443A (zh) * 2020-05-27 2020-08-28 贵研铂业股份有限公司 一种石墨烯负载钯纳米颗粒复合材料催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FATMA DILER: "Efficient preparation and application of monodisperse palladium loaded graphene oxide as a reusable and effective heterogeneous catalyst for suzuki cross-coupling reaction", 《JOURNAL OF MOLECULAR LIQUIDS》 *
XIU ZHENG: "Preparation of porous chitosan/reduced graphene oxide microspheres supported Pd nanoparticles catalysts for Heck coupling reactions", 《CARBOHYDRATE POLYMERS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115634718A (zh) * 2022-08-17 2023-01-24 湖北工程学院 氧化石墨烯/壳聚糖/聚乙烯醇复合微球固载铜催化剂的制备方法及其应用
CN115634718B (zh) * 2022-08-17 2024-02-06 湖北工程学院 氧化石墨烯/壳聚糖/聚乙烯醇复合微球固载铜催化剂的制备方法及其应用

Also Published As

Publication number Publication date
CN112138719B (zh) 2023-02-21

Similar Documents

Publication Publication Date Title
Fan et al. Palladium clusters confined in triazinyl-functionalized COFs with enhanced catalytic activity
Wang et al. Pd nanoparticles encapsulated into mesoporous ionic copolymer: Efficient and recyclable catalyst for the oxidation of benzyl alcohol with O2 balloon in water
Mandal et al. Pt and Pd nanoparticles immobilized on amine-functionalized zeolite: excellent catalysts for hydrogenation and heck reactions
Chen et al. Active and efficient Co-N/C catalysts derived from cobalt porphyrin for selective oxidation of alkylaromatics
Zhao et al. Palladium nanoparticles anchored on sustainable chitin for phenol hydrogenation to cyclohexanone
Feng et al. Reduced graphene oxide-supported Cu nanoparticles for the selective oxidation of benzyl alcohol to aldehyde with molecular oxygen
EP2985078A2 (en) Composite containing catalytic metal nanoparticles, and use for same
Ibrahim et al. Enhancement of the catalytic activity of Pd nanoparticles in Suzuki coupling by partial functionalization of the reduced graphene oxide support with p-phenylenediamine and benzidine
Wen et al. Heterometal modified Fe3O4 hollow nanospheres as efficient catalysts for organic transformations
Wei et al. Solid-state nanocasting synthesis of ordered mesoporous CoN x–carbon catalysts for highly efficient hydrogenation of nitro compounds
Sadjadi et al. A novel magnetic heterogeneous catalyst based on decoration of halloysite with ionic liquid-containing dendrimer
Hadian-Dehkordi et al. Amphiphilic carbon quantum dots as a bridge to a pseudohomogeneous catalyst for selective oxidative cracking of alkenes to aldehydes: A nonmetallic oxidation system
Qi et al. Solvent-free aerobic oxidation of alcohols over palladium supported on MCM-41
Huang et al. Iron (II) phthalocyanine immobilized SBA-15 catalysts: preparation, characterization and application for toluene selective aerobic oxidation
CN111269086A (zh) 一种原子级分散钌催化剂在催化加氢上的应用方法
Wang et al. Metal-organic framework grown in situ on chitosan microspheres as robust host of palladium for heterogeneous catalysis: Suzuki reaction and the p-nitrophenol reduction
Noël et al. Cyclodextrins as multitask agents for metal nano-heterogeneous catalysis: A review
Qian et al. Synthesis of novel and room temperature-operable palladium complexes on graphene oxide: An efficient recyclable catalyst for Suzuki-Miyaura coupling reactions
CN109529879B (zh) 一种PdNi/RGO纳米催化剂及其制备方法
CN109928898B (zh) 一种MOFs衍生磁性纳米颗粒作为可回收催化剂绿色制备氧化偶氮化合物的方法
CN112138719B (zh) 一种层状氧化石墨烯复合薄膜负载钯催化剂的制备方法及应用
Wang et al. Mesoporous carbon supporting Pd (0) as a highly efficient and stable catalyst for Sonogashira reaction in aqueous media
CN113617355B (zh) 一种镶嵌纳米颗粒的功能介孔材料及其原位嵌入组装方法和应用
Gholinejad et al. Palladium supported on hydrophilic magnetic nanoparticles as a new efficient catalyst in aqueous media✰
Kiani et al. Pd nanoparticles catalyst supported on TMU-16-NH2 metal-organic framework for Sonogashira cross-coupling reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant