CN112126692B - Molecular marker for identifying sika deer long island subspecies, identification method and application - Google Patents
Molecular marker for identifying sika deer long island subspecies, identification method and application Download PDFInfo
- Publication number
- CN112126692B CN112126692B CN202011206082.7A CN202011206082A CN112126692B CN 112126692 B CN112126692 B CN 112126692B CN 202011206082 A CN202011206082 A CN 202011206082A CN 112126692 B CN112126692 B CN 112126692B
- Authority
- CN
- China
- Prior art keywords
- seq
- subspecies
- primer pair
- gene
- sika
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6858—Allele-specific amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The invention provides a molecular marker for identifying sika deer long island subspecies, an identification method and application. Aiming at the fact that no molecular marker and identification method for identifying the sika deer long island subspecies exist in the prior art, the invention carries out intensive research on the sika deer molecular marker to obtain the SNP molecular marker for identifying the sika deer long island subspecies, and the molecular marker comprises 11 SNP marker loci. The 11 SNP markers are positioned on 6 gene segments and have the characteristics of strong specificity and good stability. According to the gene segment, 6 pairs of SNP marker primers for identifying the subspecies of the sika-deer room Jiudao are designed, and an accurate and reliable detection method is established. The invention makes up the defect that the molecular marker detection technology for identifying the sika subspecies does not exist in the field at present, realizes the accurate identification of the sika subspecies, and has important theoretical and application values in the aspects of protection and management of sika resources.
Description
Technical Field
The invention relates to a molecular marker for identifying sika deer house Jiuzhao subspecies, an identification method and application thereof, and belongs to the technical field of molecular biology.
Background
Sika deer (Cervus nippon) belongs to the class Mammalia (Mammalia), artiodactyla (Artiodactyla), deer (Cervidae), deer genus (Cervus), which are characteristic animals in the eastern quarter, and are distributed from the ukaribetween to vietnam. Because of the damage of ecological environment and the continuous reduction of habitat, the number of wild sika deer in China is very rare, and the wild sika deer is a class I protective animal in China at present and is also listed in the red directory of endangered species in the world natural protection alliance (IUCN). At present, subspecies of sika deer are divided mainly according to geographic distribution and morphological characteristics, so that great disputes and classification confusion exist.
The presently accepted statement is that Japanese spotted deer is divided into 6 subspecies. North sea subspecies (Cervus nipponyesoensis) are distributed throughout the North sea island. Subspecies (Cervus nippon centralis) are distributed among the islands of the state and the pair Ma Dao. Subspecies (Cervus nippon nippon) are distributed over the islands of September and four countries. The roof island subspecies (Cervus nipponyakushimae) are distributed on the roof island and the surrounding islands, and have smaller body types. The horseshoe subspecies (Cervus nippon mageshimae) are distributed in the horseshoe islands. The ball subspecies (Cervus nippon keramae) are distributed on the ball islands and the surrounding islands. Japanese spotted deer is further divided into southern and northern lineages, the genetic difference between the two lineages being greater than that between subspecies, northern lineages including North sea subspecies and the northern population of the current subspecies, and southern lineages including the southern population of the current subspecies, the famous subspecies, the Hmonda subspecies, the Massa subspecies, and the globus-ball subspecies, without obvious morphological feature differences between subspecies, so that molecular differences between subspecies are highly desirable as an effective tool for subspecies identification.
At present, subspecies of sika deer are divided mainly according to morphological differences and geographical distribution, but students also propose that the morphological differences of artiodactyls cannot be always used as the basis of classification, because morphological characteristics can be different according to different environments. Therefore, the problem of disordered classification of genetic resources exists among the current sika subspecies. The molecular identification method is a hotspot of current research, the SNP marker has the advantages of high accuracy, abundant variation, simple operation and the like, and the molecular marker is not influenced by environmental factors, can directly reflect the difference of animal gene levels, so that the molecular marker is widely applied to animal individual identification and species source identification, and the mitochondrial DNA marker is effective in solving the problems of evolutionary models and colonial histories among different species. At present, no molecular marker and no identification method for identifying sika subspecies exist.
Disclosure of Invention
Aiming at the defects of the prior art, the invention carries out intensive research on the sika deer molecular marker to obtain the SNP molecular marker and the detection primer which can be used for identifying sika deer Jiuzhaodao subspecies. The invention also provides a method for identifying the sika deer long island subspecies, which realizes the accurate identification of the sika deer subspecies and has important theoretical and application values in the aspects of protection and management of sika deer resources.
In view of the above object, the present invention provides, in a first aspect, a molecular marker for identifying subspecies of sika sikushima, the molecular marker comprising 11 SNP marker sites: s-1, S-2, S-3, S-4, S-5, S-6, S-7, S-8, S-9, S-10, S-11; the site information is shown in table 1:
TABLE 1 SNP marker loci for identifying sika deer Dioscorea subspecies
Marking | Sika mtDNA genome | Site(s) | Base group |
S-1 | 495bp fragment of ND1 gene | 301bp | A/G |
S-2 | 500bp fragment of COX3 gene | 140bp | G/A |
S-3 | 500bp fragment of COX3 gene | 335bp | T/C |
S-4 | ND4 gene 670bp fragment | 148bp | T/C |
S-5 | ND4 gene 670bp fragment | 362 th bp | T/C |
S-6 | ND4 gene 670bp fragment | 559bp | T/C |
S-7 | ND5 gene 500bp fragment | 83bp | G/A |
S-8 | ND5 gene 500bp fragment | 244bp | C/T |
S-9 | ND6 gene 483bp fragment | 93bp | G/A |
S-10 | ND6 gene 483bp fragment | 302bp | C/T |
S-11 | 946bp fragment of Cytb gene | 523bp | C/T |
The 11 SNP loci S-1 to S-11 provided by the invention are A, G, T, T, T, T, G, C, G, C, C in the sika long island subspecies respectively; g, A, C, C, C, C, A, T, A, T, T in the non-sika house island subspecies respectively. The non-sika long island subspecies comprise sika northeast subspecies, sichuan subspecies, south China subspecies, taiwan subspecies, hokkaido subspecies, benzhou subspecies, named subspecies and the like.
In another aspect, the invention provides primers for identifying the subspecies of sika deer long island, wherein the primers are one or more of the following primer pairs: primer pair 1 with sequences shown as SEQ ID NO.1 and SEQ ID NO. 2; primer pair 2 with sequences shown as SEQ ID NO.3 and SEQ ID NO. 4; primer pair 3 with sequences shown as SEQ ID NO.5 and SEQ ID NO. 6; primer pair 4 with sequences shown as SEQ ID NO.7 and SEQ ID NO. 8; primer pair 5 with sequences shown as SEQ ID NO.9 and SEQ ID NO. 10; and the sequence is shown as a primer pair 6 shown as SEQ ID NO.11 and SEQ ID NO. 12.
The primer pair 1 is used for amplifying 495bp fragments of the ND1 gene; the primer pair 2 is used for amplifying a 500bp fragment of the COX3 gene; the primer pair 3 is used for amplifying 670bp fragments of the ND4 gene; the primer pair 4 is used for amplifying a 500bp fragment of the ND5 gene; the primer pair 5 is used for amplifying a 483bp fragment of the ND6 gene; the primer pair 6 is used for amplifying 946bp fragments of the Cytb gene.
The invention also provides application of the molecular marker for identifying the sika long island subspecies or the primer for identifying the sika long island subspecies in identifying the sika long island subspecies; and application of the kit or the detection method in preparation of the kit or the detection method is used for identifying sika deer room Jiudao subspecies.
The invention also provides a method for identifying the sika deer room Jiuzhao subspecies, which comprises the following steps: extracting DNA of a sample to be detected, and carrying out PCR amplification by using any one or more of the primer pairs 1-6; and sequencing the PCR product, and identifying whether the sample to be detected is the sika long island subspecies according to the SNP marker locus base.
If the sequence of the primer pair 1-6 amplified sequencing result is respectively shown as SEQ ID NO.13 (the base at 301bp is A), SEQ ID NO.15 (the base at 140bp is G, the base at 335bp is T), SEQ ID NO.17 (the base at 148bp is T, the base at 362bp is T, the base at 559bp is T), SEQ ID NO.19 (the base at 83bp is G, the base at 244bp is C), SEQ ID NO.21 (the base at 93bp is G, the base at 302bp is C) and SEQ ID NO.23 (the base at 523bp is C), the sample to be detected can be judged to be the sika deer room Jiudao subspecies. If the sequencing results are respectively shown as SEQ ID NO.14, SEQ ID NO.16, SEQ ID NO.18, SEQ ID NO.20, SEQ ID NO.22 and SEQ ID NO.24, i.e. the bases at the corresponding sites are respectively G, A, C, C, C, C, A, T, A, T, T, the sample to be tested can be judged to be the non-sika deer long island subspecies.
The molecular marker for identifying the sika house Jiudao subspecies and the identification method thereof have the following advantages:
(1) The invention obtains 11 SNP loci for identifying the subspecies of the sika long island, and the 11 SNP loci are positioned on 6 gene segments and have the characteristics of strong specificity and good stability. Provides a stable and reliable molecular detection method for the subspecies identification of sika deer resources and provides a new thought and method for the germplasm identification of sika deer. Has important theoretical and application values in the aspects of DNA fingerprint drawing of sika deer, protection management of wild subspecies and the like.
(2) The invention designs 6 pairs of SNP marker primers for identifying the subspecies of the sika house Jiudao, and establishes an accurate and reliable detection method. Establishes a method for identifying sika deer subspecies of Jiudao, and makes up the defect that the molecular marker detection technology for identifying sika deer subspecies is not available in the field at present.
(3) The identification method has extremely high accuracy. 90 sika deer samples from china and japan were tested using the method of the present invention. The results show that: 15 of the 90 samples were subspecies of the Jiujiu island, and the remaining samples were subspecies of the Jiujiu island. The detection accuracy is 100%.
(4) Low cost and practicability. Because the SNP locus is stable and reliable, one or more pairs of primers can be adopted, and when the identification mark of 1 SNP molecule is identical with the base of the sika long island subspecies specific SNP locus, the sika long island subspecies can be judged. Thus, the time is greatly saved and the cost is reduced. And the morphological characteristics of the sika deer to be detected are not required to be mastered, and the identification can be realized by collecting the DNA sample.
(5) Compared with the existing problem of inaccurate genetic resource classification, the method has the greatest advantage of accurate identification. Namely, the invention realizes the accurate identification of the sika house Jiuzhaoya subspecies and has important theoretical and application values in the aspects of protection and management of sika resources.
Drawings
FIG. 1 shows the sequence-differential SNP loci of the mtDNA of the sika deer long island subspecies and other subspecies. In the figure:
1.Cervus nippon hortulorum subspecies northeast; 2.Cervus nippon sichuanicus Sichuan subspecies; 3.Cervus nippon kopschi subspecies North China; 4.Cervus nippon taiouanus Taiwan subspecies; 5.Cervus nippon yesoensis North sea duct subspecies; 6.Cervus nippon centralis subspecies of Benzhou; 7.Cervus nippon nippon subspecies are named; 8.Cervus nippon yakushimae subspecies of Jiujiu island
FIG. 2 is a graph showing the PCR results of example 2. In the figure, M: DNAMaker1000;1: primer pair 1;2: primer pair 2;3: primer pair 3;4: primer pair 4;5: a primer pair; 6: primer pair 6.
Detailed Description
The invention is further described in connection with the following embodiments, but the invention is not limited thereto. The methods of the present invention, if not specified, are methods commonly used in the art, and the reagents involved, if not specified, are commercially available.
Example 1 acquisition of specific SNP markers for identifying the subspecies of the Dioscorea nipponica
1. Sika deer Hokkaido subspecies specific SNP locus screening
According to mtDNA sequences of different subspecies such as sika northeast subspecies, sichuan subspecies, south China subspecies, taiwan subspecies, north sea subspecies, benzhou subspecies, named subspecies and Jiujiu subspecies, screening is carried out mainly aiming at sites shared by the same subspecies and specific to other subspecies by utilizing Mega6.0 comparison analysis, and 11 differential SNP sites positioned on 6 genes are obtained through screening, as shown in figure 1. The ND1 gene fragment, the COX3 gene fragment, the ND4 gene fragment, the ND5 gene fragment, the ND6 gene fragment and the Cytb gene fragment are intercepted by Mega6.0, and the sequences are about 500bp in length and are used for designing identification primers.
2. Primer design
According to the intercepted target gene fragment, the identification primer is designed by combining Primer5.0 and oligo 7.0. The method comprises the following steps:
primer set 1 for amplifying ND1 gene fragment:
1F:5'-CTTAGCCGTGGCATTCCTCA-3'(SEQ ID NO.1);
1R:5'-CGGTGAGATCAAATGGGGCT-3'(SEQ ID NO.2)。
2F:5'-TCCTGCTAACACTCGGCCTA-3'(SEQ ID NO.3);
2R:5'-AGTGTCAGTATCAGGCAGCG-3'(SEQ ID NO.4)。
primer set 3 for amplifying ND4 gene fragment:
3F:5'-CACATTTTACCCTGGCAAGCA-3'(SEQ ID NO.5);
3R:5'-ATTGCTGCAAGGACCATGGA-3'(SEQ ID NO.6)。
primer set 4 for amplifying ND5 gene fragment:
4F:5'-CGCCCCCGTGTATAATAACAC-3'(SEQ ID NO.7);
4R:5'-GTATTTGCGTCTGCTCGTCC-3'(SEQ ID NO.8)。
5F:5'-ACAAAGACCACCCAGTCACA-3'(SEQ ID NO.9);
5R:5'-TGGGTGGGTTTTTCGGATGT-3'(SEQ ID NO.10)。
6F:5'-CCACAACCAACTCCACCACT-3'(SEQ ID NO.11);
6R:5'-GGGCTATGGCTTCTTCCTTGA-3'(SEQ ID NO.12)。
the primers were designed and synthesized by the division of biological engineering (Shanghai).
Example 2 establishment of methods for identifying the subspecies of the sika Cervus Nippon Temminck and other subspecies
PCR experiments were performed according to the primer pairs shown in SEQ ID No.1-SEQ ID No.12 to establish a method for identifying the subspecies and other subspecies of sika deer, and the PCR amplification conditions are shown in Table 2.
TABLE 2 PCR amplification conditions
The PCR reaction system is shown in Table 3.
TABLE 3 PCR System
The PCR amplification process comprises the following steps: pre-denaturation at 94℃for 5min; denaturation at 94℃for 30sec, annealing at 59℃for 30sec, elongation at 72℃for 30sec, 30 cycles in total; further extending at 72℃for 5min and preserving at 4 ℃.
The PCR results are shown in figure 2, and the PCR results of the primer pair 1, the primer pair 2, the primer pair 3, the primer pair 4, the primer pair 5 and the primer pair 6 show that the electrophoresis strips are single and bright, and the experimental results show that the invention successfully establishes a method for effectively identifying the sika deer Hokkaido subspecies and other subspecies.
Example 3 specific application of the method of the invention for identifying the subspecies of Cervus Nippon Temminck and other subspecies
90 sika deer samples taken from China and Japan are selected, genomic DNA is extracted respectively, the samples are randomly mixed and renumbered by an experimenter A, PCR amplification is carried out on the samples by using the primers designed by the invention, and amplified products are sent to a biological engineering (Shanghai) stock company for sequencing. And checking a sequencing peak diagram through Bioedit 7.0, wherein the peaks and the troughs of the sequencing result diagram are separated, have no overlapping and have no misreading, so that the sequencing result is credible. The Mega6.0 comparison sequence is used, and the base of the sika deer long island subspecies specific SNP locus is used as a judgment basis.
The mtDNA specific SNP molecular markers determined according to the present invention. The identification results are shown in Table 4. The result is yes/no, which indicates the roof island subspecies/other subspecies, respectively. The results show that among 90 sika deer samples, the S-1, S-2, S-3, S-4, S-5, S-6, S-7, S-8, S-9, S-10 and S-11 sites of the 75 samples of Y1-Y75 are G, A, C, C, C, C, A, T, A, T, T respectively; the S-1, S-2, S-3, S-4, S-5, S-6, S-7, S-8, S-9, S-10 and S-11 sites of 15 samples of Y76-Y90 are A, G, T, T, T, T, G, C, G, C, C respectively, 75 samples of Y1-Y75 are confirmed to be non-HgJiuzu island subspecies by checking with an experimenter A, the accuracy is 100%, 15 samples of Y76-Y90 are HgJiuzu island subspecies, and the accuracy is 100%.
Table 4 sika deer sample test results
In summary, it is illustrated that the 11 SNP sites proposed by the present invention have high accuracy and good stability when used for identifying sika long island subspecies and other subspecies, and one or more pairs of primers may be used in consideration of cost, because sika long island subspecies can be determined when the marker identified by 1 SNP molecule is identical to the base of the sika long island subspecies-specific SNP site. Preferably, only any one of primer pair 2, 3, 4, 5 is used, most preferably, only primer pair 3 is used.
Sequence listing
<110> institute of specialty of national academy of agricultural sciences
<120> molecular marker for identifying sika deer room Jiudao subspecies, identification method and application
<160> 24
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 1
cttagccgtg gcattcctca 20
<210> 2
<211> 20
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 2
cggtgagatc aaatggggct 20
<210> 3
<211> 20
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 3
tcctgctaac actcggccta 20
<210> 4
<211> 20
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 4
agtgtcagta tcaggcagcg 20
<210> 5
<211> 21
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 5
cacattttac cctggcaagc a 21
<210> 6
<211> 20
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 6
attgctgcaa ggaccatgga 20
<210> 7
<211> 21
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 7
cgcccccgtg tataataaca c 21
<210> 8
<211> 20
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 8
gtatttgcgt ctgctcgtcc 20
<210> 9
<211> 20
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 9
acaaagacca cccagtcaca 20
<210> 10
<211> 20
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 10
tgggtgggtt tttcggatgt 20
<210> 11
<211> 20
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 11
ccacaaccaa ctccaccact 20
<210> 12
<211> 21
<212> DNA
<213> Artificial sequence (Artificial sequence)
<400> 12
gggctatggc ttcttccttg a 21
<210> 13
<211> 495
<212> DNA
<213> sika deer (Cervus nippon)
<400> 13
ttcggaaggt ccaaatgttg taggtcccta tggcctactc caacctattg cagatgccat 60
caaacttttt attaaagaac cactacgacc cgccacatct tcaatttcaa tatttatcct 120
agcccctatt ctagccctaa gcctagccct aaccatatga atccccctac ccatgccata 180
tcccctcatt aacataaacc taggggtcct atttatacta gcaatgtcaa gcctagccgt 240
atattctatt ctctgatcgg gctgagcttc caattctaaa tatgcactaa tcggagccct 300
acgggcagta gcacaaacaa tttcatatga ggtaacacta gcaattattc tactatccgt 360
tctcctaata aacgggtcct ttacgctctc caccctaatt attacacaag aacaggtatg 420
acttattttc ccagcatgac ctctagcaat gatatgattc atctcaacac tagcagaaac 480
aaaccgagcc ccatt 495
<210> 14
<211> 495
<212> DNA
<213> sika deer (Cervus nippon)
<400> 14
ttcggaaggt ccgaacattg taggtcccta tggcctgctc caacctattg cagatgccat 60
caaacttttt attaaggaac cactacgacc cgccacatct tcaatttcaa tatttatcct 120
agcccctatt ctagccctaa gcctagccct aaccatatga atccccctac ccatgccata 180
tcccctcatt aacataaacc taggggtcct atttatacta gcaatgtcaa gcttagccgt 240
atactctatt ctctgatcgg gctgagcttc caactctaaa tacgcactaa tcggagccct 300
gcgggcagta gcacaaacaa tttcatatga ggtaacacta gcaattattc tactatccgt 360
tctcctaata aacgggtcct ttacgctctc caccctaatt attacacaag aacaagtatg 420
actcattttc ccagcatgac ccctagcaat gatgtgattc atctcaacac tagcagaaac 480
aaaccgagcc ccatt 495
<210> 15
<211> 500
<212> DNA
<213> sika deer (Cervus nippon)
<400> 15
accatactcc aactgtccaa aagggcctcc gctacggaat aattctcttt attatctccg 60
aagtcttatt cttcaccgga tttttctgag cattttacca ctcaagcctt gccccaacac 120
ccgaattagg cgggtgctgg cctccaacag gcattcaccc actaaacccc ctagaagtcc 180
cactactcaa tacctctgtt ttactagcct caggagtctc tatcacctga gcccaccata 240
gccttataga aggaaaccgc aaccacatac tacaagcctt atttattact atcgcactag 300
gtgtttattt cacactatta caagcctcag aatattatga agcacccttt actatttcag 360
acggagttta cggctcaacc ttctttgtag ccacaggctt ccatggccta catgttatca 420
ttggatctac tttcttaatt gtctgctttt ttcgccaatt aaaatttcac tttacttcca 480
gccaccattt tggattcgaa 500
<210> 16
<211> 500
<212> DNA
<213> sika deer (Cervus nippon)
<400> 16
accatactcc aactgtccaa aagggcctcc gctacggaat aattctcttt attgtctccg 60
aagtcctatt cttcaccgga tttttctgag cattttacca ctcaagcctt gccccaacac 120
ccgaattagg cgggtgctga cctccaacag gcattcaccc actaaacccc ctagaagtcc 180
cactactcaa tacctctgtc ttactagcct caggagtctc tatcacctga gcccaccata 240
gccttataga aggaaaccgc aaccacatac tacaagcctt atttattacc atcgcactag 300
gtgtttattt cacgctatta caagcctcag aatactatga agcacccttc accatttcag 360
acggagttta tggctcaacc ttctttgtag ccacaggctt ccatggccta catgttatca 420
ttggatccac tttcttaatt gtctgctttt ttcgccaatt aaaatttcac tttacttcca 480
gccaccattt tggattcgaa 500
<210> 17
<211> 670
<212> DNA
<213> sika deer (Cervus nippon)
<400> 17
tactagttaa agtatcaaat acatatggca ctgactatgt tcaaaatctt aacctacttc 60
aatgctaaaa tatattatcc ctacaataat actcatacct ctgacctgat tatcaaaagg 120
caatataatt tgaattaatt ctacaactca tggcctgtta attagcctca caagccttct 180
ccttataaat caattcagtg ataacagcct caacttctcg ctagtattct tttccgactc 240
tctatcaaca ccactattaa ttttaaccat atgacttctt cccttaatat taatagctag 300
ccaacaccac ctatcaaaag aaaatcttac ccgaaaaaaa ctatatatta ccatattaat 360
tttacttcaa ctattcttga tcatgacttt tactgctata gaactaattt ttttctatat 420
tctatttgaa gcaacactag tcccaacact cattattatt acccgatggg gaaaccaaac 480
agaacgccta aacgctggcc tctacttcct gttttataca ctagtaggtt ctctcccact 540
actagtcgca ctagtttatc tccaaaacat tactggatct ctaaactttc tagtactcca 600
atactgagta caacccctat ccaactcctg atcaaacgtt ttcatgtgac tagcatgcat 660
aatagccttt 670
<210> 18
<211> 670
<212> DNA
<213> sika deer (Cervus nippon)
<400> 18
tactagttaa agtatcaaat acatatggca ctgactatgt tcaaaatctt aacctacttc 60
aatgctaaaa tatattatcc ctacaataat actcatacct ctgacctgac tatcaaaagg 120
caatataatt tgaattaatt ctacaaccca tagcctgtta attagcctca caagccttct 180
cctcataaat caattcagtg acaacagcct caacttctcg ttaatattct tttccgactc 240
cctatcaaca ccactattaa ttttaaccat atgacttctt cccttaatat taatagctag 300
ccaacaccac ctatcaaagg aaaatcttac ccgaaaaaaa ctatatatta ccatattaat 360
tctacttcaa ctattcttaa tcatgacttt tactgctata gaactaatct ttttctatat 420
tctatttgaa gcaacactag tcccaacact cattattatt acccgatggg gaaaccaaac 480
agaacgccta aacgctggcc tctacttcct gttttataca ctagtaggtt ctctcccact 540
actagtcgca ctagtctacc tccaaaacat tactgggtct ctaaactttc tagtactcca 600
atactgagta caacccctat ccaactcctg atcaaacgtt ttcatgtgac tagcatgcat 660
aatagctttt 670
<210> 19
<211> 500
<212> DNA
<213> sika deer (Cervus nippon)
<400> 19
ggtgcaactc caaataaaag taataaacct attctcctcc ttcactctag ttaccctatt 60
actactaact atccccatca tagccacaag ttctgacaac tataaaactt ccaactaccc 120
actctacgta aaaacaacca tctcatatgc tttcatcacc agtataattc ccacaataat 180
atttattcat actggccaag aaataattat ctcaaactga cactgactaa ctatccaaac 240
tatcaaacta tcacttagct tcaagataga ttatttctca ataatatttg taccagtagc 300
attattcgtt acatgatcca ttatagaatt ctcaatgtga tatatacact cagaccccaa 360
cattaatcaa ttcttcaaat atcttctcct atttctcatt actatactta tcctcgtcac 420
agcaaataat ctatttcaat tattcatcgg atgagagggt gtaggaatca tatcattttt 480
acttattgga tgatgatatg 500
<210> 20
<211> 500
<212> DNA
<213> sika deer (Cervus nippon)
<400> 20
ggtgcaactc caaataaaag taataaacct attctcctcc ttcacgctag ttaccctatt 60
actactaact atccccatca taactacaag ctctgacaac tataaaactt ccaactaccc 120
gctctacgta aaaacaacta tctcatatgc tttcatcacc agtataattc ccacaataat 180
attcatttat actggccaag aaataattat ctcaaactga cactgactaa ctatccaaac 240
tattaaacta tcgcttagct tcaaaataga ttatttctca ataatatttg taccagtagc 300
actattcgtt acatggtcca ttatagaatt ctcaatgtga tatatacact cagaccccaa 360
cattaatcaa ttcttcaaat atcttctcct atttctcatt actatactta tcctcgtcac 420
agcaaataat ctatttcaat tattcatcgg atgagaaggt gtaggaatca tatcattttt 480
acttatcgga tgatgatatg 500
<210> 21
<211> 483
<212> DNA
<213> sika deer (Cervus nippon)
<400> 21
aatctcctgt gtcataaata acccaatctc ctaacccatt aaactgaaac acaatctcca 60
cctcctcatc ctttaacaca taataaacta tcgtaacttc catcaacaga ccagtaacaa 120
atgcccctaa cacagtctta ttagacaccc aaatctcagg gtattgctcc gtagctattg 180
ccgttgtata accaaaaacc accatcattc ctcctaaata aattaagaat accattaaac 240
ccagaaagga cccaccaaaa tttaacacaa taccacaacc aactccacca ctcacaatta 300
accccaaccc cccataaata ggcgaaggtt tcgaagaaaa tcctacaaaa ccaagcacaa 360
aaataatact taagataaat acaatgtatg ttatcattat tctcacatgg aatctaacca 420
tgactaatga tatgaaaaac catcgttgtc attcaactac aagaacacta atgatcaaca 480
tcc 483
<210> 22
<211> 483
<212> DNA
<213> sika deer (Cervus nippon)
<400> 22
aatcccctgt atcataaata acccaatctc ctaatccatt aaactgaaac acaatctcca 60
cctcctcatc ctttaacaca taataaacta tcataacttc catcaacaga ccagtgacaa 120
atgcccctaa cacagtctta ttagacaccc aaatctcagg gtactgctcc gtagctattg 180
ccgttgtata accaaaaacc accatcattc ctcccaaata aattaagaat accattaaac 240
ccagaaagga cccaccaaaa tttaacacaa taccacaacc aactccacca ctcacaatta 300
atcccaaccc cccataaata ggcgaaggtt tcgaagaaaa tcctacaaaa ccaagcacaa 360
aaataatact taagataaat acaatgtatg ttatcattat tctcacatgg aatctaacca 420
tgactaatga tatgaaaaat catcgttgtc attcaactac aagaacacta atgaccaaca 480
tcc 483
<210> 23
<211> 946
<212> DNA
<213> sika deer (Cervus nippon)
<400> 23
tcctacaaaa ccaagcacaa aaataatact taagataaat acaatgtatg ttatcattat 60
tctcacatgg aatctaacca tgactaatga tatgaaaaac catcgttgtc attcaactac 120
aagaacacta atgatcaaca tccgaaaaac ccacccatta ataaaaattg taaacaacgc 180
attcattgac ctccccgccc catcaaatat ttcatcctga tgaaatttcg gctccttact 240
aggaatttgc ctaatcctac aaatcctcac aggcctattc ctagcaatac actatacatc 300
cgacacaata acagcattct cctctgtcac ccatatctgt cgagatgtca attatggttg 360
aattattcga tacatacacg caaacggggc atcaatattt ttcatctgcc tattcataca 420
cgtaggacga ggtctgtact acggatcata tacttttcta gagacatgaa acatcggagt 480
aattctccta tttacagtca tagccacagc attcgtagga tacgtcctac catgaggaca 540
aatatcattc tgaggagcaa cagtcattac caaccttctc tcagcaattc catacattgg 600
cacaaaccta gtcgaatgga tctgaggagg cttttcagta gataaagcaa ccctaacccg 660
atttttcgcc ttccacttta ttcttccatt tatcatcaca gcactcgcta tagtacactt 720
actcttcctt cacgagacag gatccaacaa cccaacagga atcccatcgg acgcagacaa 780
aatccccttc catccttact ataccattaa agatatccta ggcatcttac ttctagtact 840
cttcctgata tcactagtat tattcgcacc agacctgctt ggagatccag acaactacac 900
cccagcaaat ccgctcaaca caccccctca catcaaacct gaattt 946
<210> 24
<211> 946
<212> DNA
<213> sika deer (Cervus nippon)
<400> 24
tcctacaaaa ccaagcacaa aaataatact taagataaat acaatgtatg ttatcattat 60
tctcacatgg aatctaacca tgactaatga tatgaaaaat catcgttgtc attcaactac 120
aagaacacta atgaccaata tccgaaaaac ccacccatta ataaaaattg taaacaacgc 180
attcattgac ctccccgccc catcaaatat ttcatcctga tgaaatttcg gctccctact 240
aggaatttgt ctaatcctac aaatccttac aggcctattc ctagcaatac actatacatc 300
tgacacaata acagcatttt cctctgtcac ccatatctgt cgagatgtca actatggttg 360
aattatccga tacatacacg caaacggggc atcaatattt ttcatctgcc tattcataca 420
tgtaggacga ggcctgtact acggatcata tacttttcta gagacatgaa acatcggagt 480
aattctccta tttacagtta tagccacagc attcgtagga tatgtcctac catgaggaca 540
aatatcattc tgaggagcaa cagtcattac caacctcctc tcagcaattc catatattgg 600
cacaaaccta gtcgaatgga tctgaggggg cttctcagta gataaagcaa ccctaacccg 660
atttttcgct ttccacttta ttcttccatt tatcatcgca gcacttgcta tagtacactt 720
actcttcctt cacgagacag gatccaacaa cccaacagga atcccatcgg acgcagacaa 780
aatccccttc catccttact acaccattaa agatatctta ggcatcttac ttctagtact 840
cttcctaata ttactagtat tattcgcacc agacctgctt ggagatccag acaactatac 900
cccagcaaat ccactcaaca caccccctca catcaaacct gaattt 946
Claims (6)
1. The application of the sika deer molecular marker in identifying sika deer long island subspecies is characterized in that the molecular marker comprises 11 SNP loci:
;
If the base at the 301 th bp of the ND1 gene 495bp fragment SEQ ID NO.13 is A, COX3 gene 500bp fragment SEQ ID NO.15 is G at the 140 th bp, the base at the 335 th bp is T, ND4 gene 670bp fragment SEQ ID NO.17 is T at the 148 th bp, the base at the 362 th bp is T, the base at the 559 th bp is T, ND gene 500bp fragment SEQ ID NO.19 is G at the 83 th bp, the base at the 244 th bp is C, ND gene 483bp fragment SEQ ID NO.21 is G at the 93 th bp, the base at the 302 th bp is C, cytb gene 946bp fragment SEQ ID NO.23 is C, the detected sample can be judged to be the sika room long island subspecies.
2. The use of a sika molecular marker according to claim 1 for identifying sika long island subspecies, wherein the non-sika long island subspecies comprise northeast subspecies, sichuan subspecies, south China subspecies, taiwan subspecies, hokkaido subspecies, benzhou subspecies, and famous subspecies of sika.
3. The use of the sika deer molecular marker according to claim 1 for identifying sika deer subspecies of long islands, characterized in that the primer pair is used for identifying sika deer subspecies of long islands and amplifying gene fragments of the sika deer molecular marker locus in claim 1; the primer pair is as follows: primer pair 1 with sequences shown as SEQ ID NO.1 and SEQ ID NO. 2; primer pair 2 with sequences shown as SEQ ID NO.3 and SEQ ID NO. 4; primer pair 3 with sequences shown as SEQ ID NO.5 and SEQ ID NO. 6; primer pair 4 with sequences shown as SEQ ID NO.7 and SEQ ID NO. 8; primer pair 5 with sequences shown as SEQ ID NO.9 and SEQ ID NO. 10; primer pair 6 with sequences shown as SEQ ID NO.11 and SEQ ID NO. 12;
the primer pair 1 is used for amplifying 495bp fragments of the ND1 gene; the primer pair 2 is used for amplifying a 500bp fragment of the COX3 gene; the primer pair 3 is used for amplifying 670bp fragments of the ND4 gene; the primer pair 4 is used for amplifying a 500bp fragment of the ND5 gene; the primer pair 5 is used for amplifying a 483bp fragment of the ND6 gene; the primer pair 6 is used for amplifying 946bp fragments of the Cytb gene.
4. Use of the sika molecular marker of claim 1 or the primer pair of claim 3 in the preparation of a kit or in a detection method, characterized in that the use of the kit or the detection method is to identify sika long island subspecies.
5. A method for identifying sika deer house Jiuzhao subspecies is characterized by comprising the following steps: extracting DNA of a sample to be detected,
performing PCR amplification using the primer set of claim 3; sequencing the PCR product, and identifying whether the sample to be tested is sika deer long island subspecies according to the SNP marker locus base set forth in claim 1;
the primer pair is a primer pair 1 with sequences shown as SEQ ID NO.1 and SEQ ID NO. 2; primer pair 2 with sequences shown as SEQ ID NO.3 and SEQ ID NO. 4; primer pair 3 with sequences shown as SEQ ID NO.5 and SEQ ID NO. 6; primer pair 4 with sequences shown as SEQ ID NO.7 and SEQ ID NO. 8; primer pair 5 with sequences shown as SEQ ID NO.9 and SEQ ID NO. 10; and the sequence is shown as a primer pair 6 shown as SEQ ID NO.11 and SEQ ID NO. 12.
6. An application of a kit in identifying sika deer long island subspecies, which is characterized by comprising: primer pair 1 with sequences shown as SEQ ID NO.1 and SEQ ID NO. 2; primer pair 2 with sequences shown as SEQ ID NO.3 and SEQ ID NO. 4; primer pair 3 with sequences shown as SEQ ID NO.5 and SEQ ID NO. 6; primer pair 4 with sequences shown as SEQ ID NO.7 and SEQ ID NO. 8; primer pair 5 with sequences shown as SEQ ID NO.9 and SEQ ID NO. 10; primer pair 6 with sequences shown as SEQ ID NO.11 and SEQ ID NO. 12; performing PCR amplification by using the primer pair; sequencing the PCR product, and identifying whether the sample to be tested is sika deer long island subspecies according to the SNP marker locus base set forth in claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011206082.7A CN112126692B (en) | 2020-11-02 | 2020-11-02 | Molecular marker for identifying sika deer long island subspecies, identification method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011206082.7A CN112126692B (en) | 2020-11-02 | 2020-11-02 | Molecular marker for identifying sika deer long island subspecies, identification method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112126692A CN112126692A (en) | 2020-12-25 |
CN112126692B true CN112126692B (en) | 2023-06-23 |
Family
ID=73852174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011206082.7A Active CN112126692B (en) | 2020-11-02 | 2020-11-02 | Molecular marker for identifying sika deer long island subspecies, identification method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112126692B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113308556A (en) * | 2021-07-07 | 2021-08-27 | 大连海关技术中心 | Quantitative PCR (polymerase chain reaction) kit for rapidly detecting sika deer-derived deer products and preparation method thereof |
CN114045349B (en) * | 2021-12-02 | 2023-08-01 | 锡林郭勒职业学院 | Primer, probe and kit for synchronously detecting source of sika deer and red deer |
CN114672575B (en) * | 2022-04-19 | 2024-04-12 | 中国检验检疫科学研究院 | Kit for rapidly detecting hybridized pilose antler based on RAA amplification |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070024973A (en) * | 2005-08-31 | 2007-03-08 | 대구한의대학교산학협력단 | A kit for discriminating genetical identification among cervus species by restriction fragment length polymorphism method |
RU2722758C1 (en) * | 2018-12-20 | 2020-06-03 | федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" | Set of synthetic oligonucleotides for detecting dnas of representatives of deer family |
CN111378767A (en) * | 2020-05-16 | 2020-07-07 | 中国农业科学院特产研究所 | SNP (Single nucleotide polymorphism) marker for identifying red deer and Chinese red deer, detection primer pair, kit and application |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112458180A (en) * | 2020-11-02 | 2021-03-09 | 北京麋鹿生态实验中心 | SNP marker combination for geographic traceability identification of Beijing and elk in Jiangsu and identification method thereof |
CN113308556A (en) * | 2021-07-07 | 2021-08-27 | 大连海关技术中心 | Quantitative PCR (polymerase chain reaction) kit for rapidly detecting sika deer-derived deer products and preparation method thereof |
-
2020
- 2020-11-02 CN CN202011206082.7A patent/CN112126692B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070024973A (en) * | 2005-08-31 | 2007-03-08 | 대구한의대학교산학협력단 | A kit for discriminating genetical identification among cervus species by restriction fragment length polymorphism method |
RU2722758C1 (en) * | 2018-12-20 | 2020-06-03 | федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" | Set of synthetic oligonucleotides for detecting dnas of representatives of deer family |
CN111378767A (en) * | 2020-05-16 | 2020-07-07 | 中国农业科学院特产研究所 | SNP (Single nucleotide polymorphism) marker for identifying red deer and Chinese red deer, detection primer pair, kit and application |
Non-Patent Citations (3)
Title |
---|
AB105216 :Cervus nippon yesoensis mitochondrial ND1 gene for NADH dehydrogenase subnuit 1, complete cds;NCBI database;《Genbank》 * |
Contrasting global genetic patterns in two biologically similar,widespread and invasive Ciona species (Tunicata, Ascidiacea);Sarah Bouchemousse等;《Scientific Reports》;第6卷;1-15 * |
基于PCR技术的鹿源性产品成分分子检测研究进展;董世武等;《特产研究》(第2期);105-117 * |
Also Published As
Publication number | Publication date |
---|---|
CN112126692A (en) | 2020-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112126692B (en) | Molecular marker for identifying sika deer long island subspecies, identification method and application | |
KR101912192B1 (en) | Molecular marker and primer set for discriminating Platycodon grandiflorum cultivar and uses thereof | |
Ostroverkhova et al. | Genetic diversity of the locus COI-COII of mitochondrial DNA in honeybee populations (Apis mellifera L.) from the Tomsk region | |
KR101816573B1 (en) | Markers for discrimination of resistance or susceptibility about gummy stem blight disease of watermelon | |
CN109457035B (en) | SSR fluorescence labeling primer for parent-child identification of trachinotus ovatus and application thereof | |
Xu et al. | A novel set of 223 EST-SSR markers in Casuarina L. ex Adans.: polymorphisms, cross-species transferability, and utility for commercial clone genotyping | |
CN106119397A (en) | Fructus Lycopersici esculenti spotted wilt resistant gene Sw 5b close linkage SNP site obtains and marker development | |
Sharma et al. | Detection and characterization of amplified fragment length polymorphism markers for clinical mastitis in Canadian Holsteins | |
Papetti et al. | Microsatellite markers for the notothenioid fish Lepidonotothen nudifrons and two congeneric species | |
CN109554494B (en) | Universal codominant molecular marker of rice brown planthopper resistant BPH9 multi-allele, and detection method and application thereof | |
CN112210611B (en) | Molecular marker for identifying sika deer Hokkaido subspecies, identification method and application | |
Jie et al. | Genetic diversity and population structure analysis of sand pear (Pyrus pyrifolia)‘Nakai’varieties using SSR and AFLP markers | |
KR102024212B1 (en) | Composition for selecting variety resistant to rice bakanae disease containing qBK1WD gene comprising DNA marker and method for selecting variety resistant to rice bakanae disease using DNA marker | |
KR101166781B1 (en) | Specific primer for strain discrimination of Pleurotus spp. by analysis of mitochondria DNA polymorphism and uses thereof | |
CN106676176B (en) | Method for performing SSR (simple sequence repeat) analysis on tetraploid alfalfa by utilizing multiple PCR (polymerase chain reaction) | |
CN114836547A (en) | Molecular marker for identifying sika deer south China subspecies, identification method and application | |
KR101736670B1 (en) | Primer sets for identification of Phalaenopsis and composition of marker comprising the same | |
KR100842429B1 (en) | Ssr primer derived from lawn grass and use thereof | |
KR100769367B1 (en) | Ssr primer derived from common millet and use thereof | |
KR101950782B1 (en) | Single nucleotide polymorphism marker for discrimination of Larix olgensis var. koreana and Larix kaempferi and method using the same | |
KR101887027B1 (en) | Specific single nucleotide polymorphism marker to Larix kaempferi for discrimination of Larix olgensis var. koreana and Larix kaempferi and method using the same | |
CN113736908B (en) | SNP locus combination for detecting tomato leaf mold resistance and application thereof | |
CN113373246B (en) | SNP locus combination for identifying Shaoxing duck varieties and application thereof | |
CN114836546A (en) | Molecular marker for identifying sika deer Taiwan subspecies, identification method and application | |
KR102319859B1 (en) | Multiplex primer sets based on microsatellite markers for identification of Korean native chicken and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |