CN112126108A - 一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备 - Google Patents

一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备 Download PDF

Info

Publication number
CN112126108A
CN112126108A CN202010840833.4A CN202010840833A CN112126108A CN 112126108 A CN112126108 A CN 112126108A CN 202010840833 A CN202010840833 A CN 202010840833A CN 112126108 A CN112126108 A CN 112126108A
Authority
CN
China
Prior art keywords
nano
cellulose
adsorption
aerogel material
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010840833.4A
Other languages
English (en)
Inventor
刘洪斌
霍盈
刘莹莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202010840833.4A priority Critical patent/CN112126108A/zh
Publication of CN112126108A publication Critical patent/CN112126108A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备,属于吸附材料技术领域。首先,采用聚多巴胺在纳米纤维素水凝胶上导向生长。然后,浸渍到硝酸银溶液中,在纳米纤维素水凝胶上生成银纳米粒子,冷冻干燥,得到气凝胶材料。本发明具有制备工艺简单、反应温和的特点。此外,本发明的气凝胶材料具有较好的强度,对染料等具有较高的吸附能力,并且可以实现染料的降解以及吸附材料的回收利用。

Description

一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备
技术领域
本发明属于吸附材料技术领域,具体涉及一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备。
背景技术
工业化的不断发展推动了社会的进步,但也给人类带来了资源枯竭、环境恶化等一系列问题。其中,水环境污染和大气污染问题最为严峻,严重的威胁到了人类的生活和健康,成为了困扰社会发展的瓶颈问题。此外,废水中的染料难以生物降解,成分复杂且有机物含量高、生物毒性大,其对水体污染最为严重。吸附法是当前简单有效的处理染料废水的方法。研究发现利用吸附材料将染料污染物分离和固定,利用分子间相互作用力将染料吸附在材料表面,使其成为易收集处理的固体废弃物,是当前解决这些环境问题最为有效且低成本的方法之一,从而达到有效去除水体中染料污染物的目的。
目前,吸附材料主要分为合成高分子材料、无机材料、复合吸附材料以及天然高分子材料四大类。其中,合成高分子吸附材料(如离子交换树脂等)一般具有较好的机械性能,经洗脱后可以多次重复使用,但是大部分材料不易生物降解,存在环境友好性差的问题。无机吸附材料主要包括活性炭和无机矿物质(如黏土、沸石)等,这类材料一般为粉末或颗粒状等形态,主要利用其多孔结构和较大的比表面积对污染物进行吸附固定。该类材料具有吸附速度快,价格相对低廉的优点,但也存在容易流失和分离回收困难等缺点。复合型吸附材料与上述所述的两种材料不同,该类材料是将不同性能的各类材料相互组合,根据实际的需求对复合材料进行结构和设计,使复合材料具有单一材料所不具备的优势。相比较而言,天然高分子材料(如甲壳素、壳聚糖、纤维素、木质素等)具有来源丰富、可生物降解等优点。此外,纤维素作为世界上储量最丰富的生物基材料,还具有可再生、廉价、环境友好等优点,在造纸、食品、生物以及水体污染等领域得到了广泛的应用。另外,随着纳米技术在生物质精炼方向的迅速发展,研究人员发现利用纤维素制备得到的纳米纤维素除具有纤维素的性质之外,还具有比表面积大、弹性模量高、生物相容性好、质轻等诸多优异特性。研究发现,纤维素类材料的吸附性能的体现通常是通过其表面羟基的一系列化学反应来实现的。然而,纳米纤维素表面可暴露出更多的羟基,故有利于引入更多的活性基团,进一步提高纳米纤维素材料的吸附性能。除此之外,纳米纤维素还可以通过物理吸附、静电吸附或螯合等作用移除染料分子等,故纳米纤维素呈现出较强的染料吸附能力。因此,纳米纤维素在染料吸附领域具有较好的发展潜力。
将纳米纤维素应用于吸附领域通常可以分为三类,主要包括纳米纤维素微晶(Cellulose nanocrystals,CNCs)、纤维素纳米纤丝(Cellulose nanofibrils,CNFs)和细菌纤维素(Bacterial cellulose,BC)。由于BC制备过程相对比较麻烦,用于染料吸附领域较少。此外,研究发现采用酸解方法制备的CNCs表面通常带有磺酸基或羧基(带负电荷)等基团,这些基团可以利用于静电作用对阳离子染料进行吸附。此外,还可以通过接枝改性的方式使得CNCs表面带正点,实现对阴离子染料的吸附。但是,粉末状的CNCs普遍存在易流失、二次回收利用困难的问题。然而CNFs与CNCs不同,CNFs具有较高的长径比,并且容易缠绕成网络结构,具有更好的力学柔韧性。研究者通常将CNFs制备成纳米膜或气凝胶等不同形态进行吸附,以便后期的回收和重复使用。其中,纳米纤维素气凝胶材料一般采用冷冻干燥、气凝胶超临界干燥或者室温干燥的方法制备。而且,纳米纤维素气凝胶材料与其他气凝胶材料相比有很多的优点,比如制备过程没有有机溶剂的使用、较大的比表面积(60-350m2g-1)等。然而,纯的CNFs气凝胶材料在吸附过程中易吸水坍塌,导致原来的多孔结构被破坏。因此,要想得到结构稳定的纳米纤维素气凝胶材料,需通过物理交联法、化学交联法及辐射交联法将纳米纤维素与其它高分子(如聚乙烯醇、聚乙烯亚胺等)复合,以提高其力学性能。因此,纳米纤维素基复合气凝胶材料的制备是提升气凝胶稳定性和吸附率的主要方向。但是,采用化学交联法制备纳米纤维素基复合气凝胶材料通常需要使用大量的有机溶剂,存在毒性和操作繁琐的问题。物理交联法可以避免使用化学试剂和一些复杂的化学过程,其力学性还需要进一步完善。
因此,基于以上问题,本发明将CNFs首先采用金属离子交联得到水凝胶材料,然后将多巴胺在CNFs水凝胶上原位聚合(该方法具有简单、绿色的特点),得到聚多巴胺(Polydopamine,PDA)修饰的CNFs水凝胶材料(记做,PCNFs)。由于PDA具有较强的粘附性能,可以作为CNFs水凝胶材料的二次交联剂,进一步增强后期纳米纤维素气凝胶材料的力学性能。此外,PDA上含有大量的丰富的基团(例如邻苯二酚、胺和亚胺等)。这些基团可以作为PDA与纳米纤维素间的结合位点,与纳米纤维素发生强共价键、非共价键或者氢键作用,同样也可以提高纳米纤维素气凝胶的力学性能。此外,研究发现,PDA还具有较强的吸附性能,故PDA在增强气凝胶力学性能的前提下,还可以进一步提高纳米纤维素基复合气凝胶材料的吸附性能。
发明内容
针对上述现有技术的问题,本发明的目的是提供一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备方法。
本发明的技术方案:
(1)首先采用离子交联的方法制备纳米纤维素水凝胶材料,将其浸泡在多巴胺的溶液中,充分浸泡一段时间。然后,使多巴胺在纳米纤维素上原位导向生长,得到聚多巴胺改性的纳米纤维素水凝胶材料。其中,所述多巴胺的浸泡时间为1-144h,聚多巴胺是采用氨水/乙醇/水体系或者三羟甲基氨基甲烷(Tris)体系制备。所述聚多巴胺的生长率0.1-10%。
(2)将聚多巴胺改性的纳米纤维素水凝胶材料浸泡到硝酸银的溶液中,反应一段时间,使得银纳米粒子在水凝胶上形成,冷冻干燥,得到气凝胶材料,然后进行强度测定。其中,所述硝酸银的浓度为0.1-10mmol/L,反应时间为10-120min。所述纳米银的生长率0.1-10%。所述该气凝胶材料的强度为50-300KPa。
(3)将制备得到的气凝胶材料对染料进行吸附,然后进行催化降解,并且进行回收利用。其中,所述染料主要包括阳离子染料(亚甲基蓝、刚果红、甲基紫)和阴离子染料(甲基蓝、甲基橙),染料的吸附量为20-300mg/g。所述吸附染料后的气凝胶材料在硼氢化钠的溶液中进行催化降解,硼氢化钠的浓度为0.1-10mmol/L,近红外光照射功率为1-10W,气凝胶材料的回收利用次数为1-10次。
有益效果
1、本发明以CNFs形成的水凝胶材料为模板,采用聚多巴胺对其进行修饰,得到聚多巴胺修饰的水凝胶材料,提高其力学性能和吸附性能。后续,利用聚多巴胺的还原性对硝酸银进行还原,得到具有催化降解染料性能的气凝胶材料。
2、该纳米纤维素气凝胶吸附材料的制备过程比较简单,条件比较温和,能够节约成本。
3、纳米纤维素、聚多巴胺均具有生物相容性,可完全降解,易于废弃处理,有利于保护环境,而且纳米纤维素是天然可再生的绿色材料。
附图说明
图1为实施例1中气凝胶材料的示意图。
图2为实施例2中纳米纤维素气凝胶材料的SEM图。
图3为实施例4中吸附后的实物图。
图4为对比实施例1中纯纳米纤维素气凝胶的SEM图。
具体实施方式
根据现有技术的问题,本发明的发明人研发了一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备方法。由于纳米纤维素气凝胶存在强度性能差,吸附能力差的缺点。本发明利用聚多巴胺的高粘附特性以及吸附特性,实现纳米纤维素气凝胶强度性能和吸附性能的提升。此外,聚多巴胺对近红外光具有较强的光热转化性能,有利于促进染料在后期的催化降解。
下面结合实施例对本发明做进一步的说明。以下实施例仅作为本发明的实施方案的例子列举,并不对本发明构成任何限制,本领域技术人员可以理解在不偏离本发明的实质和构思的范围内的修改或扩大均落入本发明的保护范围。
实施例1
采用钙离子交联的方法制备纳米纤维素水凝胶材料,将其浸泡在3mg/mL多巴胺的溶液中,充分浸泡12h。取出后,加入氨水和乙醇,使多巴胺在纳米纤维素上原位生长,得到聚多巴胺改性的纳米纤维素水凝胶材料。将聚多巴胺改性的纳米纤维素水凝胶材料浸泡到0.1mmol/L硝酸银溶液中,反应1h。将水凝胶材料进行冷冻干燥得到气凝胶材料(附图1)。进行强度测定,然后采用气凝胶材料对亚甲基蓝(200mg/L)进行吸附,6小时后测定吸附量。然后,在硼氢化钠的溶液中进行催化降解,其中硼氢化钠的浓度为0.2mmol/L,近红外光照射功率为2W。最后,对吸附材料进行回收利用。
根据下式计算染料吸附量:
吸附量(mg/g)=(C1-C2)V1/W1×100%(C1为染料的初始浓度/mg/L,C2为染料的吸附平衡浓度/mg/L,W1为气凝胶的质量/g)。
经过分析计算,本实例的强度为50KPa,染料吸附量为50mg/g,回用次数为3次。
实施例2
采用钙离子交联的方法制备纳米纤维素水凝胶材料,将其浸泡在4mg/mL多巴胺的溶液中,充分浸泡24h。取出后,加入氨水和乙醇,使多巴胺在纳米纤维素上原位生长,得到聚多巴胺改性的纳米纤维素水凝胶材料。将聚多巴胺改性的纳米纤维素水凝胶材料浸泡到0.1mmol/L硝酸银溶液中,反应1h。将水凝胶材料进行冷冻干燥得到气凝胶材料,气凝胶材料的SEM图如图2所示。进行强度测定,然后采用气凝胶材料对甲基橙(200mg/L)进行吸附,6小时后测定吸附量。然后,在硼氢化钠的溶液中进行催化降解,其中硼氢化钠的浓度为0.2mmol/L,近红外光照射功率为4W。最后,对吸附材料进行回收利用。
根据下式计算染料吸附量:
吸附量(mg/g)=(C1-C2)V1/W1×100%(C1为染料的初始浓度/mg/L,C2为染料的吸附平衡浓度/mg/L,W1为气凝胶的质量/g)。
经过分析计算,本实例的强度为100KPa,染料吸附量为100mg/g,回用次数为5次。
实施例3
采用钙离子交联的方法制备纳米纤维素水凝胶材料,将其浸泡在3mg/mL多巴胺的溶液中,充分浸泡48h。取出后,加入氨水和乙醇,使多巴胺在纳米纤维素上原位生长,得到聚多巴胺改性的纳米纤维素水凝胶材料。将聚多巴胺改性的纳米纤维素水凝胶材料浸泡到0.1mmol/L硝酸银溶液中,反应1h。将水凝胶材料进行冷冻干燥得到气凝胶材料。进行强度测定,然后采用气凝胶材料对刚果红(200mg/L)进行吸附,6小时后测定吸附量。然后,在硼氢化钠的溶液中进行催化降解,其中硼氢化钠的浓度为0.2mmol/L,近红外光照射功率为6W。最后,对吸附材料进行回收利用。
根据下式计算染料吸附量:
吸附量(mg/g)=(C1-C2)V1/W1×100%(C1为染料的初始浓度/mg/L,C2为染料的吸附平衡浓度/mg/L,W1为气凝胶的质量/g)。
经过分析计算,本实例的强度为150KPa,染料吸附量为200mg/g,回用次数为7次。
实施例4
采用钙离子交联的方法制备纳米纤维素水凝胶材料,将其浸泡在5mg/mL多巴胺的溶液中,充分浸泡72h。取出后,加入氨水和乙醇,使多巴胺在纳米纤维素上原位生长,得到聚多巴胺改性的纳米纤维素水凝胶材料。将聚多巴胺改性的纳米纤维素水凝胶材料浸泡到0.1mmol/L硝酸银溶液中,反应1h。将水凝胶材料进行冷冻干燥得到气凝胶材料。进行强度测定,然后采用气凝胶材料对罗丹明(200mg/L)进行吸附,6小时后测定吸附量,染料吸附后的示意图如图3所示。然后,在硼氢化钠的溶液中进行催化降解,其中硼氢化钠的浓度为0.3mmol/L,近红外光照射功率为6W。最后,对吸附材料进行回收利用。
根据下式计算染料吸附量:
吸附量(mg/g)=(C1-C2)V1/W1×100%(C1为染料的初始浓度/mg/L,C2为染料的吸附平衡浓度/mg/L,W1为气凝胶的质量/g)。
经过分析计算,本实例的强度为300KPa,染料吸附量为300mg/g,回用次数为10次。
对比实施例1
采用钙离子交联的方法制备纳米纤维素水凝胶材料,将纳米纤维素水凝胶材料浸泡到0.1mmol/L硝酸银溶液中,反应1h。将水凝胶材料进行冷冻干燥得到气凝胶材料,其SEM图如图4所示。进行强度测定,然后采用气凝胶材料对亚甲基蓝(200mg/L)进行吸附,6小时后测定吸附量。然后,在硼氢化钠的溶液中进行催化降解,其中硼氢化钠的浓度为0.2mmol/L,近红外光照射功率为2W。
根据下式计算染料吸附量:
吸附量(mg/g)=(C1-C2)V1/W1×100%(C1为染料的初始浓度mg/L,C2为染料的吸附平衡浓度/mg/L,W1为气凝胶的质量/g)。
经过分析计算,本实例的强度为5kpa,染料吸附量为5mg/g,不可以实现染料的降解。主要原因纳米纤维素气凝胶的强度差且吸附量不高,且其表面不存在可以还原银离子的基团,故不可以实现染料的降解。

Claims (8)

1.一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备,所述制备方法包括以下步骤:
(1)首先采用离子交联的方法制备纳米纤维素水凝胶材料,将其浸泡在多巴胺的溶液中,充分浸泡一段时间。然后,使多巴胺在纳米纤维素上原位导向生长,得到聚多巴胺改性的纳米纤维素水凝胶材料。
(2)将聚多巴胺改性的纳米纤维素水凝胶材料浸泡到硝酸银的溶液中,反应一段时间,使得银纳米粒子在水凝胶上形成,冷冻干燥,得到气凝胶材料,然后进行强度测定。
(3)将制备得到的气凝胶材料对染料进行吸附,然后进行催化降解,并且进行回收利用。
2.根据权利要求1所述高强度和高吸附性能的纳米纤维素气凝胶材料的制备,其特征在于,
在步骤(1)中,多巴胺的浸泡时间为1-144h,聚多巴胺是采用氨水/乙醇/水体系或者三羟甲基氨基甲烷(Tris)体系制备。
3.根据权利要求1所述一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备,其特征在于,
在步骤(2)中,硝酸银的浓度为0.1-10mmol/L,反应时间为10-120min。
4.根据权利要求2所述,聚多巴胺的生长率0.1-10%。
5.根据权利要求3所述,纳米银的生长率0.1-10%。
6.根据权利要求1所述一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备,其特征在于,
在步骤(2)中,该气凝胶材料的强度为50-300KPa。
7.根据权利要求1所述一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备,其特征在于,
在步骤(3)中,染料主要包括阳离子染料(亚甲基蓝、刚果红、甲基紫)和阴离子染料(甲基蓝、甲基橙),染料的吸附量为20-300mg/g。。
8.根据权利要求1所述一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备,其特征在于,
在步骤(3)中,吸附染料后的气凝胶材料在硼氢化钠的溶液中进行催化降解,硼氢化钠的浓度为0.1-10mmol/L,近红外光照射功率为1-10W,气凝胶材料的回收利用次数为1-10次。
CN202010840833.4A 2020-08-15 2020-08-15 一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备 Pending CN112126108A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010840833.4A CN112126108A (zh) 2020-08-15 2020-08-15 一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010840833.4A CN112126108A (zh) 2020-08-15 2020-08-15 一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备

Publications (1)

Publication Number Publication Date
CN112126108A true CN112126108A (zh) 2020-12-25

Family

ID=73851388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010840833.4A Pending CN112126108A (zh) 2020-08-15 2020-08-15 一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备

Country Status (1)

Country Link
CN (1) CN112126108A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112898627A (zh) * 2021-02-04 2021-06-04 四川大学 一种聚多巴胺/茶多酚/纤维素复合光热凝胶及其制备方法
CN114246181A (zh) * 2021-12-27 2022-03-29 华南师范大学 一种抗菌材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106076283A (zh) * 2016-06-11 2016-11-09 华南理工大学 一种纳米纤维素/聚多巴胺水凝胶吸附剂及其制备方法与应用
CN106111193A (zh) * 2016-06-21 2016-11-16 西安交通大学 一种负载银纳米颗粒催化剂水凝胶的制备方法
CN106392098A (zh) * 2016-10-10 2017-02-15 苏州经贸职业技术学院 纳米银水溶胶的制备方法及染料废水的处理方法
US20170142975A1 (en) * 2014-07-22 2017-05-25 Celluforce Inc. Polydopamine functionalized cellulose nanocrystals (pd-cncs) and uses thereof
CN106977757A (zh) * 2017-04-27 2017-07-25 西南大学 纳米银功能化的多巴胺‑丝胶复合薄膜的制备方法及其产品和应用
CN110860695A (zh) * 2019-11-25 2020-03-06 天津科技大学 一种尺寸大小和分布可调控的银纳米颗粒的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170142975A1 (en) * 2014-07-22 2017-05-25 Celluforce Inc. Polydopamine functionalized cellulose nanocrystals (pd-cncs) and uses thereof
CN106076283A (zh) * 2016-06-11 2016-11-09 华南理工大学 一种纳米纤维素/聚多巴胺水凝胶吸附剂及其制备方法与应用
CN106111193A (zh) * 2016-06-21 2016-11-16 西安交通大学 一种负载银纳米颗粒催化剂水凝胶的制备方法
CN106392098A (zh) * 2016-10-10 2017-02-15 苏州经贸职业技术学院 纳米银水溶胶的制备方法及染料废水的处理方法
CN106977757A (zh) * 2017-04-27 2017-07-25 西南大学 纳米银功能化的多巴胺‑丝胶复合薄膜的制备方法及其产品和应用
CN110860695A (zh) * 2019-11-25 2020-03-06 天津科技大学 一种尺寸大小和分布可调控的银纳米颗粒的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112898627A (zh) * 2021-02-04 2021-06-04 四川大学 一种聚多巴胺/茶多酚/纤维素复合光热凝胶及其制备方法
CN112898627B (zh) * 2021-02-04 2022-01-04 四川大学 一种聚多巴胺/茶多酚/纤维素复合光热凝胶及其制备方法
CN114246181A (zh) * 2021-12-27 2022-03-29 华南师范大学 一种抗菌材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Yang et al. Recent progress in bio-based aerogel absorbents for oil/water separation
Dong et al. Cellulose/carbon composites and their applications in water treatment–a review
Tang et al. Green acid-free hydrolysis of wasted pomelo peel to produce carboxylated cellulose nanofibers with super absorption/flocculation ability for environmental remediation materials
Cai et al. Electrospun composite nanofiber mats of Cellulose@ Organically modified montmorillonite for heavy metal ion removal: Design, characterization, evaluation of absorption performance
Zhang et al. Electrospun lignin-based composite nanofiber membrane as high-performance absorbent for water purification
Peng et al. Advanced MOFs@ aerogel composites: construction and application towards environmental remediation
Li et al. Upon designing carboxyl methylcellulose and chitosan-derived nanostructured sorbents for efficient removal of Cd (II) and Cr (VI) from water
Mo et al. Porous biochar/chitosan composites for high performance cellulase immobilization by glutaraldehyde
Liu et al. Recent advances in lignin-based porous materials for pollutants removal from wastewater
CN109174023B (zh) 一种纳米纤维素交联石墨烯/壳聚糖气凝胶及其制备方法、应用
Zhu et al. Lignin-derived sulfonated porous carbon from cornstalk for efficient and selective removal of cationic dyes
Gao et al. Electrospun molecularly imprinted sodium alginate/polyethylene oxide nanofibrous membranes for selective adsorption of methylene blue
CN112126108A (zh) 一种高强度和高吸附性能的纳米纤维素气凝胶材料的制备
Mahmoodi-Babolan et al. Bioinspired catecholamine/starch composites as superadsorbent for the environmental remediation
Wu et al. Recent advances on sustainable bio-based materials for water treatment: Fabrication, modification and application
Safie et al. Recovery of nutrients from sewage using zeolite-chitosan-biochar adsorbent: Current practices and perspectives
Yue et al. Preparation of adsorbent based on cotton fiber for removal of dyes
Shao et al. Cellulose based cation-exchange fiber as filtration material for the rapid removal of methylene blue from wastewater
Muthukumaran et al. Tailored natural polymers: a useful eco-friendly sustainable tool for the mitigation of emerging pollutants: a review
Zhang et al. Method to fabricate porous multifunction β-cyclodextrin modified resin for ultrafast and efficient removal of Cu (II) and bisphenol A
Liu et al. Reinforced chitosan beads by chitin nanofibers for the immobilization of β-glucosidase
Zhang et al. Green and facile fabrication of nano-ZnO coated cellulose/starch/activated carbon hydrogel for enhanced dyes adsorption and antibacterial activity
Li et al. Efficient removal of methyl orange by nanocomposite aerogel of polyethyleneimine and β‐cyclodextrin grafted cellulose nanocrystals
Yi et al. A high lignin-content, ultralight, and hydrophobic aerogel for oil-water separation: Preparation and characterization
CN113292762B (zh) 一种双醛纳米纤维素三维柔性材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201225