CN112121803A - 一种用于co2加氢直接制低碳烯烃的催化剂和应用 - Google Patents

一种用于co2加氢直接制低碳烯烃的催化剂和应用 Download PDF

Info

Publication number
CN112121803A
CN112121803A CN202011114873.7A CN202011114873A CN112121803A CN 112121803 A CN112121803 A CN 112121803A CN 202011114873 A CN202011114873 A CN 202011114873A CN 112121803 A CN112121803 A CN 112121803A
Authority
CN
China
Prior art keywords
catalyst
sample
carbon
hydrogenation
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011114873.7A
Other languages
English (en)
Inventor
张建利
马利海
郭庆杰
赵天生
高新华
马清祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia University
Original Assignee
Ningxia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia University filed Critical Ningxia University
Priority to CN202011114873.7A priority Critical patent/CN112121803A/zh
Publication of CN112121803A publication Critical patent/CN112121803A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0245Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
    • B01J31/0249Ureas (R2N-C(=O)-NR2)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/50Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon dioxide with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/889Manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/20Carbon compounds
    • C07C2527/22Carbides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种用于CO2加氢直接制低碳烯烃的催化剂和应用。本发明公开了一种改性的SrFexCoyO3‑δ催化剂用于CO2加氢制备乙烯、丙烯、丁烯。本发明催化剂能有效的抑制初级烯烃二次加氢反应,调控出附加值高的产物分布,尤其低碳烯烃的获得在45%左右。催化剂所使用的制备方法简单、环保,便捷可控,重复性好,对环境友好,反应寿命长,具有潜在的经济价值。

Description

一种用于CO2加氢直接制低碳烯烃的催化剂和应用
技术领域
本发明涉及CO2加氢催化剂制备技术领域,涉及改性钙钛矿催化剂,及催化剂制备乙烯、丙烯、丁烯的应用。
背景技术
以二氧化碳为原料加氢制备低碳烯烃,不但能够缓解二氧化碳排放带来的环保压力,更能实现二氧化碳资源的有效利用。从热力学方面考虑,低温、高压有利于低碳烯烃的生成,适宜的反应条件应该是温度573~673K、压力2.0~3.0MPa、H2/CO2=3,在该条件下二氧化碳的平衡转化率为72.8%~74.5%。二氧化碳直接加氢制低碳烯烃可分为两个步骤:逆水气转换反应和连续的费托合成。目前在二氧化碳制备低碳烯烃过程中,降低烷烃特别是甲烷的生成以及提高某一烯烃的选择性是研究的重点。
关于反应机理的研究非常多,但结论并不完全一致,这是因为催化剂不同,对二氧化碳的吸附形式就可能不同,产生的中间体就不同,反应机理也就不同。
钙钛矿型金属氧化物因其较强的氧选择性和离子传导能力而被用作过滤膜、化学反应或高温空气分离的催化剂和吸附剂。钙钛矿型金属氧化物具有这种优势主要是由于其独特的氧传输机制,通过掺杂使钙钛矿型金属氧化物结构中产生一定的氧缺陷(即氧空位),氧离子在晶格中从一个氧空位跳到另一个氧空位上从而实现氧离子的传输。掺杂是指以一种金属离子部分占据另一种金属离子的位置,如果两种金属离子的价态不同,则会形成电荷缺陷,进而形成氧空位。氧空位的存在使钙钛矿型金属氧化物可以捕获并活化气相氧,为燃料的氧化反应提供活性的氧。钙钛矿催化剂应用于CO2加氢直接制低碳烯烃的应用鲜有报道。
目前由合成气制备低碳烯烃催化体系主要有以下几种。(1)改良F-T催化剂Dent等人发现钴基催化剂可用于高选择性的合成低碳烯烃,如:Co-Cu/Al2O3、Co-Fe/SiO2、Fe-Co/C、Co-Ni/MnO2、Fe-Co合金等体系。其中以鲁尔化学公司开发的改良FT催化剂结果较好,在Fe-ZnO-K2O催化剂上添加Mn或Ti等组分,采用高速气体循环,达到CO转化率80%,低碳烯烃选择性70%;(2)超细粒子催化剂Venter等由羰基络合物分解法得到了活性炭担载的高分散K-Fe-Mn催化剂,催化剂具有很高的活性,产物中C2-C4烯烃占85-90%,甲烷是检测到的唯一的其他产物。Cupta等人利用激光热解法制备具有催化活性的FexSiyCz等粉末CO转化率为40%,C2=-C4=选择性达到87%,只有少量甲烷。山西煤化所钟炳等人采用有机盐复合物的降解法成功研制并开发出新型、有实用背景的超细粒子Fe/Mn催化剂,CO转化率大于95%,C2=-C4=/C2-C4大于80%。北京化工大学张敬畅利用激光热解法制备高度分散非晶态超细铁粉和碳粉,经固相反应成功地制得F-T合成活性新物种Fe3C。制备出以Fe3C为主体的Fe-C,Fe-C-Mn,Fe-C-Mn-K等纳米催化剂,CO转化率达90%,烯烃选择性达80%以上;(3)非晶态合成催化剂Yokoyama等人使用非晶态Fe40Ni40P16B4化合物,CO转化率50%,C2-C5烃选择性为65%,而晶态催化剂主要生成甲烷;(4)沸石催化剂代表体系有Co-A、Co-Y、Fe-Y等催化剂,Ballivet-Tketchenko等人制得沸石担载的高分散的铁催化剂,低碳烯烃选择性相当高,88-98%在C2-C4范围内,其他如ZSM-5、丝光、13X沸石担载的铁催化剂也显示出类似行为。
这些催化剂都是在原先费托催化剂的基础上发展起来的,以Fe、Co或Ni作为活性组分。这类催化剂在使用前必须还原活化,也就是在金属状态下才具有初始活性。由于合成气制低碳烯烃过程中为了得到低碳产物,通常操作温度较高,这些金属活性组分会发生结构变化。金属Fe在反应过程中会被碳化形成碳化铁,虽然碳化铁的形成不影响活性,甚至对选择性有利,但催化剂结构的变化会导致催化剂积碳、破碎和粉化的现象,因此催化剂稳定性差。Co催化剂不适合在高温下使用,因为形成碳化钴会导致催化剂失活,主要产物是甲烷,低碳烯烃选择性低。
发明内容
本发明针对现有技术中存在的缺点,从钙钛矿催化剂出发,通过尿素和多孔碳改性SrFexCoyO3-δ,进而对加氢合成产物进行调控改善,增加疏水性和碱性位点,较大程度上促进CO2的吸附和解离。
本发明催化剂具有适宜的CO2吸附解离能力,抑制烯烃的再吸附,降低烯烃的二次反应,提高烯烃选择性。为突破A-S-F产物分布,高选择性获得低碳烯烃和抑制副产物甲烷,C5 等副产物提供有力基石。本发明催化剂能有效的抑制初级烯烃二次加氢反应,调控出附加值高的产物分布,尤其α烯烃的获得占到C2-C4低碳烯烃中90%以上。
本发明制备过程中所使用的制备方法简单、环保,且产物的氮和碳掺杂含量便捷可控。制备的氮、碳掺杂材料由于杂原子氮、碳的尺寸、键长和价电子等与金属原子不同,可以有效调控表面性质。钙钛矿前驱体相邻铁、钴原子附近位点存在缺陷,富集晶格氧,显著增强材料吸附位点和催化活性。
氮原子额外的孤对电子为sp2杂化碳骨架、离域π键提供负电荷,增强电子传输速率和催化活性。本发明可以为研究材料性能与材料本质特征建立有效联系,进而对研究氮掺杂铁基材料的吸附活性位点,催化活性位点,及影响其加氢性能的关键因素等提供了有利保障。氮、碳元素与锶相互作用,一定程度上促进了碳化铁、碳化钴等活性相,从而强化了反应效果,提高了产物收率。
技术方案中,尿素会分解释放的二氧化碳达到造孔和提高比表面积及提供碱性位点的多重作用;通过控制尿素溶液的浓度调控多孔碳和前驱体中的氮含量。这样可调控材料孔径结构及氮含量进而调控材料的吸附性能及加氢性能,制备出高性能的钙钛矿功能材料。多孔碳提供碳元素,起到载体担载和原位功能化材料的目的。
为了实现本发明的上述目的,本发明采用的技术方案如下:
本发明催化剂应用于CO2加氢反应制备乙烯、丙烯、丁烯反应,反应条件为H2/CO2 =1~4,260~400℃、1~3 MPa,1000~4000 h–1;催化剂是以SrFexCoyO3-δ催化剂前驱体为基体;将基体置于1-10mol/L尿素溶液,呈浆态状后浸泡2-12h,加入多孔碳充分混匀,再次干燥后,氮气保护下350℃焙烧2h,研磨得目标催化剂。
催化剂前驱体是以摩尔比计Sr:Fe:Co=0.2-2:1:0.5-1.5称量,柠檬酸按Fe摩尔量的0.8-2倍称量,水溶解后于80℃水浴,120℃干燥12h,600-850 ℃煅烧2-10h,得催化剂前驱体。
催化剂中碳、氮原子对催化剂前驱体纳米粒子表面自发吸附、解离,在还原后的反应气氛下进入间隙原位形成碳化铁和含氮化合物。前驱体SrFexCoyO3-δ的x、y值是正数。多孔碳掺杂含量占催化剂总重量的0.5-50wt%。
技术方案中使用的多孔碳可以是活性炭,比表面积和孔径等条件不作严苛要求。
通过浸渍如钾、镁、锆、钠等元素到催化剂上,催化剂低碳烯烃选择性还会有所提高。锶元素可以由镧元素代替。
附图说明
图1是样品1的XRD图。
具体实施方式
下面通过实施案例对本发明作进一步详细说明。本实施案例在以本发明技术为前提下进行实施,现给出详细的实施方式和具体的操作过程来说明本发明具有创造性,但本发明的保护范围不限于以下的实施案例。
根据本申请包含的信息,对于本领域技术人员来说可以轻而易举地对本发明的精确描述进行各种改变,而不会偏离所附权利要求的精神和范围。应该理解,本发明的范围不局限于所限定的过程、性质或组分,因为这些实施方案以及其他的描述仅仅是为了示意性说明本发明的特定方面。实际上,本领域或相关领域的技术人员明显能够对本发明实施方式作出的各种改变都涵盖在所附权利要求的范围内。
为了更好地理解本发明而不是限制本发明的范围,在本申请中所用的表示用量、百分比的所有数字、以及其他数值,在所有情况下都应理解为以词语“大约”所修饰。因此,除非特别说明,否则在说明书和所附权利要求书中所列出的数字参数都是近似值,其可能会根据试图获得的理想性质的不同而加以改变。各个数字参数至少应被看作是根据所报告的有效数字和通过常规的四舍五入方法而获得的。
下述各实施例中,若无特殊说明,所有原料组分无特殊说明,均为本领域技术人员熟知的市售产品。
具体实施方式
实施例1
称取5.29g硝酸锶、7.27g硝酸钴、10.1g硝酸铁,用蒸馏水溶解,再加入19.21g柠檬酸,蒸馏水溶解后,于水浴条件下机械搅拌,水浴温度80℃,搅拌速度500r/min。搅拌至凝胶状态后,于100℃干燥 12h。将粉末置于马弗炉,按10℃/min 的速率升温,在800℃保温4h,冷却后研磨得催化剂样品。记为样品1。图1是样品1的XRD谱图。图1说明形成了SrFe0.5Co0.3O3钙钛矿。
实施例2
称取5.29g硝酸锶、7.27g硝酸钴、10.1g硝酸铁,用蒸馏水溶解,再加入19.21g柠檬酸,蒸馏水溶解后,于水浴条件下机械搅拌,水浴温度80℃,搅拌速度500r/min。搅拌至凝胶状态后,于100℃干燥 12h。将粉末置于马弗炉,按10℃/min 的速率升温,在800℃保温4h,冷却后研磨得催化剂样品。将干燥后的粉末倒入5mol/L尿素溶液,呈浆态状。浸泡2h后,加入1g活性炭,搅拌均匀。再在150℃干燥 6h。记为样品2。
实施例3
称取5.29g硝酸锶、7.27g硝酸钴、10.1g硝酸铁,用蒸馏水溶解,再加入19.21g柠檬酸,蒸馏水溶解后,于水浴条件下机械搅拌,水浴温度80℃,搅拌速度500r/min。搅拌至凝胶状态后,于100℃干燥 12h。将粉末置于马弗炉,按10℃/min 的速率升温,在800℃保温4h,冷却后研磨得催化剂样品。将干燥后的粉末倒入5mol/L尿素溶液,呈浆态状。浸泡2h后,加入10g活性炭,搅拌均匀。再在120℃干燥 6h。记为样品3。
实施例4
称取5.29g硝酸锶、7.27g硝酸钴、10.1g硝酸铁,用蒸馏水溶解,再加入19.21g柠檬酸,蒸馏水溶解后,倒入10mol/L尿素溶液15mL,于水浴条件下机械搅拌,水浴温度80℃,搅拌速度500r/min。搅拌至凝胶状态后,于100℃干燥 12h。将干燥后的粉末与3g石墨机械混合,搅拌均匀。将粉末置于马弗炉,按10℃/min 的速率升温,在800℃保温4h,冷却后研磨得催化剂样品。记为样品4。
实施例5
称取10.58g硝酸锶、7.27g硝酸钴、10.1g硝酸铁,用蒸馏水溶解,再加入19.21g柠檬酸,蒸馏水溶解后,倒入5mol/L尿素溶液15mL,于水浴条件下机械搅拌,水浴温度80℃,搅拌速度500r/min。搅拌至凝胶状态后,于100℃干燥 12h。将干燥后的粉末与3g活性炭机械混合,搅拌均匀。将粉末置于管式炉,于N2保护下,按10℃/min 的速率升温,在800℃保温4h,冷却后研磨得催化剂样品。记为样品5。
实施例6
称取5.29g硝酸锶、7.27g硝酸钴、10.1g硝酸铁,用蒸馏水溶解,再加入19.21g柠檬酸,蒸馏水溶解后,于水浴条件下机械搅拌,水浴温度80℃,搅拌速度500r/min。搅拌至凝胶状态后,于100℃干燥 12h。将干燥后的粉末倒入5mol/L尿素溶液,呈浆态状。浸泡2h后,加入10g活性炭,搅拌均匀。再在100℃干燥 6h。将粉末置于管式炉,于N2保护下,按10℃/min 的速率升温,在800℃保温4h,冷却后研磨得催化剂样品。记为样品6。
实施例7
称取10.58g硝酸锶、7.27g硝酸钴、10.1g硝酸铁,用蒸馏水溶解,再加入19.21g柠檬酸,蒸馏水溶解后,于水浴条件下机械搅拌,水浴温度80℃,搅拌速度500r/min。搅拌至凝胶状态后,于100℃干燥 12h。将干燥后的粉末倒入7mol/L尿素溶液,呈浆态状。浸泡2h后,加入1g活性炭,搅拌均匀。再在100℃干燥 6h。将粉末置于马弗炉,按10℃/min 的速率升温,400℃保温1h后,在升至800℃保温4h,冷却后研磨得催化剂样品。记为样品7。
实施例8
称取10.58g硝酸锶、14.55g硝酸钴、10.1g硝酸铁,用蒸馏水溶解,再加入19.21g柠檬酸,蒸馏水溶解后,于水浴条件下机械搅拌,水浴温度80℃,搅拌速度500r/min。搅拌至凝胶状态后,于100℃干燥 12h。将干燥后的粉末倒入15mol/L尿素溶液,呈浆态状。浸泡2h后,加入5g活性炭,搅拌均匀。再在100℃干燥 6h。将粉末置于马弗炉,按10℃/min 的速率升温,400℃保温1h后,在升至800℃保温4h,冷却后研磨得催化剂样品。记为样品8。
实施例9
称取5.29g硝酸锶、3.64g硝酸钴、10.1g硝酸铁,用蒸馏水溶解,再加入19.21g柠檬酸,蒸馏水溶解后,于水浴条件下机械搅拌,水浴温度80℃,搅拌速度500r/min。搅拌至凝胶状态后,于100℃干燥 12h。将干燥后的粉末倒入30mol/L尿素溶液,呈浆态状,浸泡2h。再在100℃干燥 6h。将粉末置于马弗炉,按10℃/min 的速率升温,400℃保温1h后,在升至800℃保温4h,冷却后研磨得催化剂样品。记为样品9。
实施例10
称取10.83g硝酸镧、3.64g硝酸钴、10.1g硝酸铁,用蒸馏水溶解,再加入19.21g柠檬酸,蒸馏水溶解后,于水浴条件下机械搅拌,水浴温度80℃,搅拌速度500r/min。搅拌至凝胶状态后,于100℃干燥 12h。将干燥后的粉末倒入10mol/L尿素溶液,呈浆态状,浸泡2h。再在100℃干燥 6h。将粉末置于马弗炉,按10℃/min 的速率升温,400℃保温1h后,在升至800℃保温4h,冷却后研磨,按照2%质量分数称取硝酸锰,浸渍到样品中, 得2%Mn改性的催化剂样品。得催化剂样品。记为样品10。
实施例11
称取10.83g硝酸镧、3.64g硝酸钴、10.1g硝酸铁,用蒸馏水溶解,再加入19.21g柠檬酸,蒸馏水溶解后,倒入10mol/L尿素溶液10mL,于水浴条件下机械搅拌,水浴温度80℃,搅拌速度500r/min。搅拌至凝胶状态后,于100℃干燥 12h。将干燥后的粉末与20g活性炭机械混合,搅拌均匀。将粉末置于马弗炉,按10℃/min 的速率升温,400℃保温1h后,在升至800℃保温4h,冷却后研磨,按照2%质量分数称取碳酸镁,浸渍到样品中, 得2%Mg改性的催化剂样品。得催化剂样品。记为样品11。
实施例12
称取10.83g硝酸镧、5.29g硝酸锶、3.64g硝酸钴、10.1g硝酸铁,用蒸馏水溶解,再加入19.21g柠檬酸,蒸馏水溶解后,倒入10mol/L尿素溶液10mL,于水浴条件下机械搅拌,水浴温度80℃,搅拌速度500r/min。搅拌至凝胶状态后,于100℃干燥 12h。将干燥后的粉末与10g碳粉机械混合,搅拌均匀。将粉末置于马弗炉,按10℃/min 的速率升温,400℃保温1h后,在升至800℃保温4h,冷却后研磨,按照2%质量分数称取碳酸钠,浸渍到样品中, 得2%Na改性的催化剂样品。得催化剂样品。记为样品12。
实施例13
称取10.83g硝酸镧、5.29g硝酸锶、3.64g硝酸钴、10.1g硝酸铁,用蒸馏水溶解,再加入19.21g柠檬酸,蒸馏水溶解后,倒入10mol/L尿素溶液10mL,于水浴条件下机械搅拌,水浴温度80℃,搅拌速度500r/min。搅拌至凝胶状态后,于100℃干燥 12h。将干燥后的粉末与5g石墨机械混合,搅拌均匀。将粉末置于马弗炉,按10℃/min 的速率升温,400℃保温1h后,在升至800℃保温4h,冷却后研磨,按照2%质量分数称取碳酸钾,浸渍到样品中, 得2%K改性的催化剂样品。记为样品13。
催化剂性能测试与表征:
为了使催化剂更好地反应,不堵塞反应管,将本发明上述实施例1~13制备的催化剂均制成20~40目的催化剂颗粒。
本发明采用微型固定床反应器对催化剂进行评价,工艺条件为20~40目催化剂0.5~5 mL,反应温度260~400°C,反应压力0.5~3MPa,原料气H2/CO2=1-4,空速为500~5000·h-1。为了提升催化活性,可以用H2在400-700℃还原3-5h。
例如,在微型固定床反应器中对实施例1制备的催化剂进行性能评价,具体操作步骤如下:称取1.0 mL 实施例1制备的样品催化剂装入反应管中部恒温区,原料气H2/CO2=2,温度为320°C,压力为2.0MPa、空速(GHSV)为1000 h-1,达到稳定状态后,采样分析,间隔3 h采样一次。利用气相色谱对原料气和产物经行定量和定性分析。利用《煤基费托合成尾气中H2、N2、CO、CO2和C1~C8烃的测定和气相色谱法》甲烷关联法,计算出CO2转化率于各组份物质选择性。
表1为本发明上述实施例1-13制备的样品的加氢催化工艺参数及性能测试结果对比表。由表1可以除样品1外,所制样品表现出良好的CO2加氢性能。低碳烯烃选择性保持在45%左右,烯烷比(O/P)可达4.0以上。实施例9、实施例10中未添加活性炭,表现出较低的烯烷比。催化剂经进一步优化改性,如浸渍K、Mn、Mg、Zn、Na等元素,低碳烯烃选择性还会有所提高。
表1实施例1~13制备的样品加氢催化反应工艺参数及性能测试结果对比表
催化剂 CO2转化率(%) CH<sub>4</sub>(%) C<sub>2</sub>-C<sub>4</sub><sup>=</sup>(%) C<sub>2</sub>-C<sub>4</sub><sup>0</sup>(%) C<sub>5</sub><sup>+</sup>(%) O/P
样品1 20.48 40.44 10.54 25.15 23.87 0.42
样品2 27.31 19.45 45.54 9.19 25.82 4.96
样品3 29.37 17.58 45.78 15.16 21.48 3.02
样品4 22.15 18.82 46.12 13.61 21.45 3.39
样品5 32.26 18.78 45.52 12.92 22.78 3.52
样品6 35.16 19.87 46.87 8.71 24.55 5.38
样品7 27.45 18.03 44.52 11.12 26.33 4.00
样品8 29.54 21.52 47.72 9.8 20.96 4.87
样品9 30.45 24.63 47.75 17.08 10.54 2.80
样品10 35.52 28.55 43.57 12.31 15.57 3.54
样品11 34.2 24.44 45.29 11.33 18.94 4.00
样品12 36.41 25.78 45.67 10.97 17.58 4.16
样品13 34.87 24.87 47.58 9.01 18.54 5.28

Claims (5)

1.一种催化剂用于CO2加氢直接制低碳烯烃的应用,其特征在于,
所述催化剂应用于CO2加氢反应制备乙烯、丙烯、丁烯反应,反应条件为H2/CO2 =1~4,260~400℃、1~3 MPa,1000~4000 h–1
所述催化剂是以SrFexCoyO3-δ催化剂前驱体为基体;将尿素溶液加入基体中,呈浆态状后,加入多孔碳充分混匀,再次干燥后,氮气保护下350℃焙烧2h,研磨得目标催化剂。
2.根据权利要求1所述的催化剂,其特征在于催化剂前驱体是以摩尔比计Sr:Fe:Co=0.2-2:1:0.5-1.5称量,柠檬酸按Fe摩尔量的0.8-2倍称量,水溶解后于80℃水浴,120℃干燥12h,600-850 ℃煅烧2-10h,得催化剂前驱体。
3.根据权利要求1所述的催化剂,其特征在于尿素浓度在1-30mol/L。
4.根据权利要求1所述的催化剂,其特征在于多孔碳掺杂含量占催化剂总重量的0.5-50wt%。
5.根据权利要求1所述的催化剂,其特征在于催化剂优化,通过K、Mn、Zn、Na、Mg元素修饰。
CN202011114873.7A 2020-10-19 2020-10-19 一种用于co2加氢直接制低碳烯烃的催化剂和应用 Pending CN112121803A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011114873.7A CN112121803A (zh) 2020-10-19 2020-10-19 一种用于co2加氢直接制低碳烯烃的催化剂和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011114873.7A CN112121803A (zh) 2020-10-19 2020-10-19 一种用于co2加氢直接制低碳烯烃的催化剂和应用

Publications (1)

Publication Number Publication Date
CN112121803A true CN112121803A (zh) 2020-12-25

Family

ID=73853178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011114873.7A Pending CN112121803A (zh) 2020-10-19 2020-10-19 一种用于co2加氢直接制低碳烯烃的催化剂和应用

Country Status (1)

Country Link
CN (1) CN112121803A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219384A (zh) * 2007-01-08 2008-07-16 北京化工大学 一种用于合成气一步转化为低碳烯烃反应的催化剂
CN103589446A (zh) * 2013-11-01 2014-02-19 中国石油化工股份有限公司 一种铁基制液态烃的方法
CN109529905A (zh) * 2018-12-21 2019-03-29 陕西师范大学 一种Co基催化剂可控调变费托反应产物分布的方法
WO2019100497A1 (zh) * 2017-11-23 2019-05-31 中科合成油技术有限公司 多孔碳负载的费托合成催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219384A (zh) * 2007-01-08 2008-07-16 北京化工大学 一种用于合成气一步转化为低碳烯烃反应的催化剂
CN103589446A (zh) * 2013-11-01 2014-02-19 中国石油化工股份有限公司 一种铁基制液态烃的方法
WO2019100497A1 (zh) * 2017-11-23 2019-05-31 中科合成油技术有限公司 多孔碳负载的费托合成催化剂及其制备方法和应用
CN109529905A (zh) * 2018-12-21 2019-03-29 陕西师范大学 一种Co基催化剂可控调变费托反应产物分布的方法

Similar Documents

Publication Publication Date Title
Julian et al. Supercritical solvothermal synthesis under reducing conditions to increase stability and durability of Mo/ZSM-5 catalysts in methane dehydroaromatization
CN111346672B (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
Zhou et al. Novel Cu–Fe bimetal catalyst for the formation of dimethyl carbonate from carbon dioxide and methanol
Zhao et al. Hybrid catalysts with enhanced C3H6 resistance for NH3-SCR of NOx
CN108940355B (zh) 一种碱修饰的催化剂及一氧化碳加氢反应制乙烯的方法
CN110115995A (zh) 一种铁钼复合金属氧化物催化剂及其制备方法和应用
CN112973761B (zh) 一种石墨相氮化碳复合材料及制备方法和应用
CN112121815A (zh) 一种用于co2加氢的钙钛矿催化剂和应用
EP3900829A1 (en) Method for the preparation of low-carbon olefin in high selectivity from synthesis gas catalyzed by heteroatom-doped molecular sieve
US20220088573A1 (en) SUPPORTED CORE-SHELL STRUCTURED ZnO CATALYST, AND PREPARATION METHOD AND USE THEREOF
CN111036278B (zh) 由合成气制备低碳烯烃的方法
CN112121867A (zh) 一种加氢催化剂的载体和应用
CN112169817B (zh) 一种钙钛矿型复合载氧体和应用
CN112206783B (zh) 一种钙钛矿型载氧体的制备方法和应用
CN108927132A (zh) 一种双功能催化剂及一氧化碳加氢制乙烯的方法
CN112108180A (zh) 一种合成气直接转化制低碳烯烃的催化剂及其制备方法
Saito et al. Supported Ga-oxide catalyst for dehydrogenation of ethane
Nam et al. Catalytic conversion of carbon dioxide into hydrocarbons over zinc promoted iron catalysts
JP7007763B2 (ja) 有機アルカリで修飾された複合触媒及び一酸化炭素の水素化によるエチレンの製造方法
CN112121803A (zh) 一种用于co2加氢直接制低碳烯烃的催化剂和应用
CN112121804A (zh) 一种co加氢铁基催化剂及其制备方法
CN111346669B (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
CN113828321A (zh) 一种新型复合载氧体及其制备方法
CN112076755B (zh) 一种co2加氢催化剂的制备方法及应用
CN112121807A (zh) 一种co2加氢催化剂和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination