CN112117782A - 基于径向基函数模型的微电网运行优化方法 - Google Patents
基于径向基函数模型的微电网运行优化方法 Download PDFInfo
- Publication number
- CN112117782A CN112117782A CN202010922631.4A CN202010922631A CN112117782A CN 112117782 A CN112117782 A CN 112117782A CN 202010922631 A CN202010922631 A CN 202010922631A CN 112117782 A CN112117782 A CN 112117782A
- Authority
- CN
- China
- Prior art keywords
- microgrid
- basis function
- radial basis
- model
- ith
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000005070 sampling Methods 0.000 claims abstract description 73
- 238000004146 energy storage Methods 0.000 claims abstract description 24
- 230000003993 interaction Effects 0.000 claims abstract description 11
- 238000010248 power generation Methods 0.000 claims abstract description 7
- 238000012423 maintenance Methods 0.000 claims description 6
- 239000013598 vector Substances 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims description 3
- 239000000446 fuel Substances 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000012163 sequencing technique Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 2
- 230000002452 interceptive effect Effects 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 abstract description 6
- 239000002245 particle Substances 0.000 description 10
- 230000002068 genetic effect Effects 0.000 description 5
- 230000000739 chaotic effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/388—Islanding, i.e. disconnection of local power supply from the network
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06312—Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/007—Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
- H02J3/0075—Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/466—Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/10—Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/10—The dispersed energy generation being of fossil origin, e.g. diesel generators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Power Engineering (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Development Economics (AREA)
- Water Supply & Treatment (AREA)
- Educational Administration (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明属于微电网优化控制领域,公开了基于径向基函数模型的微电网运行优化方法,包括:建立以发电单元输出功率、储能电池充放电功率、联络线交互功率为控制对象的微电网优化模型;确定微电网优化模型的约束条件;随机抽样,生成初始采样点集;基于初始采样点集构建径向基函数模型;利用径向基函数模型估计并求解出微电网优化模型的最优解,优化微电网运行。本发明避免了反复大量调用复杂的目标函数,有效的减少计算负担和时间,提高系统最优解的搜索效率。
Description
技术领域
本发明属于微电网优化控制领域,具体涉及一种基于径向基函数模型的微电网运行优化方法。
背景技术
微电网作为发挥分布式电源效能的有效方式,得到电力行业的推崇。由于可再生能源具有不确定性,电源具有多样性,从而增加了微电网优化模型的复杂程度,且提高了模型的求解难度。因此,在求解复杂的微电网优化模型时会造成计算时间长的问题。如何快速求解微电网运行优化方案,成为了分布式发电领域需要解决的重要问题。
本技术领域中,Peng Li等2016年发表的论文“Stochastic optimal operationof microgrid based on chaotic binary particle swarm optimization”公开了一种混沌二进制粒子群算法,在二进制粒子群优化的早期过程中,采用混沌优化算法对粒子群进行初始化,该算法克服了二进制粒子群算法的早熟收敛问题。Mostafa Sedighizadeh等2019年发表的论文“Stochastic multi-objective economic-environmental energy andreserve scheduling of microgrids considering battery energy storage system”针对微电网经济环保运行问题,提出了一种混合元启发式算法。该算法由微分进化算法与粒子群算法相结合,以求解出各设备的最优输出功率,从而实现微电网的经济运行。SeyedAli Arefifar等2014年发表的论文“DG mix,reactive sources and energy storageunits for optimizing microgrid reliability and supply security”利用禁忌搜索算法,对微电网分布式电源的配置进行优化,从而提高微电网的可靠性。但上述文献所采用的优化算法需要对目标函数和约束条件进行大量的取样和调用计算,造成运算量大和计算时间长等缺陷。
发明内容
本发明的目的是针对上述问题,提供一种基于径向基函数模型的微电网运行优化方法,采用基于径向基函数的全局优化算法求解微电网优化模型的最优解,避免对目标函数和约束条件反复的调用计算或者大量的取样,减少计算负担和时间。
本发明的技术方案是基于径向基函数模型的微电网运行优化方法,包括以下步骤,
步骤1:建立以发电单元输出功率、储能电池充放电功率、联络线交互功率为控制对象的微电网优化模型;
步骤2:确定微电网优化模型的约束条件;
步骤3:随机抽样,生成初始采样点集;
步骤4:基于初始采样点集构建径向基函数模型;
步骤5:利用径向基函数模型估计并求解出微电网优化模型的最优解,优化微电网运行。
优选地,所述随机抽样采用拉丁超立方抽样。
进一步地,步骤1中,发电单元为柴油发电机,微电网优化模型的目标函数为:
其中t为调度时间段,T为调度周期内的总时间段;为t时段第i台柴油发电机的燃料成本;为t时段第i台柴油发电机的维护成本;和分别t时段第i台柴油发电机的启、停成本;为t时段第i台储能电池的维护成本;ρEX,t为t时段购/售电电价;PEX,t为t时段微电网联络线上的交互功率。
进一步地,所述径向基函数模型如下:
Aλi=y
fi=yi,i=1,2,…,m
式中yi为实际函数值即精确值,fi为预测值;A为基函数矩阵。
进一步地,步骤4包括以下子步骤:
步骤4.1:利用拉丁超立方采样方法对柴油发电机输出功率、储能电池充放电功率及联络线交互功率进行随机采集,并计算每组采样点集的实际目标函数值;
步骤4.2:将初始采样点并集及其对应的实际目标函数值带入Aλi=y中得到线性方程组;
进一步地,步骤5包括以下子步骤:
步骤5.1:对初始采样点集的实际目标函数值进行排序,找出可能包含最优解的区域;
步骤5.2:在可能包含最优解的区域再次利用拉丁超立方采样对微电网优化模型的变量产生一批新的采样点集,并利用径向基函数模型计算新采样点集的函数值;
步骤5.3:对所有估计的函数值进行择优,将优异点集带入原始微电网优化模型中计算其真实值,并与当前最优解进行比较;若优于最优解,将优异点集并入初始采样点集,并更新局部最优解,否则保持当前采样点集不变,并重新利用径向基函数模型对新采样点集进行估算;
步骤5.4:判断是否满足收敛条件,若满足条件,停止迭代,输出全局最优解;若不满足收敛条件,则依据采样点集重新构建径向基函数模型,执行步骤5.1。
与现有技术相比,本发明的有益效果是通过建立径向基函数模型代替复杂的微电网优化模型对解空间进行最优解的搜寻,搜寻过程中对采样点的目标函数值进行评估以缩小搜寻范围以提高求解效率,降低了复杂度和计算量,避免了反复大量调用复杂的目标函数,有效的减少计算负担和时间,提高系统最优解的搜索效率。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1为实施例利用径向基函数模型进行全局寻优的流程示意图。
图2为实施例的微电网优化运行示意图。
图3为本发明的优化算法与遗传算法、粒子群算法收敛速度对比示意图。
具体实施方式
实施例的微电网参数:柴油发电机额定功率为100kW,储能电池额定容量为250kWh,光伏电池额定功率50kW。
基于径向基函数模型的微电网运行优化方法,包括以下步骤:
步骤1:建立以柴油发电机输出功率、储能电池充放电功率、联络线交互功率为控制对象的微电网优化模型;
微电网优化模型的目标函数为:
其中t为调度时间段,T为调度周期内的总时间段;为t时段第i台柴油发电机的燃料成本;为t时段第i台柴油发电机的维护成本;和分别t时段第i台柴油发电机的启、停成本;为t时段第i台储能电池的维护成本;ρEX,t为t时段购/售电电价;PEX,t为t时段微电网联络线上的交互功率;K为柴油发电机的总数量。
步骤2:确定微电网优化模型运行的约束条件;
步骤3:基于拉丁超立方采样技术生成初始采样点集,具体采样步骤如下:
(1)将n维解空间的每一维分成互不重叠的m个区间,使得每个区间有相同的概率;
(2)在每一维里的每一个区间中随机的抽取一个点;
(3)再从每一维里随机抽出(2)中选取的点,将它们组成向量;
(4)重复步骤(3),直到得到m组向量,每一组向量代表一组运行方案。
步骤4:基于初始采样点集构建径向基函数模型,径向基函数模型如下:
其中m为采样点个数,x为新的采样点,xi为初始采样点,||x-xi||为欧式距离,φ(||x-xi||)为基函数;c为正实数;λi为第i个基函数的权重系数,且λi应满足插值条件:
Aλi=y
fi=yi,i=1,2,…,m
式中yi为实际函数值即精确值,fi为预测值;A为基函数矩阵。
利用拉丁超立方采样方法对柴油发电机输出功率、储能电池充放电功率及联络线交互功率进行随机采集,并计算每组采样点集的实际目标函数值;
将初始采样点并集及其对应的实际目标函数值带入Aλi=y中得到线性方程组;
步骤5:利用径向基函数模型估计并求解出微电网优化模型的最优解,从而得到各发电单元的最优输出功率;
步骤5.1:对初始采样点集的实际目标函数值进行排序,找出可能包含最优解的区域;
步骤5.2:在可能包含最优解的区域再次利用拉丁超立方采样对微电网优化模型的变量产生一批新的采样点集,并利用径向基函数模型计算新采样点集的函数值;
步骤5.3:对所有估计的函数值进行择优,将优异点集带入原始微电网优化模型中计算其真实值,并与当前最优解进行比较;若优于最优解,将优异点集并入初始采样点集,并更新局部最优解,否则保持当前采样点集不变,并重新利用径向基函数模型对新采样点集进行估算;
步骤5.4:判断是否满足收敛条件,若满足条件,停止迭代,输出全局最优解;若不满足收敛条件,则依据采样点集重新构建径向基函数模型,执行步骤5.1。
上述的基于径向基函数模型的全局寻优、求解微电网优化模型最优解的过程如图1所示。利用拉丁超立方采样产生m组包含n个变量的初始采样点集,即对优化控制变量柴油发电机输出功率、蓄电池充放电功率和联络线功率进行采样,生成多组微电网运行方案,并计算微电网优化模型的真实函数值。再根据初始采样点集和真实函数值对本发明中的微电网优化模型进行拟合,并生成径向基函数模型,找出可能包含微电网优化模型最优解区域。在可能包含最优解的区域再次利用拉丁超立方采样进行采样,并利用径向基函数模型估算新采样点集的函数值。对所有估计的函数值进行择优,将优异点集带入原始微电网优化模型中计算其真实值,并与当前最优解进行比较。若优于当前最优解,将优异点集并入初始采样点集,并更新局部最优解。若最优解未更新,在可能包含最优解的区域再次利用拉丁超立方采样进行采样,并利用径向基函数模型估算新采样点集的函数值。最后判断是否满足收敛条件,若满足条件,停止迭代,输出全局最优解。否则,再次根据采样点集和真实函数值对本发明中的微电网优化模型进行拟合,生成径向基函数模型,并重新估算微电网模型的最优解。
图2所示为应用本发明的微电网运行优化方法的微电网的运行记录。由图2可见,0:00至9:00时段,微电网中的柴油发电机处于停机状态,联络线交互功率为正,此时配电网向微电网输送电能。在11:00至14:00时段,联络线交互功率为负,此时微电网向配电网输送电能,且柴油发电机此处于工作状态。在19:00-21:00时段储能电池功率为正,此时储能电池处于放电状态。在23:00-03:00以及05:00-06:00时段,储能电池功率为负,此时储能电池处于充电状态。
图3是本发明的基于径向基函数模型的寻优算法与遗传算法、粒子群算法的收敛速度对比分析图。在对微电网优化模型求解过程中,遗传算法在500次迭代后接近最优解,粒子群算法大约在400次迭代后接近最优解,相比与遗传算法,粒子群算法收敛速度明显提升。本发明所提的算法收敛性最好,在第300次迭代后接近最优解。相比于遗传算法,基于径向基函数模型的算法的收敛速度提高了40%。实验结果表明,基于径向基函数模型的算法具有更快的收敛速度,能够快速有效的解决微电网优化问题。
Claims (7)
1.基于径向基函数模型的微电网运行优化方法,其特征在于,包括以下步骤,
步骤1:建立以发电单元输出功率、储能电池充放电功率、联络线交互功率为控制对象的微电网优化模型;
步骤2:确定微电网优化模型的约束条件;
步骤3:随机抽样,生成初始采样点集;
步骤4:基于初始采样点集构建径向基函数模型;
步骤5:利用径向基函数模型估计并求解出微电网优化模型的最优解,优化微电网运行。
2.根据权利要求1所述的基于径向基函数模型的微电网运行优化方法,其特征在于,所述随机抽样采用拉丁超立方抽样。
4.根据权利要求3所述的基于径向基函数模型的微电网运行优化方法,其特征在于,微电网优化模型的约束条件包括:
(1)输出功率约束
其中PDEGi,t为t时段第i台柴油发电机的输出功率;分别为t时段第i台柴油发电机的最小输出功率和最大输出功率;PBSi,t为t时段第i台储能电池的输出功率;分别为t时段第i台储能电池的最小输出功率和最大输出功率;
(2)功率爬坡速率约束
(3)荷电状态约束
其中SOCi,t为t时段第i台储能电池的荷电状态;分别为t时段第i台储能电池的最小荷电状态和最大荷电状态;为第i台储能电池的额定容量;PBSi,t为t时段第i台储能电池的输出功率;ηc和ηd分别是储能电池的充电、放电效率;
(4)微电网运行优化模型系统功率约束
7.根据权利要求5所述的基于径向基函数模型的微电网运行优化方法,其特征在于,步骤5包括以下子步骤:
步骤5.1:对初始采样点集的实际目标函数值进行排序,找出可能包含最优解的区域;
步骤5.2:在可能包含最优解的区域再次利用拉丁超立方采样对微电网优化模型的变量产生一批新的采样点集,并利用径向基函数模型计算新采样点集的函数值;
步骤5.3:对所有估计的函数值进行择优,将优异点集带入微电网优化模型中计算其真实值,并与当前最优解进行比较;若优于最优解,将优异点集并入初始采样点集,并更新局部最优解,否则保持当前采样点集不变,并重新利用径向基函数模型对新采样点集进行估算;
步骤5.4:判断是否满足收敛条件,若满足条件,停止迭代,输出全局最优解;若不满足收敛条件,则依据采样点集重新构建径向基函数模型,执行步骤5.1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010922631.4A CN112117782B (zh) | 2020-09-04 | 2020-09-04 | 基于径向基函数模型的微电网运行优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010922631.4A CN112117782B (zh) | 2020-09-04 | 2020-09-04 | 基于径向基函数模型的微电网运行优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112117782A true CN112117782A (zh) | 2020-12-22 |
CN112117782B CN112117782B (zh) | 2022-04-08 |
Family
ID=73802775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010922631.4A Active CN112117782B (zh) | 2020-09-04 | 2020-09-04 | 基于径向基函数模型的微电网运行优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112117782B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118174361A (zh) * | 2024-05-14 | 2024-06-11 | 国网山东省电力公司日照供电公司 | 一种分布式光伏储能最大输出功率追踪方法及系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102832621A (zh) * | 2012-09-18 | 2012-12-19 | 河海大学常州校区 | 三相并联型有源滤波器自适应rbf神经网络控制技术 |
CN111445092A (zh) * | 2020-04-21 | 2020-07-24 | 三峡大学 | 基于改进jaya算法的多微电网优化方法 |
-
2020
- 2020-09-04 CN CN202010922631.4A patent/CN112117782B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102832621A (zh) * | 2012-09-18 | 2012-12-19 | 河海大学常州校区 | 三相并联型有源滤波器自适应rbf神经网络控制技术 |
CN111445092A (zh) * | 2020-04-21 | 2020-07-24 | 三峡大学 | 基于改进jaya算法的多微电网优化方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118174361A (zh) * | 2024-05-14 | 2024-06-11 | 国网山东省电力公司日照供电公司 | 一种分布式光伏储能最大输出功率追踪方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112117782B (zh) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106849190B (zh) | 一种基于Rollout算法的多能互补微网实时调度方法 | |
CN110739725B (zh) | 一种配电网优化调度方法 | |
Hannan et al. | Binary particle swarm optimization for scheduling MG integrated virtual power plant toward energy saving | |
CN112713618B (zh) | 基于多场景技术的主动配电网源网荷储协同优化运行方法 | |
CN111626527B (zh) | 计及可调度电动汽车快/慢充放电形式的智能电网深度学习调度方法 | |
CN111242388B (zh) | 一种考虑冷热电联供的微电网优化调度方法 | |
Wang et al. | RETRACTED: Microgrid operation relying on economic problems considering renewable sources, storage system, and demand-side management using developed gray wolf optimization algorithm | |
CN113541166B (zh) | 一种分布式储能优化配置方法、系统、终端和存储介质 | |
CN108512238B (zh) | 基于需求侧响应的智能家居两阶段优化调度方法 | |
CN112671035A (zh) | 一种基于风电预测的虚拟电厂储能容量配置方法 | |
CN115115130A (zh) | 一种基于模拟退火算法的风光储制氢系统日前调度方法 | |
CN113659627A (zh) | 一种含光伏发电和液态空气储能的微电网优化调度方法 | |
CN114595961B (zh) | 一种生物质能多能源利用系统调度方法及装置 | |
CN112117782B (zh) | 基于径向基函数模型的微电网运行优化方法 | |
CN110504684B (zh) | 一种区域多微网系统日前优化调度方法 | |
CN114050609B (zh) | 一种高比例新能源电力系统自适应鲁棒日前优化调度方法 | |
CN115241923A (zh) | 一种基于蛇优化算法的微电网多目标优化配置方法 | |
Yin et al. | Improved genetic algorithm-based optimization approach for energy management of microgrid | |
CN110766285A (zh) | 一种基于虚拟电厂的日前能源调度方法 | |
CN116865271A (zh) | 一种基于数字孪生驱动的微电网多智能体协调优化控制策略 | |
CN115085227A (zh) | 一种微电网源储容量配置方法及装置 | |
CN115313349A (zh) | 电动船舶直流微电网充电系统控制方法、系统及存储介质 | |
Koochaki et al. | Optimal design of solar-wind hybrid system using teaching-learning based optimization applied in charging station for electric vehicles | |
CN114977247A (zh) | 一种应用于能量路由管理的扩展时间轴的粒子群算法 | |
Zhang et al. | Optimal configuration of wind/solar/diesel/storage microgrid capacity based on PSO-GWO algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |