CN111445092A - 基于改进jaya算法的多微电网优化方法 - Google Patents

基于改进jaya算法的多微电网优化方法 Download PDF

Info

Publication number
CN111445092A
CN111445092A CN202010317610.XA CN202010317610A CN111445092A CN 111445092 A CN111445092 A CN 111445092A CN 202010317610 A CN202010317610 A CN 202010317610A CN 111445092 A CN111445092 A CN 111445092A
Authority
CN
China
Prior art keywords
microgrid
power
grid
micro
ith
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010317610.XA
Other languages
English (en)
Inventor
王灿
董庆国
张高瑞
陈思睿
田恬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN202010317610.XA priority Critical patent/CN111445092A/zh
Publication of CN111445092A publication Critical patent/CN111445092A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

基于改进JAYA算法的多微电网优化方法,包括步骤1:建立多微电网并网优化模型;步骤2:建立微电网经济运行约束条件;步骤3:引入非线性变异算子改进JAYA算法;步骤4:利用改进JAYA算法对多微电网并网优化模型进行求解,从而得到多微电网内各电源的输出功率。本发明一种基于改进JAYA算法的多微电网优化方法,该方法求解精度高,具有较强的抗早熟收敛能力。

Description

基于改进JAYA算法的多微电网优化方法
技术领域
本发明属于微电网优化运行技术领域,具体涉及一种基于改进JAYA算法的多微电网优化方法。
背景技术
微电网作为分布式能源就地消纳的有效方式得到了迅速发展,随着微电网的发展,局部区域内由部分联系紧密的微电网形成的多微电网系统开始出现。多微电网相对于单微网具有更高的运行稳定性和经济性,更有利于新能源的高渗透综合利用。为了实现对分布式发电单元的最优调度,使多微电网内微电网所有者经济效益最大化的同时提高多微电网的运行稳定性,有必要对多微电网经济运行策略展开深入的研究。
现有技术文献中:A hybrid harmony search algorithm with differentialevolution for day-ahead scheduling problem of a microgrid with considerationof power flow constraints(ZHANG Jingrui,WU Yihong,GUO Yiran.A hybrid harmonysearch algorithm with differential evolution for day-ahead scheduling problemof a microgrid with consideration of power flow constraints[J].AppliedEnergy,183:791-804.)针对由光伏发电、柴油发电机、风力发电机和储能电池组成的微电网的最优日前调度模型,提出了一种将协调搜索与进化微分相结合的方法。混合粒子群算法在微电网经济优化运行的应用(吴定会,高聪,纪志成.混合粒子群算法在微电网经济优化运行的应用[J].控制理论与应用,2018,35(4):457-467.)使用混合粒子群算法对微电网中可控分布式发电单元的出力安排进行优化,以提升微电网运行经济性。基于人工蜂群算法的微电网环保经济调度(薛贵挺,张健.基于人工蜂群算法的微电网环保经济调度[J].电工电气,2016,(6):57-60.)针对考虑了系统运行安全约束的微电网环保经济调度模型,采用人工蜂群算法进行求解。基于遗传算法的微电网经济运行优化(陈天翼,刘宏勋.基于遗传算法的微电网经济运行优化[J].电器与能效管理技术,2017,(21):54-58,)考虑了微电网的运行成本和环境污染排放成本,采用遗传算法对优化模型进行求解。
上述群体智能算法具有简单、易于实现和收敛迅速的优点,因此在微电网领域受到了较多的关注。然而,上述群体优化算法均存在早熟收敛的问题。
发明内容
为改进上述现有技术中存在的不足,本发明提出一种基于改进JAYA算法的多微电网优化方法,该方法求解精度高,具有较强的抗早熟收敛能力。
本发明采取的技术方案为:
基于改进JAYA算法的多微电网优化方法,包括以下步骤:
步骤1:建立多微电网并网优化模型;
步骤2:建立微电网经济运行约束条件;
步骤3:引入非线性变异算子改进JAYA算法;
步骤4:利用改进JAYA算法对多微电网并网优化模型进行求解,从而得到多微电网内各电源的输出功率。
所述步骤1中,多微电网并网优化模型的目标函数表达式为:
Figure BDA0002460135330000021
其中,N为多微电网中微电网集合,T为多微电网优化周期;
Figure BDA0002460135330000022
为t时段微电网n中,第i个微型燃气轮机的燃料成本;
Figure BDA0002460135330000023
为t时段微电网n中,第i个微型燃气轮机维护成本;
Figure BDA0002460135330000024
Figure BDA0002460135330000025
为t时段微电网n中,第i个微型燃气轮机启/停机成本;
Figure BDA0002460135330000026
为t时段微电网n中,第i个储能电池的运行维护成本;
ρt为t时段配电网的售购电电价;
Figure BDA0002460135330000027
为微电网n在t时段的购售电功率,其正负值分别表示从配电网购电与售电;
Figure BDA0002460135330000028
为t时段微电网n与微电网m之间能量互济的功率,其正负值分别表示微电网n从微电网m购电与微电网n向微电网m售电。
所述步骤2中,微电网经济运行约束条件包括:储能电池输出功率约束、储能电池SOC约束、微型燃气轮机输出功率约束、微型燃气轮机输出功率爬坡速率约束、微电网n电功率平衡约束、微电网n联络线功率平衡约束;这些约束条件的表达式如下:
Figure BDA0002460135330000029
Figure BDA00024601353300000210
Figure BDA00024601353300000211
Figure BDA0002460135330000031
Figure BDA0002460135330000032
Figure BDA0002460135330000033
其中,
Figure BDA0002460135330000034
为t时段微电网n中,第i个储能电池输出功率;
Figure BDA0002460135330000035
Figure BDA0002460135330000036
分别为微电网n中,第i个储能电池的最小与最大输出功率;
Figure BDA0002460135330000037
为t时段微电网n中,第i个储能电池荷电状态;
Figure BDA0002460135330000038
Figure BDA0002460135330000039
分别为微电网n中,第i个储能电池的最小与最大荷电状态;
Figure BDA00024601353300000310
为t时段微电网n中,第i个微型燃气轮机输出功率;
Figure BDA00024601353300000311
Figure BDA00024601353300000312
分别为微电网n中,第i个微型燃气轮机最小与最大输出功率;
Figure BDA00024601353300000313
Figure BDA00024601353300000314
分别为微电网n中,第i个微型燃气轮机最大与最小爬坡率;
Figure BDA00024601353300000315
Figure BDA00024601353300000316
分别表示t时段微电网n中,第i个光伏和风机的输出功率;
Figure BDA00024601353300000317
为t时段微电网n中负荷功率;
Figure BDA00024601353300000318
为联络线功率,
Figure BDA00024601353300000319
Figure BDA00024601353300000320
为联络线最小功率与最大功率。
所述步骤3中,改进JAYA算法方程为:
Xi+1,j,k=Xi,j,ki,j[ri,j,1(Xi,j,best-|Xi,j,k|)-ri,j,2(Xi,j,worst-|Xi,j,k|)]
其中,Xi+1,j,k为更新后的解,Xi,j,k为更新前的解,βij为第i次迭代过程中,第j个种群的变异算子,ri,j,1与ri,j,2是第i次迭代中第j个变量在区间[0,1]中的两个随机数,Xi,j,best与Xi,j,worst为变量K在第i次迭代中最优值与最差值。
所述步骤4中,改进JAYA算法求解多微电网并网优化模型时,在获取多微电网设备参数以及各微电网输出功率与负荷功率的基础上,首先通过步骤3基于改进JAYA算法获取种群最优解Xi,j,best与最差解Xi,j,worst,然后对变异算子βi,j进行动态调整,并利用改进JAYA算法方程更新解Xi+1,j,k。变异算子方程为:
Figure BDA00024601353300000321
其中,βi,j为第i次迭代过程中,第j个种群的变异算子,k为总迭代次数,βmax和βmin分别为变异算子的最大值与最小值并分别取值,Δfi为第i次迭代过程中,n个种群的适应度集合,fi,j为第i次迭代过程中,第j个种群的适应度,fi,best为第i次迭代过程中最有种群的适应度。
最后,将更新解Xi+1,j,k与当前局部最优解Xi,j,k进行比较,若Xi+1,j,k<Xi,j,k,说明更新解有更好适应性,则取代当前局部最优解Xi,j,k,否则保持当前局部最优解Xi,j,k,直至找到并输出符合标准的全局最优解X,从而使多微电网内各电源工作在最优状态。全局最优解应满足如下公式:
X=min(X1,X2,...,Xn),i=1,...,n。
本发明一种基于改进JAYA算法的多微电网优化方法,优点在于:
改进的JAYA算法在传统JAYA算法基础上引入非线性变异算子,在迭代过程中通过计算种群适应度与最优种群适应度之间的差值大小对变异算子进行动态调整。通过调整变异算子大小的方法,增强了算法的自适应性,更好地平衡了算法的搜索行为,减少了算法陷入局部极值的概率,提高了JAYA算法的求解精度与抗早熟收敛能力。
附图说明
图1是并网多微电网控制结构图。
图2是改进的JAYA算法流程图。
图3是采用标准JAYA算法与本发明改进的JAYA算法求解模型时适应度变化曲线对比图。
具体实施方式
基于改进JAYA算法的多微电网优化方法,实施例如下:
图1为并网多微电网控制结构图。该多微电网由两个微电网组成,每个微电网包括负荷,储能电池和由光伏,风机及微型燃气轮机组成的分布式发电单元。各个微电网连接于多微电网系统公共母线,并通过多微电网功率节点连接于配电网。
其中,多微电网参数为:风机WT1额定功率为100kW,光伏PV1额定功率为70kW,PV2额定功率为80kW微型燃气轮机MT1额定功率为100kW,MT2额定功率为90kW,储能电池BAT1额定容量为250kW·h,BAT2额定容量为100kW·h。
图2为改进的JAYA算法流程图。首先获取多微电网设备参数以及各微电网输出功率与负荷功率,然后以微电网总运行成本最低为目标建立多微电网经济优化模型。引入非线性变异算子改进传统JAYA算法,改进JAYA算法求解经济优化模型时,获取种群最优解与最差解,然后基于迭代方程更新解,如果所更新的解有更好的适应性则接受并取代已有解,否则保持已有解,直至找到符合标准的最优解,最后输出该最优解,使多微电网内各电源工作在最优状态。
图3为分别采用标准JAYA算法与本发明改进的JAYA算法求解模型时适应度变化曲线。由图3可知,在算法迭代过程中,两种算法的适应度均在减少,但标准JAYA算法不仅在迭代初期有较慢的迭代速度,且迭代后期陷入了早熟收敛之中。而改进的JAYA算法能找到合适的全局最优解,相比标准JAYA算法具有更好的求解精度与抗早熟能力。

Claims (5)

1.基于改进JAYA算法的多微电网优化方法,其特征在于包括以下步骤:
步骤1:建立多微电网并网优化模型;
步骤2:建立微电网经济运行约束条件;
步骤3:引入非线性变异算子改进JAYA算法;
步骤4:利用改进JAYA算法对多微电网并网优化模型进行求解,从而得到多微电网内各电源的输出功率。
2.根据权利要求1所述基于改进JAYA算法的多微电网优化方法,其特征在于:所述步骤1中,多微电网并网优化模型的目标函数表达式为:
Figure FDA0002460135320000011
其中,N为多微电网中微电网集合,T为多微电网优化周期;
Figure FDA0002460135320000012
为t时段微电网n中,第i个微型燃气轮机的燃料成本;
Figure FDA0002460135320000013
为t时段微电网n中,第i个微型燃气轮机维护成本;
Figure FDA0002460135320000014
Figure FDA0002460135320000015
为t时段微电网n中,第i个微型燃气轮机启/停机成本;
Figure FDA0002460135320000016
为t时段微电网n中,第i个储能电池的运行维护成本;
ρt为t时段配电网的售购电电价;
Figure FDA0002460135320000017
为微电网n在t时段的购售电功率,其正负值分别表示从配电网购电与售电;
Figure FDA0002460135320000018
为t时段微电网n与微电网m之间能量互济的功率,其正负值分别表示微电网n从微电网m购电与微电网n向微电网m售电。
3.根据权利要求1所述基于改进JAYA算法的多微电网优化方法,其特征在于:所述步骤2中,微电网经济运行约束条件包括:储能电池输出功率约束、储能电池SOC约束、微型燃气轮机输出功率约束、微型燃气轮机输出功率爬坡速率约束、微电网n电功率平衡约束、微电网n联络线功率平衡约束;这些约束条件的表达式如下:
Figure FDA0002460135320000019
Figure FDA00024601353200000110
Figure FDA0002460135320000021
Figure FDA0002460135320000022
Figure FDA0002460135320000023
Figure FDA0002460135320000024
其中,
Figure FDA0002460135320000025
为t时段微电网n中,第i个储能电池输出功率;
Figure FDA0002460135320000026
Figure FDA0002460135320000027
分别为微电网n中,第i个储能电池的最小与最大输出功率;
Figure FDA0002460135320000028
为t时段微电网n中,第i个储能电池荷电状态;
Figure FDA0002460135320000029
Figure FDA00024601353200000210
分别为微电网n中,第i个储能电池的最小与最大荷电状态;
Figure FDA00024601353200000211
为t时段微电网n中,第i个微型燃气轮机输出功率;
Figure FDA00024601353200000212
Figure FDA00024601353200000213
分别为微电网n中,第i个微型燃气轮机最小与最大输出功率;
Figure FDA00024601353200000214
Figure FDA00024601353200000215
分别为微电网n中,第i个微型燃气轮机最大与最小爬坡率;
Figure FDA00024601353200000216
Figure FDA00024601353200000217
分别表示t时段微电网n中,第i个光伏和风机的输出功率;
Figure FDA00024601353200000218
为t时段微电网n中负荷功率;
Figure FDA00024601353200000219
为联络线功率,
Figure FDA00024601353200000220
Figure FDA00024601353200000221
为联络线最小功率与最大功率。
4.根据权利要求1所述基于改进JAYA算法的多微电网优化方法,其特征在于:所述步骤3中,改进JAYA算法方程为:
Xi+1,j,k=Xi,j,ki,j[ri,j,1(Xi,j,best-|Xi,j,k|)-ri,j,2(Xi,j,worst-|Xi,j,k)|]
其中,Xi+1,j,k为更新后的解,Xi,j,k为更新前的解,βij为第i次迭代过程中,第j个种群的变异算子,ri,j,1与ri,j,2是第i次迭代中第j个变量在区间[0,1]中的两个随机数,Xi,j,best与Xi,j,worst为变量K在第i次迭代中最优值与最差值。
5.根据权利要求1所述基于改进JAYA算法的多微电网优化方法,其特征在于:所述步骤4中,改进JAYA算法求解多微电网并网优化模型时,在获取多微电网设备参数以及各微电网输出功率与负荷功率的基础上,首先通过步骤3基于改进JAYA算法获取种群最优解Xi,j,best与最差解Xi,j,worst,然后对变异算子βi,j进行动态调整,并利用改进JAYA算法方程更新解Xi+1,j,k;变异算子方程为:
Figure FDA00024601353200000222
其中,βi,j为第i次迭代过程中,第j个种群的变异算子,k为总迭代次数,βmax和βmin分别为变异算子的最大值与最小值并分别取值,Δfi为第i次迭代过程中,n个种群的适应度集合,fi,j为第i次迭代过程中,第j个种群的适应度,fi,best为第i次迭代过程中最有种群的适应度;
最后,将更新解Xi+1,j,k与当前局部最优解Xi,j,k进行比较,若Xi+1,j,k<Xi,j,k,说明更新解有更好适应性,则取代当前局部最优解Xi,j,k,否则保持当前局部最优解Xi,j,k,直至找到并输出符合标准的全局最优解X,从而使多微电网内各电源工作在最优状态;全局最优解应满足如下公式:
X=min(X1,X2,...,Xn),i=1,...,n。
CN202010317610.XA 2020-04-21 2020-04-21 基于改进jaya算法的多微电网优化方法 Pending CN111445092A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010317610.XA CN111445092A (zh) 2020-04-21 2020-04-21 基于改进jaya算法的多微电网优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010317610.XA CN111445092A (zh) 2020-04-21 2020-04-21 基于改进jaya算法的多微电网优化方法

Publications (1)

Publication Number Publication Date
CN111445092A true CN111445092A (zh) 2020-07-24

Family

ID=71656038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010317610.XA Pending CN111445092A (zh) 2020-04-21 2020-04-21 基于改进jaya算法的多微电网优化方法

Country Status (1)

Country Link
CN (1) CN111445092A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117782A (zh) * 2020-09-04 2020-12-22 三峡大学 基于径向基函数模型的微电网运行优化方法
CN113722853A (zh) * 2021-08-30 2021-11-30 河南大学 一种面向智能计算的群智能进化式优化方法
CN114865673A (zh) * 2022-05-31 2022-08-05 国网湖北省电力有限公司荆门供电公司 一种微电网荷储协同优化方法、装置、设备及存储介质
CN117639483A (zh) * 2023-11-15 2024-03-01 燕山大学 一种新能源制氢变换器优化控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058857A (zh) * 2016-06-30 2016-10-26 上海电力学院 计及负荷转移与切负荷的主动配电网可靠性评估方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058857A (zh) * 2016-06-30 2016-10-26 上海电力学院 计及负荷转移与切负荷的主动配电网可靠性评估方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朱辉等: "考虑双重目标的微电网优化调度", 《上海电机学院学报》 *
田恬等: "考虑微电网间能量互济的多微电网日前经济优化策略", 《广东电力》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117782A (zh) * 2020-09-04 2020-12-22 三峡大学 基于径向基函数模型的微电网运行优化方法
CN113722853A (zh) * 2021-08-30 2021-11-30 河南大学 一种面向智能计算的群智能进化式优化方法
CN113722853B (zh) * 2021-08-30 2024-03-05 河南大学 一种面向智能计算的群智能进化式工程设计约束优化方法
CN114865673A (zh) * 2022-05-31 2022-08-05 国网湖北省电力有限公司荆门供电公司 一种微电网荷储协同优化方法、装置、设备及存储介质
CN117639483A (zh) * 2023-11-15 2024-03-01 燕山大学 一种新能源制氢变换器优化控制方法
CN117639483B (zh) * 2023-11-15 2024-05-10 燕山大学 一种新能源制氢变换器优化控制方法

Similar Documents

Publication Publication Date Title
Roslan et al. Scheduling controller for microgrids energy management system using optimization algorithm in achieving cost saving and emission reduction
CN109325608B (zh) 考虑储能并计及光伏随机性的分布式电源优化配置方法
Abdolrasol et al. An optimal scheduling controller for virtual power plant and microgrid integration using the binary backtracking search algorithm
Ma et al. Optimal allocation of hybrid energy storage systems for smoothing photovoltaic power fluctuations considering the active power curtailment of photovoltaic
CN111445092A (zh) 基于改进jaya算法的多微电网优化方法
CN113595158B (zh) 配售电竞争态势下区域配电网的供电能力评估方法
Logenthiran et al. Short term generation scheduling of a microgrid
Yammani et al. Optimal placement of multi DGs in distribution system with considering the DG bus available limits
CN112651634A (zh) 基于序列运算的有源配电系统源网荷储日前有功调度方法
Li et al. A dynamic multi-constraints handling strategy for multi-objective energy management of microgrid based on MOEA
Li et al. A hybrid constraints handling strategy for multiconstrained multiobjective optimization problem of microgrid economical/environmental dispatch
Changsong et al. Energy trading model for optimal microgrid scheduling based on genetic algorithm
Garces et al. Optimal operation of distributed energy storage units for minimizing energy losses
Sorour et al. MILP optimized management of domestic PV-battery using two days-ahead forecasts
Ren et al. Multi-objective optimization for dc microgrid using combination of nsga-ii algorithm and linear search method
CN110098623B (zh) 一种基于智能负载的Prosumer单元控制方法
CN114938040B (zh) 源-网-荷-储交直流系统综合优化调控方法和装置
Wang et al. Improved PSO-based energy management of Stand-Alone Micro-Grid under two-time scale
Peng et al. Research on Orderly Charging Control Strategy in Demond Response
Phan-Van et al. A comparison of different metaheuristic optimization algorithms on hydrogen storage-based microgrid sizing
CN114676921A (zh) 一种考虑源荷储协调优化的系统风电可接纳能力计算方法
Lim et al. Proportional integrator (PI) and fuzzy-controlled energy storage for zero-power flow between grid and local network with photovoltaic system
Dewantara et al. Minimization of Power Losses through Optimal Placement and Sizing from Solar Power and Battery Energy Storage System in Distribution System
Yang et al. Daily economic optimal dispatch of energy router considering the voltage of distribution network
Toma et al. Battery energy storage based balancing of a microgrid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200724

RJ01 Rejection of invention patent application after publication