CN111242388B - 一种考虑冷热电联供的微电网优化调度方法 - Google Patents

一种考虑冷热电联供的微电网优化调度方法 Download PDF

Info

Publication number
CN111242388B
CN111242388B CN202010075440.9A CN202010075440A CN111242388B CN 111242388 B CN111242388 B CN 111242388B CN 202010075440 A CN202010075440 A CN 202010075440A CN 111242388 B CN111242388 B CN 111242388B
Authority
CN
China
Prior art keywords
butterfly
micro
power
grid
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010075440.9A
Other languages
English (en)
Other versions
CN111242388A (zh
Inventor
和树森
刘天羽
卢亮
胡林峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN202010075440.9A priority Critical patent/CN111242388B/zh
Publication of CN111242388A publication Critical patent/CN111242388A/zh
Application granted granted Critical
Publication of CN111242388B publication Critical patent/CN111242388B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种考虑冷热电联供的微电网优化调度方法,用于优化冷热电联供的微电网的运行,所述微电网包括风机、光伏发电机和微型燃气轮机,所述方法采用改进蝴蝶算法求解预建立的微电网优化模型,获取最优解,所述微电网中设有蓄电池,用以在风机和光伏发电不足时,为微电网供电,所述改进蝴蝶算法通过反向学习策略对精英蝴蝶种群进行优化,通过混沌函数对随机数进行优化。与现有技术相比,本发明利用多能互补提高了微电网系统的综合能源利用率,降低了系统中各设备的储能容量,减少了微网的运行成本;通过改进的蝴蝶算法,提高了微电网优化模型求解的收敛速度和可靠性。

Description

一种考虑冷热电联供的微电网优化调度方法
技术领域
本发明涉及微电网领域,尤其是涉及考虑冷热电联供的微电网优化调度方法。
背景技术
冷热电联供(combined cooling heating and power,CCHP)系统存在冷、热、电三种能量,能够提高能源的综合利用率并减少污染物排放,具有良好的社会和经济效益。微电网解决了分布式电源大规模接入电网的问题,能够有效、灵活地利用各种分布式能源。CCHP型微电网存在冷、热、电三种能量之间的平衡关系,而微电网具有并网和孤岛运行两种方式。基于能源利用率和经济效益的考虑,在满足系统冷热负荷的前提下,如何制定最佳的优化调度策略这一问题受到越来越多的关注。
现有的微电网系统中风电、光伏发出功率存在间歇性、随机性等问题。蒸汽轮机在发出电能的同时也会产生大量热能及污染气体。微网的能源综合利用率较低,风电、光伏的消纳能力较差。现有微网的需求响应往往通过负荷削减或转移参与需求响应,会影响用户的用电体验,影响其舒适度。
发明内容
本发明的目的就是为了克服上述现有技术存在微电网运行中的波动性和不稳定性的缺陷而提供一种考虑冷热电联供的微电网优化调度方法。
本发明的目的可以通过以下技术方案来实现:
一种考虑冷热电联供的微电网优化调度方法,用于优化冷热电联供的微电网的运行,所述微电网包括风机、光伏发电机和微型燃气轮机,所述方法采用改进蝴蝶算法求解预建立的微电网优化模型,获取最优解,所述微电网中设有蓄电池,用以在风机和光伏发电不足时,为微电网供电,所述改进蝴蝶算法通过反向学习策略对精英蝴蝶种群进行优化,通过混沌函数对随机数进行优化。
进一步地,所述微电网优化模型的目标函数的表达式为:
f(X)=JO(X)+JF(X)+JB(X)
式中,JO(X)为设备的运行维护成本,JF(X)为燃气轮机的燃料成本,JB(X)为蓄电池的折旧成本。
进一步地,所述微电网优化模型包括电储能模型,该电储能模型的表达式为:
Figure GDA0003463767710000021
式中,EES(t)为t时刻蓄电池的储能容量,T为蓄电池的自放电率,PES_ch(t)为蓄电池在t时刻的充电功率,PES_dis(t)为蓄电池在t时刻的放电功率,ηsch为蓄电池在t时刻的充电效率,ηsdis为蓄电池在t时刻的放电效率。
进一步地,所述微电网优化模型包括蓄电池约束,该蓄电池约束的表达式为:
SOCi+1-SOCi>δ
式中,SOCi+1为i+1时刻蓄电池的SOC值,SOCi为i+1时刻蓄电池的SOC值,δ为两相邻时刻蓄电池的标准SOC值。
进一步地,所述改进蝴蝶算法包括以下步骤:
S1:初始化输入参数,载入微电网优化模型,所述输入参数包括风光发电功率、负荷量、微型燃气轮机、蓄电池的出电量以及微电网运行成本函数;
S2:根据反向学习策略,计算出反向解蝴蝶;
S3:计算精英蝴蝶种群中每只蝴蝶产生的香味浓度,根据原始蝴蝶和反向解蝴蝶,并舍弃香味浓度低于预设的第一阈值的蝴蝶,构建精英蝴蝶种群;
S4:计算步骤S3更新后的蝴蝶种群的切换概率,并获取一随机数,若切换函数大于所述随机数,则依次进行步骤S5和S6,否则进行步骤S7,所述随机数的取值范围在0至1之间,所述随机数根据混沌函数获取;
S5:进行全局位置搜索,获取全局最优解;
S6:对全局最优解进行柯西变异,然后进行步骤S8;
S7:进行局部位置搜索,获取局部最优解,然后进行步骤S8;
S8:更新局部最优解和全局最优解;
S9:对步骤S3更新后的精英蝴蝶种群中所有的蝴蝶个体,进行正余弦操作,优化蝴蝶个体进行位置更新;
S10:判断是否达到最大迭代次数,若达到,则结束迭代,输出最优值和最优解,否则执行步骤S3至S10。
进一步地,所述反向解蝴蝶的计算表达式为:
Figure GDA0003463767710000031
式中,xij为普通蝴蝶xi在j维上的值,
Figure GDA0003463767710000032
为普通蝴蝶的反向解,精英反向系数m为(0,1)的随机数,aij和bij
Figure GDA0003463767710000033
在j维的最大最小值,j为算法空间的纬度。
进一步地,所述步骤S3中,所述构建精英蝴蝶种群还包括对不在精英蝴蝶种群区间内的蝴蝶赋值,更新精英蝴蝶种群。
首先引入反向学习策略优化蝴蝶算法,将当前迭代的最优个体视为精英个体,通过利用精英个体反向学习生成精英反向解,从当前解和精英反向解中挑选优异个体作为下一代种群,扩大搜索区域的范围,在保证种群多样性的同时,可以增强算法的全局搜索能力和寻优精度。
进一步地,所述对不在初始精英蝴蝶种群区间内的蝴蝶赋值的表达式为:
Figure GDA0003463767710000034
Figure GDA0003463767710000035
式中,xij为普通蝴蝶xi在j维上的值,
Figure GDA0003463767710000036
为普通蝴蝶的反向解,精英反向系数m为(0,1)的随机数,aij和bij
Figure GDA0003463767710000037
在j维的最大最小值,j为算法空间的纬度。
进一步地,步骤S4中,所述随机数的计算表达式为:
rk+1=sin(πrk),r0=0.7
式中,rk为第k次迭代时的随机数,r0为随机数的初始值。
进一步地,步骤S6中,所述对全局最优解进行柯西变异的计算表达式为:
xnewbest=xbest+xbest×Cauchy(0,1)
式中,xnewbest为柯西变异后的全局最优解,xbest为全局最优解。
与现有技术相比,本发明具有以下优点:
(1)本发明针对楼宇型冷热电联供微电网,利用发电侧的能源互补,以系统运行成本最低为优化目标,优先对微网系统中的风电、光伏进行消纳,提高系统的综合能源利用率,并利用改进的蝴蝶算法进行求解,通过反向学习策略和混沌函数,加快了算法的收敛速度,提高了算法求解的可靠性。
(2)本发明微电网优化模型充分考虑了微电网中风机、光伏的出力,引入CCHP系统,提高了微电网对风机、光伏的消纳能力,充分考虑CCHP系统中,冷热负荷的潜在储能,利用多能互补提高了微电网系统的综合能源利用率,降低了系统中各设备的储能容量,能有效减少微网的运行成本,提高微网内能源的利用率,减少环境污染。
(3)本发明将混沌算法和正余弦算法引入传统蝴蝶算法,利用柯西变异提高了种群的多样性,通过反向学习策略对精英蝴蝶种群进行优化,提高了蝴蝶算法的全局搜索能力,加快了算法的收敛速度,提高收敛的准确性。
附图说明
图1为含冷热电联供的微电网系统的结构示意图;
图2为本发明改进的蝴蝶算法的流程示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
针对目前微电网运行中的波动性和不稳定性等问题,本实施例拟从发电侧出发,主要考虑冷热电联供系统中存在的冷热负荷的惯性因素,提高微电网对风电和光伏的消纳能力和微电网运行的经济性。CCHP的能源利用率较高,能够提高微电网对风能和太阳能的消纳能力。CCHP除自身配置的储能设备以外,利用其冷热负荷中的惯性因素构建多元储能系统,进一步优化系统设备的容量配置,提高整体的经济效益。
本实施例提供一种考虑冷热电联供的微电网优化调度方法,应用在含冷热电联供的微电网中。针对楼宇型冷热电联供微电网,利用发电侧的能源互补,以系统运行成本最低为优化目标,优先对微网系统中的风电、光伏进行消纳。重点考虑风机、光伏和燃气轮机的运维成本,建立单目标的微电网优化模型。将CCHP系统引入微电网,充分考虑CCHP系统中冷热负荷的潜在储能,提高系统的综合能源利用率。采用改进的蝴蝶算法进行求解,求得微网中各设备的最佳运行方式。
下面对本实施例提供的方法进行具体介绍。
一、微电网优化模型
微电网优化模型包括各设备的模型、目标函数以及约束条件,下面进行具体描述。
1、各设备的模型
1.1、微型燃气轮机模型
微型燃气轮机时CCHP系统的核心,在发电的同时会产生高温废烟,高温费烟进入余热锅炉转化为热能使用。本发明假设废烟在转化过程中温度不发生变化,忽略外界环境对微型蒸汽轮机的影响。其数学模型为:
Figure GDA0003463767710000051
其中,
Figure GDA0003463767710000052
式中CMr(t)为t时段燃气轮机的燃料成本;PMT(t)、ηMT(t)为t时段微型气轮机发出有功功率和发电效率系数;Δτ为微型燃气轮机运行时间;Rgas为天然气单位价格;LH为天然气低位热值。
1.2、余热锅炉模型
Figure GDA0003463767710000053
式中Hhe(t)为t时段余热锅炉的制热功率输出;η1为燃气轮机散热损失系数;ηhe为热回收效率;COPhe为余热锅炉的能效比。x(t)、1-x(t)分别为t时段微型燃气轮机烟气通入余热锅炉的流量比和烟气通入吸收式制冷机的流量比。
1.3、吸收式制冷机模型
Qac(t)=Hac(t)·COPac
Figure GDA0003463767710000054
式中Qac(t)、Hac(t)为t时段吸收式制冷机的制冷功率输出和吸收的热功率;COPac为吸收式制冷机的能效比;Qac_MT(t)为t时段微型燃气轮机余热通过吸收式制冷机的制冷功率输出。
1.4、电制冷机模型
Qec(t)=Pec(t)×COPec
式中Qec(t)、Pec(t)分别为t时段电制冷机的制冷功率输出和消耗的电功率;COPec为电制冷机的能效比。
1.5、电锅炉模型
Heh(t)=Peh(t)×COPeh
式中Heh(t)、Peh(t)为t时段电锅炉的制热功率输出和消耗的电功率;COPeh为电锅炉的能效比。
1.6、电储能模型
电储能系统选取蓄电池作为储能设备。其储能容量与蓄电池充放电功率应满足:
Figure GDA0003463767710000061
式中EES(t)为t时刻蓄电池的储能容量;τ为蓄电池的自放电率;PES_ch(t)、PES_dis(t)和ηsch、ηsdis分别为蓄电池在t时刻的充/放电功率和充/放电效率。
2、确定系统优化目标
2.1、优化目标
选取24h内,蓄电池和微型燃气轮机在每小时内的出力,为CCHP型微电网优化调度问题的优化变量。在满足各单元物理约束和系统运行约束的条件下,运行期间优先使用风机、光伏、微型燃气轮机的发电满足电负荷,使系统的运行成本最低。
2.2、目标函数
本实施例中系统的目标函数为系统的运行成本f(X),其计算表达式为:
f(X)=JO(X)+JF(X)+JB(X)
式中:JO(X)为设备的运行维护成本;JF(X)为燃气轮机的燃料成本;JB(X)为蓄电池的折旧成本;目标函数的表达式可表示为:F(X)=min(f(x))
3、约束条件
3.1、蓄电池
蓄电池应满足充放电功率约束,即:
-PES_ch_max≤PES≤PES_dis_max
式中,PES_ch_max为蓄电池最大允许充电功率,PES_dis_max为蓄电池最大允许放电功率,PES为蓄电池的功率。
通过等价转换可用蓄电池荷电状态表示充放电功率,即
SOCi+1-SOCi>δ
式中,SOCi+1和SOCi分别为两相邻时刻的蓄电池SOC值。在不同运行状态下(充电或放电状态),δ值不同。
3.2、微型燃气轮机
微型燃气轮机的发电功率应满足功率的上下限,即:
Pgen-min≤Pgen(t)≤Pgen-max
式中,Pgen_min为发电机的最小启动功率;Pgen_max为最大发电功率,一般取额定功率值。
此外,燃气轮机还应满足爬坡率的约束:
Figure GDA0003463767710000071
式中,Pup、Pdown分别为发电机爬坡率的上、下限。
3.3、功率和能力平衡
系统运行时,应满足电功率平衡,即:
Pload(t)=PES(t)+PPV(t)+PWT(t)
式中,Pload(t)、PPV(t)、PWT(t)分别为负荷预测功率、光伏和风力预测发电功率;PES(t)为蓄电池充放电功率。
同时还需要考虑热能平衡和冷能平衡,即:
QDAC(t)×COPhe≥Qhe(t)
QDAC(t)×COPco≥Qco(t)
式中,QDAC(t)表示t时段微燃机在发电过程中产生的余热;COPhe和COPco分别表示吸收式机组的制热系数和制冷系数;Qhe(t)和Qco(t)分别表示t时段热负荷和冷负荷水平,两种负荷通常不同时存在。
二、通过改进的蝴蝶算法对系统运行进行优化
本发明中,以优先使用风电、光伏为调度原则,利用改进的蝴蝶算法对该问题进行求解。取微型燃气轮机、蓄电池、的出电量和风机、光伏的预测功率为优化变量,输入改进蝴蝶算法进行优化。
图2所示为改进蝴蝶算法的流程图。具体步骤如下:
S1:初始化输入参数,包括预测风光发电功率、负荷量、微型燃气轮机、蓄电池的出电量以及微电网运行成本函数、约束条件,建立优化调度模型;
S2:应用反向学习策略,通过公式(1)计算出反向解蝴蝶,比较原始蝴蝶和反向解蝴蝶并舍弃香味浓度较低的蝴蝶;利用公式(2)将不再精英区间内的蝴蝶赋值,得到更好的精英蝴蝶种群;
S3:利用混沌函数代替随机函数,减少选择全局搜索和局部搜索的随机性,在每次迭代优化时,采用公式(3)计算rand(随机数)的值。若切换概率p>rand,则按照公式(4)、(5)进行全局位置更新;
S4:若切换概率p<rand,则按照公式(6)进行局部位置更新;
S5:得到局部和全局最优解后,通过公式(7)对所有的蝴蝶个体进行正余弦操作,进一步优化蝴蝶个体进行位置更新;
S6:判断是否达到最大迭代次数,若满足最大迭代次数,则结束程序,输出最优值和最优解,否则转步骤(3)。
此算法中,以微电网运行成本最低为目标函数,优先使用风机、光伏的出力,对微电网内各个设备单元进行优化调度,在满足约束条件的作用下,实现微电网经济最优。对于传统的微电网而言,引入冷热电联供系统后,降低了微电网运行成本,提高了系统的经济性。与传统蝴蝶算法相比,改进蝴蝶算法加快了收敛速度,提高了全局搜索能力。
此算法中各公式的计算表达式为:
公式(1):
Figure GDA0003463767710000083
公式(2):
Figure GDA0003463767710000084
Figure GDA0003463767710000085
式中,xij为普通蝴蝶xi在j维上的值,
Figure GDA0003463767710000086
为普通蝴蝶的反向解,精英反向系数m为(0,1)的随机数,aij和bij
Figure GDA0003463767710000087
在j维的最大最小值,j为算法空间的纬度。
公式(3):
rk+1=sin(πrk),r0=0.7
式中,rk为第k次迭代时的随机数,r0为随机数的初始值。
公式(4):
Figure GDA0003463767710000081
式中,
Figure GDA0003463767710000082
是第t次迭代中第i只蝴蝶的解向量xi,g*表示在当前迭代的所有解中的最优解。第i只蝴蝶发出的香味量用fi表示,r是[0,1]之间的随机数。
公式(5):
xnewbest=xbest+xbest×Cauchy(0,1)
公式(6):
Figure GDA0003463767710000091
式中,
Figure GDA0003463767710000092
Figure GDA0003463767710000093
表示在第t次迭代解空间中的第j和第k只蝴蝶的解向量,r是[0,1]之间的随机数,表示局部随机游走。
公式(7):
Figure GDA0003463767710000094
Figure GDA0003463767710000095
上式中含有四个参数,R1、R2、R3、R4,R1决定在下一次迭代第i个个体的位置更新方向,R2是[0,2π]之间的随机数,它决定下一次迭代中个体的移动距离;R3是随机权重的取值范围是[0,2],R3>1时,
Figure GDA0003463767710000096
对下一代迭代中个体的位置更新具有明显的影响,否则没有影响效果;R4是[0,1]之间产生的一个随机数,R4决定蝴蝶个体的位置更新方式是正弦还是余弦操作。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (6)

1.一种考虑冷热电联供的微电网优化调度方法,用于优化冷热电联供的微电网的运行,所述微电网包括风机、光伏发电机和微型燃气轮机,其特征在于,所述方法采用改进蝴蝶算法求解预建立的微电网优化模型,获取最优解,所述微电网优化模型以系统运行成本最低为优化目标,所述微电网中设有蓄电池,用以在风机和光伏发电不足时,为微电网供电,所述改进蝴蝶算法通过反向学习策略对精英蝴蝶种群进行优化,通过混沌函数对随机数进行优化;
所述改进蝴蝶算法包括以下步骤:
S1:初始化输入参数,载入微电网优化模型,所述输入参数包括风光发电功率、负荷量、微型燃气轮机、蓄电池的出电量以及微电网运行成本函数;
S2:根据反向学习策略,计算出反向解蝴蝶;
S3:计算精英蝴蝶种群中每只蝴蝶产生的香味浓度,根据原始蝴蝶和反向解蝴蝶,并舍弃香味浓度低于预设的第一阈值的蝴蝶,构建精英蝴蝶种群;
S4:计算步骤S3更新后的蝴蝶种群的切换概率,并获取一随机数,若切换函数大于所述随机数,则依次进行步骤S5和S6,否则进行步骤S7,所述随机数的取值范围在0至1之间,所述随机数根据混沌函数获取;
S5:进行全局位置搜索,获取全局最优解;
S6:对全局最优解进行柯西变异,然后进行步骤S8;
S7:进行局部位置搜索,获取局部最优解,然后进行步骤S8;
S8:更新局部最优解和全局最优解;
S9:通过公式(7)对步骤S3更新后的精英蝴蝶种群中所有的蝴蝶个体,进行正余弦操作,优化蝴蝶个体进行位置更新;
公式(7):
Figure FDA0003463767700000011
Figure FDA0003463767700000012
上式中含有四个参数,R1、R2、R3、R4,R1决定在下一次迭代第i个个体的位置更新方向,R2是[0,2π]之间的随机数,它决定下一次迭代中个体的移动距离;R3是随机权重的取值范围是[0,2],R3>1时,
Figure FDA0003463767700000013
对下一代迭代中个体的位置更新具有明显的影响,否则没有影响效果;R4是[0,1]之间产生的一个随机数,R4决定蝴蝶个体的位置更新方式是正弦还是余弦操作;
S10:判断是否达到最大迭代次数,若达到,则结束迭代,输出最优值和最优解,否则执行步骤S3至S10;
所述步骤S3中,所述构建精英蝴蝶种群还包括对不在精英蝴蝶种群区间内的蝴蝶赋值,更新精英蝴蝶种群;
所述对不在初始精英蝴蝶种群区间内的蝴蝶赋值的表达式为:
x′ij=aij;x′ij>aij
x′ij=bij;x′ij<bij
式中,xij为普通蝴蝶xi在j维上的值,x′ij为普通蝴蝶的反向解,aij和bij
Figure FDA0003463767700000022
在j维的最大最小值,j为算法空间的纬度;
所述微电网优化模型的目标函数的表达式为:
f(X)=JO(X)+JF(X)+JB(X)
式中,JO(X)为设备的运行维护成本,JF(X)为燃气轮机的燃料成本,JB(X)为蓄电池的折旧成本。
2.根据权利要求1所述的一种考虑冷热电联供的微电网优化调度方法,其特征在于,所述微电网优化模型包括电储能模型,该电储能模型的表达式为:
Figure FDA0003463767700000021
式中,EES(t)为t时刻蓄电池的储能容量,τ为蓄电池的自放电率,PES_ch(t)为蓄电池在t时刻的充电功率,PES_dis(t)为蓄电池在t时刻的放电功率,ηsch为蓄电池在t时刻的充电效率,ηsdis为蓄电池在t时刻的放电效率。
3.根据权利要求1所述的一种考虑冷热电联供的微电网优化调度方法,其特征在于,所述微电网优化模型包括蓄电池约束,该蓄电池约束的表达式为:
SOCi+1-SOCi>δ
式中,SOCi+1为i+1时刻蓄电池的SOC值,SOCi为i+1时刻蓄电池的SOC值,δ为两相邻时刻蓄电池的标准SOC值。
4.根据权利要求1所述的一种考虑冷热电联供的微电网优化调度方法,其特征在于,所述反向解蝴蝶的计算表达式为:
x′ij=m(aij+bij)-xij
式中,xij为普通蝴蝶xi在j维上的值,x′ij为普通蝴蝶的反向解,精英反向系数m为(0,1)的随机数,aij和bij
Figure FDA0003463767700000031
在j维的最大最小值,j为算法空间的纬度。
5.根据权利要求1所述的一种考虑冷热电联供的微电网优化调度方法,其特征在于,步骤S4中,所述随机数的计算表达式为:
rk+1=sin(πrk),r0=0.7
式中,rk为第k次迭代时的随机数,r0为随机数的初始值。
6.根据权利要求1所述的一种考虑冷热电联供的微电网优化调度方法,其特征在于,步骤S6中,所述对全局最优解进行柯西变异的计算表达式为:
xnewbest=xbest+xbest×Cauchy(0,1)
式中,xnewbest为柯西变异后的全局最优解,xbest为全局最优解。
CN202010075440.9A 2020-01-22 2020-01-22 一种考虑冷热电联供的微电网优化调度方法 Active CN111242388B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010075440.9A CN111242388B (zh) 2020-01-22 2020-01-22 一种考虑冷热电联供的微电网优化调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010075440.9A CN111242388B (zh) 2020-01-22 2020-01-22 一种考虑冷热电联供的微电网优化调度方法

Publications (2)

Publication Number Publication Date
CN111242388A CN111242388A (zh) 2020-06-05
CN111242388B true CN111242388B (zh) 2022-04-05

Family

ID=70865951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010075440.9A Active CN111242388B (zh) 2020-01-22 2020-01-22 一种考虑冷热电联供的微电网优化调度方法

Country Status (1)

Country Link
CN (1) CN111242388B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111692607A (zh) * 2020-06-22 2020-09-22 国网综合能源服务集团有限公司 一种耦合光伏的内燃机分布式能源系统
CN112287493B (zh) * 2020-09-17 2022-11-01 国家电网公司西南分部 含透平膨胀机的冷热电氢联供型微电网容量优化配置方法
CN112529727A (zh) * 2020-11-06 2021-03-19 台州宏远电力设计院有限公司 基于深度强化学习的微电网储能调度方法及装置及设备
CN112528210B (zh) * 2020-12-07 2023-06-13 中国科学院广州能源研究所 一种冷热电联供系统及控制方法
CN113255198B (zh) * 2021-03-25 2022-11-15 上海电机学院 一种含虚拟储能的冷热电联供微电网多目标优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016061741A1 (en) * 2014-10-21 2016-04-28 Accenture Global Services Limited System, method, and apparatus for capacity determination for micro grid, and tangible computer readable medium
CN107482638A (zh) * 2017-07-21 2017-12-15 杭州电子科技大学 冷热电联供型微电网多目标动态优化调度方法
CN109165788A (zh) * 2018-09-04 2019-01-08 河北工业大学 一种冷热电联供系统的优化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016061741A1 (en) * 2014-10-21 2016-04-28 Accenture Global Services Limited System, method, and apparatus for capacity determination for micro grid, and tangible computer readable medium
CN107482638A (zh) * 2017-07-21 2017-12-15 杭州电子科技大学 冷热电联供型微电网多目标动态优化调度方法
CN109165788A (zh) * 2018-09-04 2019-01-08 河北工业大学 一种冷热电联供系统的优化方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Improved Monarch Butterfly Optimization Algorithm Based on Opposition-Based Learning and Random Local Perturbation;Lin Sun;《Complexity》;20190210;全文 *
Opposition-based learning monarch butterfly optimization with Gaussian perturbation for large-scale 0-1 knapsack problem;Yanhong Feng;《Computers and Electrical Engineering》;20171226;全文 *
SCA: a sine cosine algorithm for solving optimization problems;Mirjalili S.;《Knowledge-based systems》;20160106;全文 *
Solving 0-1 knapsack problem by chaos monarch butterfly optimization algorithm with Gaussian mutation;Yanhong Feng;《Memetic Comp.》;20160909;全文 *
一种精英反向学习的萤火虫优化算法;魏伟一;《智能系统学报》;20170831;全文 *
利用储能系统实现可再生能源微电网灵活安全运行的研究综述;刘畅;《中国电机工程学报》;20200105;全文 *
柯西变异和自适应权重优化的蝴蝶算法;高文欣;《计算机工程与应用》;20191012;全文 *

Also Published As

Publication number Publication date
CN111242388A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN111242388B (zh) 一种考虑冷热电联供的微电网优化调度方法
CN109165788B (zh) 一种冷热电联供系统的优化方法
CN111463836B (zh) 一种综合能源系统优化调度方法
CN111860937B (zh) 基于改进多目标灰狼算法的冷热电联供型微电网优化方法
CN109449925B (zh) 一种多目标联合优化调度的自适应动态规划方法
CN111737884B (zh) 一种含多种清洁能源微能源网多目标随机规划方法
CN103151797A (zh) 基于多目标调度模型的并网运行方式下微网能量控制方法
CN105225022A (zh) 一种热电联产型微电网的经济性优化运行方法
CN112600253B (zh) 基于用能效率最优的园区综合能源协同优化方法及设备
CN110932317A (zh) 一种本质可再生能源互补的分布式能源系统的设计方法
CN109473976A (zh) 一种冷热电联供型微网能量调度方法及系统
CN111382902A (zh) 基于运行效益增量的区域综合能源系统储能优化配置方法
CN112270433A (zh) 考虑可再生能源不确定性和用户满意度的微电网优化方法
CN112085263A (zh) 一种用户侧分布式能源系统混合储能优化配置方法和系统
CN111160636B (zh) 一种cchp型微电网调度优化方法
CN112883630A (zh) 用于风电消纳的多微网系统日前优化经济调度方法
CN114091917A (zh) 冷热电联供型微电网动态环保经济调度方法及系统
CN113807566A (zh) 基于可再生能源和内部负荷不确定的社区能源的调度方法
CN111756073A (zh) 多能互补微网分层控制与运行优化方法
CN115238505B (zh) 基于风光场站的热电氢联供型系统优化配置方法及系统
CN116667325B (zh) 一种基于改进布谷鸟算法的微电网并网运行优化调度方法
CN116454987B (zh) 一种用于与新能源联合调度的储能优化方法及系统
Dong et al. Energy efficiency analysis of integrated energy system utilizing low-temperature waste heat based on day-ahead economic scheduling
CN113922375A (zh) 一种用于风-光-火-氢储新能源系统的能量管理系统
CN115907353A (zh) 计及新能源接入的工业园区综合能源系统建模方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant