CN112115635B - 一种基于深度学习的注塑工艺优化方法 - Google Patents
一种基于深度学习的注塑工艺优化方法 Download PDFInfo
- Publication number
- CN112115635B CN112115635B CN202010748281.4A CN202010748281A CN112115635B CN 112115635 B CN112115635 B CN 112115635B CN 202010748281 A CN202010748281 A CN 202010748281A CN 112115635 B CN112115635 B CN 112115635B
- Authority
- CN
- China
- Prior art keywords
- injection molding
- molding process
- parameter
- deep learning
- parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001746 injection moulding Methods 0.000 title claims abstract description 87
- 238000005457 optimization Methods 0.000 title claims abstract description 26
- 238000013135 deep learning Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000004088 simulation Methods 0.000 claims abstract description 19
- 238000012360 testing method Methods 0.000 claims abstract description 13
- 238000012549 training Methods 0.000 claims abstract description 9
- 238000010923 batch production Methods 0.000 claims abstract description 4
- 238000013461 design Methods 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 238000012417 linear regression Methods 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000004458 analytical method Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000004321 preservation Methods 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/22—Moulding
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 |
A | B | C | D | E | F | G | 翘曲量 | 信噪比 | 均值 |
80 | 220 | 80 | 18 | 5 | 5 | 35 | 1.05 | -0.42379 | 1.05 |
80 | 220 | 80 | 29 | 10 | 10 | 60 | 1.14 | -1.13810 | 1.14 |
80 | 240 | 110 | 18 | 5 | 10 | 60 | 1.29 | -2.21179 | 1.29 |
80 | 240 | 110 | 29 | 10 | 5 | 35 | 1.27 | -2.07607 | 1.27 |
100 | 220 | 110 | 18 | 10 | 5 | 60 | 1.14 | -1.13810 | 1.14 |
100 | 220 | 110 | 29 | 5 | 10 | 35 | 1.05 | -0.42379 | 1.05 |
100 | 240 | 80 | 18 | 10 | 10 | 35 | 1.27 | -2.07607 | 1.27 |
100 | 240 | 80 | 29 | 5 | 5 | 60 | 1.29 | -2.21179 | 1.29 |
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010748281.4A CN112115635B (zh) | 2020-07-30 | 2020-07-30 | 一种基于深度学习的注塑工艺优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010748281.4A CN112115635B (zh) | 2020-07-30 | 2020-07-30 | 一种基于深度学习的注塑工艺优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112115635A CN112115635A (zh) | 2020-12-22 |
CN112115635B true CN112115635B (zh) | 2021-10-29 |
Family
ID=73799374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010748281.4A Active CN112115635B (zh) | 2020-07-30 | 2020-07-30 | 一种基于深度学习的注塑工艺优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112115635B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115258323B (zh) * | 2021-04-29 | 2024-06-21 | 北京小米移动软件有限公司 | 撕膜控制方法、装置、电子设备及存储介质 |
BR102021013510A2 (pt) * | 2021-07-08 | 2023-01-17 | Andre Leao Barcellos | Sistema e processo de monitoramento de produção de máquinas |
CN113733506B (zh) * | 2021-08-10 | 2023-05-05 | 宁波海天智联科技有限公司 | 一种基于互联网的注塑产品加工的工艺参数优化方法 |
CN115048843B (zh) * | 2022-06-24 | 2024-10-01 | 重庆长安汽车股份有限公司 | 提高含玻纤注塑类零件仿真精度的方法、装置及存储介质 |
CN115965166B (zh) * | 2023-03-16 | 2023-05-23 | 昆山市恒达精密机械工业有限公司 | 一种塑胶产品生产工艺的优化方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109483816A (zh) * | 2018-12-27 | 2019-03-19 | 东莞市誉铭新精密技术股份有限公司 | 一种手机塑料壳体注塑工艺及注塑装置 |
CN110640982A (zh) * | 2019-08-26 | 2020-01-03 | 江苏师范大学 | 一种薄壁注塑件的注塑工艺参数多目标优化方法 |
CN111079338A (zh) * | 2019-12-24 | 2020-04-28 | 广东海洋大学 | 一种汽车后视镜外壳注塑工艺优化方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2535356A1 (en) * | 2003-08-13 | 2005-03-03 | Cargill, Incorporated | Computer-aided modeling and manufacture of products |
-
2020
- 2020-07-30 CN CN202010748281.4A patent/CN112115635B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109483816A (zh) * | 2018-12-27 | 2019-03-19 | 东莞市誉铭新精密技术股份有限公司 | 一种手机塑料壳体注塑工艺及注塑装置 |
CN110640982A (zh) * | 2019-08-26 | 2020-01-03 | 江苏师范大学 | 一种薄壁注塑件的注塑工艺参数多目标优化方法 |
CN111079338A (zh) * | 2019-12-24 | 2020-04-28 | 广东海洋大学 | 一种汽车后视镜外壳注塑工艺优化方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112115635A (zh) | 2020-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112115635B (zh) | 一种基于深度学习的注塑工艺优化方法 | |
CN106649964B (zh) | 一种基于ga-elm算法的铝合金压铸件晶粒尺寸预测方法 | |
CN110609531A (zh) | 一种基于数字孪生的车间调度方法 | |
CN109977464A (zh) | 一种基于bp神经网络的活塞切削加工变形量的预测方法 | |
CN113191050B (zh) | 一种基于msvr-ga优化初始残余应力的工件变形仿真预测方法 | |
JP4852420B2 (ja) | 成型技術における工具およびプロセスの設計 | |
CN112906331B (zh) | 一种基于对数扩展偏正态分布的标准单元延时模型构建方法 | |
CN105893669A (zh) | 一种基于数据挖掘的全局仿真性能预测方法 | |
CN116090310A (zh) | 基于田口试验和响应面法的多目标塑封工艺参数优化方法 | |
US9378315B1 (en) | Method for semiconductor process corner sweep simulation based on value selection function | |
CN111914461A (zh) | 一种涡轮导叶片一维冷效的智能评估方法 | |
Gondkar et al. | Optimization of casting process parameters through simulation | |
CN109948263A (zh) | 基于灵敏度分析的电路优化方法及系统 | |
CN113868912A (zh) | 一种钛合金j-c本构模型参数识别与修正方法 | |
CN112597708B (zh) | 一种考虑转捩扰动因素的γ-Reθt转捩模型标定方法 | |
CN110851920B (zh) | 一种模具压料器主筋线自动生成方法 | |
CN115408842A (zh) | 注塑成型仿真过程特性相似性分析方法 | |
CN103439964B (zh) | 一种ocsvm监控模型的在线更新系统及方法 | |
US11225005B2 (en) | System for setting molding conditions of injection-molding equipment | |
CN110287521B (zh) | 一种模具镶块边界自动生成方法 | |
CN108256271B (zh) | 一种led灯具的轻量化设计方法 | |
CN112163729A (zh) | 基于供货产品截断正态分布质量数据的过程能力分析方法 | |
CN110781615A (zh) | 一种cae仿真准确率的评价方法 | |
CN109360033A (zh) | 一种教练机单机目标价格的估算方法 | |
CN117171920B (zh) | 铝箔餐盒冲压成型控制方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20201222 Assignee: NANJING NANYOU INSTITUTE OF INFORMATION TECHNOVATION Co.,Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: X2021980014141 Denomination of invention: An optimization method of injection molding process based on deep learning Granted publication date: 20211029 License type: Common License Record date: 20211206 |
|
EC01 | Cancellation of recordation of patent licensing contract |
Assignee: NANJING NANYOU INSTITUTE OF INFORMATION TECHNOVATION Co.,Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: X2021980014141 Date of cancellation: 20231107 |
|
EC01 | Cancellation of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20201222 Assignee: Jiangsu Yuanjian Cable Co.,Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: X2024980008019 Denomination of invention: A Deep Learning Based Injection Molding Process Optimization Method Granted publication date: 20211029 License type: Common License Record date: 20240625 |
|
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20201222 Assignee: Nanjing Benli Information Technology Co.,Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: X2024980016890 Denomination of invention: A deep learning based optimization method for injection molding process Granted publication date: 20211029 License type: Common License Record date: 20240927 |
|
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20201222 Assignee: Nanjing Zijin Information Technology Co.,Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: X2024980017766 Denomination of invention: A deep learning based optimization method for injection molding process Granted publication date: 20211029 License type: Common License Record date: 20241010 Application publication date: 20201222 Assignee: Nanjing Zhujin Intelligent Technology Co.,Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: X2024980017765 Denomination of invention: A deep learning based optimization method for injection molding process Granted publication date: 20211029 License type: Common License Record date: 20241010 |