CN112114353A - 基于gem的裂变室 - Google Patents

基于gem的裂变室 Download PDF

Info

Publication number
CN112114353A
CN112114353A CN202010923159.6A CN202010923159A CN112114353A CN 112114353 A CN112114353 A CN 112114353A CN 202010923159 A CN202010923159 A CN 202010923159A CN 112114353 A CN112114353 A CN 112114353A
Authority
CN
China
Prior art keywords
gem
electrode
drift
collecting
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010923159.6A
Other languages
English (en)
Inventor
贺三军
王晓冬
赵修良
周超
赵越
胡创业
刘丽艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanhua University
University of South China
Original Assignee
Nanhua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanhua University filed Critical Nanhua University
Priority to CN202010923159.6A priority Critical patent/CN112114353A/zh
Publication of CN112114353A publication Critical patent/CN112114353A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • G01T3/08Measuring neutron radiation with semiconductor detectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明公开了一种基于GEM的裂变室,包括GEM探测器,所述GEM探测器具有金属外壳,设于金属外壳内的漂移电极、GEM膜和收集电极,GEM膜设于漂移电极和收集电极之间;漂移电极、GEM膜上表层电极、GEM膜下表层电极外加电压绝对值逐次减小的负电压,收集电极接地;收集电极与脉冲信号采集电路电连接;GEM膜与漂移电极之间形成漂移区,GEM膜与收集电极之间形成收集区;金属外壳、漂移电极和收集电极之间围成气室,气室内设有流动的电离气体;所述漂移区内还设有若干铝板;各铝板与漂移电极垂直,各铝板的一边与漂移电极固连;各铝板的两侧面均设有铀‑235层。本发明探测效率高,灵敏度高,计数率量程高,以期在单一脉冲模式下满足反应堆中子通量密度的宽量程监测需求。

Description

基于GEM的裂变室
技术领域
本发明属于裂变室领域,特别涉及一种基于GEM的裂变室。
背景技术
反应堆从启动至满功率运行,中子通量密度变化范围达到11个数量级(100~1011n.cm-2.s-1),监测方法主要是多种探测器组合接力测量和裂变室多模式组合接力测量。裂变室多模式组合接力测量的优点是探测器少、n/γ甄别强,但是也存在一些不足,如:热中子探测灵敏度不高(10-1-100cps/nv)、计数率动态范围小(中子注量率脉冲模式测量上限105-106n.cm-2.s-1)、监测模式切换繁琐等。
发明内容
本发明的目的在于,针对当前利用裂变室多模式组合接力测量方式监测反应堆从启动到满功率过程中存在的灵敏度不高、计数率动态范围小、监测模式切换繁琐的不足,提供一种基于GEM的裂变室,灵敏度高,计数率量程高,以期在单一脉冲模式下满足反应堆中子通量密度的宽量程监测需求。
为解决上述技术问题,本发明所采用的技术方案是:
一种基于GEM的裂变室,包括GEM探测器,所述GEM探测器具有金属外壳,设于金属外壳内的漂移电极、GEM膜和收集电极,GEM膜设于漂移电极和收集电极之间;漂移电极、GEM膜上表层电极、GEM膜下表层电极外加电压绝对值逐次减小的负电压,收集电极接地;收集电极与脉冲信号采集电路电连接;GEM膜与漂移电极之间形成漂移区,GEM膜与收集电极之间形成收集区;金属外壳、漂移电极和收集电极之间围成气室,气室内设有流动的电离气体;其特点是所述漂移区内还设有若干铝板;各铝板与漂移电极垂直,各铝板的一边与漂移电极固连;各铝板的两侧面均设有铀-235层。
作为一种优选方式,所述脉冲信号采集电路读取方式为盘阵列或像素读出方式。
作为一种优选方式,铝板的数量为80~100,铀-235层的厚度为5~6mg/cm2
作为一种优选方式,各铝板高度为10~20mm;GEM膜与各铝板下边沿之间的间距为3~5mm。
作为一种优选方式,GEM膜与收集电极之间的间距为1~3mm,优选为2mm。
作为一种优选方式,脉冲信号采集电路的甄别阈为α粒子最大沉积能量。
作为一种优选方式,GEM探测器的增益为100~101
作为一种优选方式,电离气体由氩气和二氧化碳组成,其中氩气与二氧化碳的体积比为(7~9):(3~1);GEM膜上表层电极与下表层电极之间的电压差为300~400V;漂移区的场强为1000~2500V/cm;收集区的场强为2000~4000V/cm。
作为一种优选方式,氩气与二氧化碳的体积比为4:1;收集区的场强为3000V/cm。
GEM探测器为气体电子倍增器(Gaseous Electron Multiplier,GEM),其具有可大面积制作(~m2)、高计数率(~108cps/cm2)、良好的抗辐照稳定性和鲁棒性、低成本等优点。
本发明利用GEM探测器易于大面积制作、高计数率的优点,设计一种基于GEM的裂变室,中子垂直入射到多层铝板上的铀-235层,提高了探测效率,继而提高了灵敏度,计数率量程高,以期在单一脉冲模式下满足反应堆中子通量密度的宽量程监测需求。
附图说明
图1为本发明基于GEM的裂变室结构示意图(移除金属外壳后)。
图2为基于GEM的裂变室模拟流程图。
图3为不同铝板数量下转化效率随转化层厚度的变化(金属U)。
图4为转化效率及最佳转化层厚度随铝板数量的变化(金属U)。
图5为转化效率及最佳转化层厚度随铝板数量的变化(U3O8)。
图6为不同漂移区间距裂变碎片平均沉积能量图。
图7为裂变碎片与α粒子沉积能量谱。
图8为不同CO2比例的GEM膜电压-增益曲线图。
图9为不同GEM膜电压漂移区场强-增益曲线图
图10为不同GEM膜电压收集区场强-增益曲线图。
图11为探测器的中子感应信号图。
其中,1为GEM探测器,101为漂移电极,102为GEM膜,1021为上表层电极,1022为下表层电极,103为收集电极,104为漂移区,105为收集区,106为气室,107为铀-235层,108为铝板,HV1-、HV2-为电源负极,C为电容,R1为第一电阻,R2为第二电阻。
具体实施方式
如图1所示,基于GEM的裂变室包括GEM探测器1,所述GEM探测器1具有金属外壳,设于金属外壳内的漂移电极101、GEM膜102和收集电极103,GEM膜102设于漂移电极101和收集电极103之间。收集电极103的信号经前置放大后被读取。
漂移电极101、GEM膜102上表层电极1021、GEM膜102下表层电极1022外加电压绝对值逐次减小的负电压,收集电极103接地。具体由下述结构实现:如图1,电源负极HV1-与漂移电极101电连接;电源负极HV2-通过电容C接地,电容C起到滤除杂波的作用。同时,电源负极HV2-依次通过第一电阻R1、第二电阻R2接地,GEM膜102上表层电极1021与第一电阻R1第一端电连接,GEM膜102下表层电极1022接在第一电阻R1第二端与第二电阻R2之间。
收集电极103与脉冲信号采集电路电连接;GEM膜102与漂移电极101之间形成漂移区104,GEM膜102与收集电极103之间形成收集区105;金属外壳、漂移电极101和收集电极103之间围成气室106,气室106内设有流动的电离气体;所述漂移区104内还设有若干铝板108;各铝板108与漂移电极101垂直,各铝板108的一边与漂移电极101固连;各铝板108的两侧面均设有铀-235层107。各铝板108高度为10~20mm。各铝板108厚度为数百微米(如200μm)。铀-235层107蒸镀于各铝板108上,形成235U镀层(即铀-235层107)。
金属外壳一般为不锈钢或铝合金材质,附图中未示出,但并不影响本领域的技术人员对本发明的理解和实现。外壳设进气口和出气口,流动的电离气体由进气口充入气室106,由出气口流出气室106。
外壳、提供电离气体的气源、脉冲信号采集电路、收集电极103与脉冲信号采集电路之间的电连接关系均为现有技术,故未在附图中示出,但并不影响本领域的技术人员对本发明的理解和实现。
GEM膜102采用市售的标准GEM膜,其结构为:中间为一层50μm厚的kapton薄膜,kapton薄膜上、下表面各镀有一层5μm厚的Cu膜(分别作为GEM膜102的上表层电极1021和下表层电极1022),kapton薄膜上开有双倒锥型小孔,小孔外径为70μm,内径为50μm,相邻两小孔的中心间距为140μm,小孔在kapton薄膜上的分布呈正三角形。
工作时,在漂移电极101、GEM膜102上表层电极1021、GEM膜102下表层电极1022加逐次减小的负电压,收集电极103接地,这样就在GEM探测器1内部形成一个由收集电极103指向漂移电极101的电场。
中子穿过金属外壳后,垂直入射到各铝板108上的铀-235层107,镀在各铝板108上的铀-235开始裂变反应。由于GEM膜102厚度非常小,小孔内的电场十分强,当裂变碎片进入漂移区104后,在气体介质中发生原初电离,电离电子在漂移区104电场的作用下进入GEM膜102小孔并在孔内产生雪崩放大,雪崩电子被收集电极板收集,由脉冲信号采集电路读取脉冲信号。脉冲信号采集电路读取方式为盘阵列(pad或piexl)或像素读出方式,GEM膜102上的每个小孔都可以视为独立的正比计数器,因此一个GEM探测器1相当于许多个微型探测器的组合,从而具有很高的计数率能力。同时GEM探测器1易于大面积制作,因而能够有效地提高热中子探测灵敏度。
通过对铝板108数量、铀-235层107厚度、GEM膜102与各铝板108下边沿之间的间距(即漂移区104间距)、工作电场强度等参数的蒙特卡罗模拟研究,得到本发明的各项最优设计参数。
建模与模拟过程具体如下:
本发明使用蒙特卡罗工具包Geant4、有限元分析软件ANSYS与气体探测器蒙特卡罗模拟工具包Garfield++对基于GEM的裂变室进行建模与模拟,模拟流程如图2所示。首先使用Geant4对热中子与235U镀层相互作用及裂变碎片在工作气体中的能量沉积进行建模与模拟;其次使用ANSYS对GEM探测器1进行建模和对内部电场分布节点进行求解;然后把由Geant4模拟得到的信息和用ANSYS建立的探测器模型导入Garfield++,进行GEM探测器1内部电荷的漂移、雪崩、收集等输运过程和GEM探测器1的信号感生过程的模拟,并把输出的信息输入ROOT数据包进行处理分析,最终得到GEM探测器1各项最优设计参数。
1、铝板数量和235U镀层厚度
实施例中利用Geant4对多层转化结构的235U镀层厚度、铝板数量与转化效率的关系进行详细的模拟,模拟中,235U镀层为金属U或U3O8235U丰度为90%,中子源为0.0253eV单能中子,每次垂直铝板发射106个。
图3为不同铝板数量下转化效率随转化层(235U镀层)厚度的变化,从图3中可以看出,随着铝板数量的增加转化效率增加,最大转化效率对应的235U镀层厚度减小。之所以最佳转化层厚度随铝板数量的增加而减小,是因为入射中子在铝板108中的衰减作用。图4为235U镀层为金属U时不同转化层(235U镀层)厚度转化效率随铝板数量的变化及最佳235U镀层厚度随铝板数量的变化图。从图4中可以看出,随着铝板数量的增加转化效率增加,但增加的速率逐渐减小,当铝板数量达到一定值时,转化效率趋于饱和;235U镀层厚度越小时饱和铝板数量越多;随着铝板数量的增加,最佳235U镀层厚度减小,当铝板数量为100时,最佳235U镀层厚度为5mg/cm2,最大转化效率可达49.1%,当铝板数量为50时,最佳235U镀层厚度为7mg/cm2,最大转化效率可达36.9%。图5为235U镀层为U3O8时不同235U镀层厚度转化效率随铝板数量的变化及最佳235U镀层厚度随铝板数量的变化图,从图5中可以看出,以U3O8235U镀层与以金属U为235U镀层,其转化效率随铝板数量的变化及最佳235U镀层厚度随铝板数量的变化有相同的变化趋势,当铝板数量为100时,最佳235U镀层厚度为4mg/cm2,最大转化效率为34.3%。
图3、图4、图5都是没有考虑阈值修正的结果,当设置阈值为4.4MeV且235U镀层为金属U时,不同铝板数量最佳235U镀层厚度及最大探测效率如下表1所示。
表1阈值为4.4MeV时不同铝板数量的最佳235U镀层厚度与最大探测效率(金属U)
Figure BDA0002667419350000051
探测效率与铝板108数量及235U镀层厚度密切相关。根据模拟结果获知,当铝板108的数量为80~100(铝板108的数量越多越好,为便于安装,选取80~100),铀-235层107的厚度为5~6mg/cm2时,探测效率最佳,可达40%以上。
2、GEM膜与各铝板下边沿之间的间距(即漂移区间距)
电离气体为Ar+少量CO2,气体压强为1个标准大气压,图6为不同漂移区间距裂变碎片平均沉积能量,可见随着漂移区104间距的增大,平均沉积能量也随之增加,当漂移区104间距为3~5mm时,平均沉积能量将达到数十MeV,远大于235U衰变α粒子能量和环境γ本底能量。
由模拟过程获知,随着漂移区104间距的增大,沉积能量谱也随之展宽,这将对探测器的能量分辨不利。此外,漂移区104间距越大,电子扩散效应越明显,不利于探测器的时间分辨。综合考虑,可选择GEM膜102与各铝板108下边沿之间的间距(漂移区104间距)为4mm。选择GEM膜102与收集电极103之间的间距为1~3mm,优选为2mm。
3、探测效率的阈值修正与α甄别
235U衰变α粒子进入探测器将给中子探测带来干扰,需要对探测器设置一定的甄别阈以剔除干扰。图7为漂移区间距为4mm时裂变碎片与α粒子沉积能量谱,当设置甄别阈为α粒子最大沉积能量,即4.4MeV时,可排除所有的α粒子干扰。甄别阈的存在将使低能裂变碎片计数损失从而造成探测效率的下降。
4、GEM探测器增益
裂变碎片在电离气体中平均沉积能量很大,为降低GEM探测器1放电打火的概率,可选择增益在100~101范围。增益与GEM膜102电压(即GEM膜102上表层电极1021与下表层电极1022之间的电压差)、电离气体成分、漂移区104及收集区105电场强度有关,图8为不同CO2比例的GEM膜电压-增益曲线图,增益随GEM膜102电压增加而增大,同一GEM膜电压时增益随CO2比例增加而减小。氩气与二氧化碳的体积比为(7~9):(3~1)。CO2起减小电子的扩散效应和猝灭作用,综合考虑可选择电离气体为体积比为80%的Ar和体积比为20%的CO2,GEM膜电压VGEM为300~400V。
图9为不同GEM膜电压漂移区场强-增益曲线图,随着漂移区104场强的增加,刚开始增益几乎没有变化,之后逐渐减小,当GEM膜102电压VGEM为300~400V时,理想的漂移区104场强Ed为1000~2500V/cm。图10为不同GEM膜电压收集区场强-增益曲线图,增益随收集区105场强增加而增大,理想的收集区105的场强为2000~4000V/cm,实践中可选择收集区105场强为Ei=3000V/cm。
5、探测器输出信号
使用理想平板作为收集电极103,模拟了基于GEM的裂变室信号感生过程,获得了中子感应信号。模拟中设定电离气体为80%Ar+20%CO2,GEM膜电压VGEM=320V,漂移区104场强Ed=2000V/cm,收集区105场强Ei=3000V/cm。图11为探测器的中子感应信号图,信号宽度小于100ns,脉冲总电荷数百fC,把该信号在1PF的电容上积分可输出一个10-1V的电压脉冲,脉冲上升时间小于100ns。
本发明设计了一种基于GEM的新型裂变室,使用Geant4、ANSYS与Garfield++对铝板108数量、235U镀层厚度、漂移区104间距、工作电场强度等参数进行了模拟研究,得到了该裂变室整体设计参数,并进行了中子感生信号仿真实验,结果表明,基于GEM的裂变室能够测量中子,输出信号脉冲幅度与宽度满足后续信号获取要求。
仿真结果表明,利用GEM探测器1搭建裂变室可显著的提高灵敏度和扩展计数率量程;铝板108的数量为80~100,铀-235层107的厚度为5~6mg/cm2;探测效率可达40%以上;漂移区104间距4mm、收集区105间距2mm、CO2比例20%、GEM膜电压300~400V、漂移区104场强1000~2500V/cm、收集区105场强3000V/cm为探测器的最优设计参数,此时输出信号宽度小于100ns,脉冲总电荷数百fC。
本发明工艺简单、设计灵活,将来随着大面积GEM探测器制作工艺和多路快电子学读出系统的进步,有望实现在单一脉冲模式下对反应堆从物理启动到满功率运行过程的中子通量密度监测全覆盖,对反应堆安全运行和控制具有重要的理论和现实意义。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是局限性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护范围之内。

Claims (9)

1.一种基于GEM的裂变室,包括GEM探测器(1),所述GEM探测器(1)具有金属外壳,设于金属外壳内的漂移电极(101)、GEM膜(102)和收集电极(103),GEM膜(102)设于漂移电极(101)和收集电极(103)之间;漂移电极(101)、GEM膜(102)上表层电极(1021)、GEM膜(102)下表层电极(1022)外加电压绝对值逐次减小的负电压,收集电极(103)接地;收集电极(103)与脉冲信号采集电路电连接;GEM膜(102)与漂移电极(101)之间形成漂移区(104),GEM膜(102)与收集电极(103)之间形成收集区(105);金属外壳、漂移电极(101)和收集电极(103)之间围成气室(106),气室(106)内设有流动的电离气体;其特征在于,所述漂移区(104)内还设有若干铝板(108);各铝板(108)与漂移电极(101)垂直,各铝板(108)的一边与漂移电极(101)固连;各铝板(108)的两侧面均设有铀-235层(107)。
2.如权利要求1所述的基于GEM的裂变室,其特征在于,所述脉冲信号采集电路读取方式为盘阵列或像素读出方式。
3.如权利要求1所述的基于GEM的裂变室,其特征在于,铝板(108)的数量为80~100,铀-235层(107)的厚度为5~6mg/cm2
4.如权利要求1所述的基于GEM的裂变室,其特征在于,各铝板(108)高度为10~20mm;GEM膜(102)与各铝板(108)下边沿之间的间距为3~5mm。
5.如权利要求1所述的基于GEM的裂变室,其特征在于,GEM膜(102)与收集电极(103)之间的间距为1~3mm,优选为2mm。
6.如权利要求1所述的基于GEM的裂变室,其特征在于,脉冲信号采集电路的甄别阈为α粒子最大沉积能量。
7.如权利要求1所述的基于GEM的裂变室,其特征在于,GEM探测器(1)的增益为100~101
8.如权利要求7所述的基于GEM的裂变室,其特征在于,电离气体由氩气和二氧化碳组成,其中氩气与二氧化碳的体积比为(7~9):(3~1);GEM膜(102)上表层电极(1021)与下表层电极(1022)之间的电压差为300~400V;漂移区(104)的场强为1000~2500V/cm;收集区(105)的场强为2000~4000V/cm。
9.如权利要求8所述的基于GEM的裂变室,其特征在于,氩气与二氧化碳的体积比为4:1;收集区(105)的场强为3000V/cm。
CN202010923159.6A 2020-09-04 2020-09-04 基于gem的裂变室 Pending CN112114353A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010923159.6A CN112114353A (zh) 2020-09-04 2020-09-04 基于gem的裂变室

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010923159.6A CN112114353A (zh) 2020-09-04 2020-09-04 基于gem的裂变室

Publications (1)

Publication Number Publication Date
CN112114353A true CN112114353A (zh) 2020-12-22

Family

ID=73803290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010923159.6A Pending CN112114353A (zh) 2020-09-04 2020-09-04 基于gem的裂变室

Country Status (1)

Country Link
CN (1) CN112114353A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140077093A1 (en) * 2012-06-26 2014-03-20 Inter-University Research Institute Corporation 2-d-tof-pulse neutron detector
CN104111471A (zh) * 2013-04-18 2014-10-22 中国科学院高能物理研究所 中子探测器与中子探测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140077093A1 (en) * 2012-06-26 2014-03-20 Inter-University Research Institute Corporation 2-d-tof-pulse neutron detector
CN104111471A (zh) * 2013-04-18 2014-10-22 中国科学院高能物理研究所 中子探测器与中子探测方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A.PIETROPAOLO ET AL.: "A new 3He-free thermal neutrons detector concept based on the GEM technology", 《NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTION》 *
F.ISSA ET AL.: "Characterization of thermal neutron beam monitors", 《PHYSICAL REVIEW ACCELERATORS AND BEAMS》 *
FABIO SAULI: "The gas electron multiplier (GEM): Operating principles and applications", 《NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTION A》 *
S.ANDRIAMONJE ET AL.: "Recent developments of a micromegas detector for neutron physics", 《IEEE TRANSACTIONS ON NUCLEAR SCIECENCE》 *
WANG XIAODONG 等: "Study on the novel neutron-to-proton concept for improving the detection efficiency of triple GEM based fast neutron detector", 《HTTPS://ARXIV.ORG/PDF/1403.3625.PDF》 *
李科 等: "多层涂硼GEM中子探测器的研究", 《中国核科学技术进展报告(第四卷)》 *
田立朝 等: "基于10B4C转换体的多层多丝正比室中子探测器模拟", 《原子核物理评论》 *

Similar Documents

Publication Publication Date Title
CN104111471B (zh) 中子探测器与中子探测方法
US8729487B2 (en) Neutron detector and method of making
Amaro et al. The Thick-COBRA: a new gaseous electron multiplier for radiation detectors
US8973257B2 (en) Method of making a neutron detector
Jewell et al. Characterization of an ionization readout tile for nEXO
CN105929441A (zh) 微通道板式快中子位置气体探测器及其探测方法
Dangendorf et al. Thermal neutron imaging detectors combining novel composite foil convertors and gaseous electron multipiers
Petrascu et al. A beginners' guide to gas-filled proportional detectors with delay line readout
Balan et al. Micromegas operation in high pressure xenon: charge and scintillation readout
CN112114350A (zh) 基于Micromegas的裂变室
CN112114353A (zh) 基于gem的裂变室
CN112987078A (zh) 一种基于陶瓷gem膜的密闭中子探测器及其制作方法
CN112114352A (zh) 基于gem的裂变室
Pansky et al. Applications of gaseous electron counting detectors
CN112114351A (zh) 基于Micromegas的裂变室
Hong et al. Development of compact micro-pattern gaseous detectors for the CEPC digital hadron calorimeter
Peskov et al. Development of novel designs of spark-protected micropattern gaseous detectors with resistive electrodes
CN207216033U (zh) 一种带有时间门控的多通道硬x射线成像探测器
Maia et al. Progress in MHSP electron multiplier operation
Alfonsi et al. Advances in fast multi-GEM-based detector operation for high-rate charged-particle triggering
CN214704019U (zh) 一种用于宽能区裂变截面测量的多层快裂变室
Titov Gaseous Detectors
Bellazzini et al. Progress with micro-pattern gas detectors
Breuil et al. Advances in the development of micropattern gaseous detectors with resistive electrodes
Iacobaeus et al. Study of capillary-based gaseous detectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201222

RJ01 Rejection of invention patent application after publication