CN112114351A - 基于Micromegas的裂变室 - Google Patents
基于Micromegas的裂变室 Download PDFInfo
- Publication number
- CN112114351A CN112114351A CN202010923123.8A CN202010923123A CN112114351A CN 112114351 A CN112114351 A CN 112114351A CN 202010923123 A CN202010923123 A CN 202010923123A CN 112114351 A CN112114351 A CN 112114351A
- Authority
- CN
- China
- Prior art keywords
- micromegas
- electrode
- drift
- microgrid
- collecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004992 fission Effects 0.000 title claims abstract description 42
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 60
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 60
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 21
- JFALSRSLKYAFGM-OIOBTWANSA-N uranium-235 Chemical compound [235U] JFALSRSLKYAFGM-OIOBTWANSA-N 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims description 23
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 239000004411 aluminium Substances 0.000 claims description 2
- 239000000523 sample Substances 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 13
- 238000012544 monitoring process Methods 0.000 abstract description 10
- 230000035945 sensitivity Effects 0.000 abstract description 8
- 230000005855 radiation Effects 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 description 27
- 238000007747 plating Methods 0.000 description 17
- 239000012634 fragment Substances 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000005684 electric field Effects 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000342 Monte Carlo simulation Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T3/00—Measuring neutron radiation
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C17/00—Monitoring; Testing ; Maintaining
- G21C17/10—Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- Measurement Of Radiation (AREA)
Abstract
本发明公开了一种基于Micromegas的裂变室,包括Micromegas探测器,所述Micromegas探测器具有金属外壳,设于金属外壳内的漂移电极、Micromegas微网和收集电极,Micromegas微网设于漂移电极和收集电极之间;收集电极与脉冲信号采集电路电连接;Micromegas微网与漂移电极之间形成漂移区,Micromegas微网与收集电极之间形成收集区;金属外壳、漂移电极和收集电极之间围成气室,气室内设有流动的电离气体;所述漂移区内还设有若干铝板;各铝板与漂移电极垂直,各铝板的一边与漂移电极固连;各铝板的两侧面均设有铀‑235层。本发明探测效率高,灵敏度高,计数率量程高;具有更好的抗干扰能力,更强的n/γ甄别能力,特别适合于反应堆等强电磁干扰与强γ辐射场环境的中子注量率的实时监测。
Description
技术领域
本发明属于裂变室领域,特别涉及一种基于Micromegas的裂变室。
背景技术
从反应堆启动至满功率运行,其核功率的动态变化范围会达到10个数量级,相应的中子注量率变化范围将达到11个数量级(100~1011n/cm2.s),出于次临界度、控制和安全目的,必须在反应堆运行的所有阶段监测堆芯中子注量率及其变化,另一方面,反应堆周围γ强度非常高,因此,用于反应堆中子注量率监测的中子探测器需要具备两个方面的条件,一是探测器量程要宽,二是探测器n/γ甄别能力要强。
由于一般的中子探测器量程有限,很难覆盖跨度这么大的测量范围,目前反应堆中子注量率监测方案主要有两类。第一类是把全程的测量范围分成好几段测量通道,分别配以不同的中子探测器来进行分段接力测量,此类方案最主要的缺点是探测器数目多,系统结构复杂;另一类是裂变室宽量程方案,利用裂变室自身具有的三种工作模式,即脉冲计数模式、坎贝尔模式、电流模式,组合起来能够覆盖反应堆运行的所有阶段中子注量率变化范围,此方案的优点是减少了探测器,简化了探测系统的结构,但也存在着如下问题:裂变室热中子探测灵敏度不高(10-1~100cps/nv)、计数率动态范围小(上限105~106cps)、监测模式切换繁琐等问题,其应用于大型商用反应堆技术尚不成熟。
发明内容
本发明的目的在于,针对当前裂变室监测反应堆从启动到满功率过程中热中子灵敏度不高、计数率动态范围小、监测模式切换繁琐的不足,提供一种基于Micromegas的裂变室,灵敏度高,计数率量程高,以期实现在单一脉冲模式下对反应堆从物理启动到满功率运行过程的中子注量率监测全覆盖。
为解决上述技术问题,本发明所采用的技术方案是:
一种基于Micromegas的裂变室,包括Micromegas探测器,所述Micromegas探测器具有金属外壳,设于金属外壳内的漂移电极、Micromegas微网和收集电极,Micromegas微网设于漂移电极和收集电极之间;漂移电极、Micromegas微网外加负电压,加在漂移电极上的负电压的电压绝对值大于加在Micromegas微网上的负电压的电压绝对值,收集电极接地;收集电极与脉冲信号采集电路电连接;Micromegas微网与漂移电极之间形成漂移区,Micromegas微网与收集电极之间形成收集区;金属外壳、漂移电极和收集电极之间围成气室,气室内设有流动的电离气体;其特点是所述漂移区内还设有若干铝板;各铝板与漂移电极垂直,各铝板的一边与漂移电极固连;各铝板的两侧面均设有铀-235层。
作为一种优选方式,所述脉冲信号采集电路读取方式为盘阵列或像素读出方式。
作为一种优选方式,铝板的数量为80~100,铀-235层的厚度为5~6mg/cm2。
作为一种优选方式,各铝板高度为10~20mm;Micromegas微网与各铝板下边沿之间的间距为3~5mm。
作为一种优选方式,Micromegas微网与收集电极之间的间距为100-500μm。
作为一种优选方式,脉冲信号采集电路的甄别阈为α粒子最大沉积能量。
作为一种优选方式,Micromegas探测器的增益为100~101。
作为一种优选方式,电离气体由氩气和二氧化碳组成,其中氩气与二氧化碳的体积比为(7~9):(3~1);漂移区的场强为1000~2500V/cm;收集区的场强为4×104V/cm~5×104V/cm。
作为一种优选方式,氩气与二氧化碳的体积比为4:1;收集区的场强为4.5×104V/cm。
Micromegas探测器为微网结构气体探测器(Micro-Mesh Gaseous Structure,Micromegas),由于Micromegas探测器易于大面积制作,因而能够有效提高热中子探测灵敏度;又由于Micromegas可以采用像素(pad或pixel)读出方式,因而具有很高的计数率能力,这一优点可以用来扩展其计数率量程。
本发明利用Micromegas探测器易于大面积制作、高计数率的优点,设计一种基于Micromegas的裂变室,该裂变室通过在Micromegas漂移电极上设置铀-235层作为热中子转化体来实现,其基本原理是,热中子诱发235U裂变反应,裂变碎片有一定的概率穿过铀-235层进入Micromegas探测器气室内的电离气体中从而被探测到。本发明灵敏度高,计数率量程高,以期实现在单一脉冲模式下对反应堆从物理启动到满功率运行过程的中子注量率监测全覆盖;基于Micromegas的裂变室具有比普通裂变室更好的抗干扰能力,比涂10B的Micromegas中子探测器更强的n/γ甄别能力,特别适合于反应堆等强电磁干扰与强γ辐射场环境的中子注量率的实时监测。
附图说明
图1为本发明基于Micromegas的裂变室结构示意图(移除金属外壳后)。
图2为基于Micromegas的裂变室模拟流程图。
图3为不同铝板数量下转化效率随转化层厚度的变化(金属U)。
图4为转化效率及最佳转化层厚度随铝板数量的变化(金属U)。
图5为转化效率及最佳转化层厚度随铝板数量的变化(U3O8)。
图6为不同漂移区间距裂变碎片平均沉积能量图。
图7为裂变碎片与α粒子沉积能量谱。
其中,1为Micromegas探测器,101为漂移电极,102为Micromegas微网,103为收集电极,104为漂移区,105为收集区,106为气室,107为铀-235层,108为铝板,HV1-为漂移极高压电源,HV2-为微网高压电源,C为电容,R1为第一电阻,R2为第二电阻。
具体实施方式
如图1所示,基于Micromegas的裂变室包括Micromegas探测器1,所述Micromegas探测器1具有金属外壳,设于金属外壳内的漂移电极101、Micromegas微网102和收集电极103,Micromegas微网102设于漂移电极101和收集电极103之间。收集电极103的信号经前置放大后被读取。
漂移电极101、Micromegas微网102外加负电压,加在漂移电极101上的负电压的电压绝对值大于加在Micromegas微网102上的负电压的电压绝对值,收集电极103接地。具体由下述结构实现:如图1,微网高压电源HV2-通过电容C接地,电容C起到滤除杂波的作用。同时,微网高压电源HV2-与Micromegas微网电连接。漂移极高压电源HV1-依次通过第一电阻R1、第二电阻R2接地。
收集电极103与脉冲信号采集电路电连接;Micromegas微网102与漂移电极101之间形成漂移区104,Micromegas微网102与收集电极103之间形成收集区105;金属外壳、漂移电极101和收集电极103之间围成气室106,气室106内设有流动的电离气体;所述漂移区104内还设有若干铝板108;各铝板108与漂移电极101垂直,各铝板108的一边与漂移电极101固连;各铝板108的两侧面均设有铀-235层107。各铝板108高度为10~20mm。各铝板108厚度为数百微米(如200μm)。铀-235层107蒸镀于各铝板108上,形成235U镀层(即铀-235层107)。
金属外壳一般为不锈钢或铝合金材质,附图中未示出,但并不影响本领域的技术人员对本发明的理解和实现。外壳设进气口和出气口,流动的电离气体由进气口充入气室106,由出气口流出气室106。
外壳、提供电离气体的气源、脉冲信号采集电路、收集电极103与脉冲信号采集电路之间的电连接关系均为现有技术,故未在附图中示出,但并不影响本领域的技术人员对本发明的理解和实现。
本实施例中,采用现有技术中的有效面积为20cm×20cm、计数率上限为106cm-2s-1的基于热熔胶工艺的Micromegas探测器1和成熟的基于AGET的通用电子学系统。
工作时,在漂移电极101、Micromegas微网102加逐次减小的负电压,收集电极103接地,这样就在Micromegas探测器1内部形成一个由收集电极103指向漂移电极101的电场。
热中子穿过金属外壳后,垂直入射到各铝板108上的铀-235层107,镀在各铝板108上的铀-235开始裂变反应。由于Micromegas微网102与收集电极103之间的间距非常小,电场十分强,当裂变碎片进入漂移区104后,在气体介质中发生原初电离,电离电子在漂移区104电场的作用下进入Micromegas微网102网孔并在收集区105内产生雪崩放大,雪崩电子被收集电极103收集,由脉冲信号采集电路读取脉冲信号。脉冲信号采集电路读取方式为盘阵列(pad或piexl)或像素读出方式,Micromegas微网102上的每个网孔结合收集极都可以视为独立的正比计数器,因此一个Micromegas探测器1相当于许多个微型探测器的组合,从而具有很高的计数率能力。同时Micromegas探测器1易于大面积制作,因而能够有效地提高热中子探测灵敏度。
通过对铝板108数量、铀-235层107厚度、Micromegas微网102与各铝板108下边沿之间的间距(即漂移区104间距)、电场强度等参数的蒙特卡罗模拟研究,对热中子探测灵敏度、输出脉冲幅度分布等的影响进行详细地模拟与计算,得到本发明的各项最优设计参数。
建模与模拟过程具体如下:
本发明使用蒙特卡罗工具包Geant4、有限元分析软件ANSYS与气体探测器蒙特卡罗模拟工具包Garfield++对基于Micromegas的裂变室进行建模与模拟,模拟流程如图2所示。首先使用蒙特卡罗模拟软件geant4对热中子与235U镀层发生作用的物理过程、裂变碎片核素成分及能谱、裂变碎片出射谱进行模拟,得出最大热中子转化效率及最优化转化层厚度;其次使用geant4软件对裂变碎片在气体中的能量沉积与最佳气体厚度进行模拟,然后使用有限元分析软件ANSYS与蒙特卡罗模拟软件Garfiled++对Micromegas相关物理过程进行模拟研究,得出Micromegas探测器1适合于裂变碎片探测的最优化设计参数和工作条件。ANSYS用于Micromegas探测器1的几何模型的搭建以及模拟探测器内部电场的分布情况,Garfield++应用于Micromegas探测器1相关物理过程的模拟计算,根据带电粒子信息及探测器内电场分布情况,对探测器内电离电荷的扩散、漂移、雪崩进行模拟。最终得到Micromegas探测器1各项最优设计参数。
1、铝板数量和235U镀层厚度
实施例中利用Geant4对多层转化结构的235U镀层厚度、铝板数量与转化效率的关系进行详细的模拟,模拟中,235U镀层为金属U或U3O8,235U丰度为90%,中子源为0.0253eV单能中子,每次垂直铝板发射106个。
图3为不同铝板数量下转化效率随转化层(235U镀层)厚度的变化,从图3中可以看出,随着铝板数量的增加转化效率增加,最大转化效率对应的235U镀层厚度减小。之所以最佳转化层厚度随铝板数量的增加而减小,是因为入射中子在铝板108中的衰减作用。图4为235U镀层为金属U时不同转化层(235U镀层)厚度转化效率随铝板数量的变化及最佳235U镀层厚度随铝板数量的变化图。从图4中可以看出,随着铝板数量的增加转化效率增加,但增加的速率逐渐减小,当铝板数量达到一定值时,转化效率趋于饱和;235U镀层厚度越小时饱和铝板数量越多;随着铝板数量的增加,最佳235U镀层厚度减小,当铝板数量为100时,最佳235U镀层厚度为5mg/cm2,最大转化效率可达49.1%,当铝板数量为50时,最佳235U镀层厚度为7mg/cm2,最大转化效率可达36.9%。图5为235U镀层为U3O8时不同235U镀层厚度转化效率随铝板数量的变化及最佳235U镀层厚度随铝板数量的变化图,从图5中可以看出,以U3O8为235U镀层与以金属U为235U镀层,其转化效率随铝板数量的变化及最佳235U镀层厚度随铝板数量的变化有相同的变化趋势,当铝板数量为100时,最佳235U镀层厚度为4mg/cm2,最大转化效率为34.3%。
图3、图4、图5都是没有考虑阈值修正的结果,当设置阈值为4.4MeV且235U镀层为金属U时,不同铝板数量最佳235U镀层厚度及最大探测效率如下表1所示。
表1阈值为4.4MeV时不同铝板数量的最佳235U镀层厚度与最大探测效率(金属U)
探测效率与铝板108数量及235U镀层厚度密切相关。根据模拟结果获知,当铝板108的数量为80~100(铝板108的数量越多越好,为便于安装,选取80~100),铀-235层107的厚度为5~6mg/cm2时,探测效率最佳,可达40%以上。
2、Micromegas微网与各铝板下边沿之间的间距(即漂移区间距)
电离气体为Ar+少量CO2,气体压强为1个标准大气压,图6为不同漂移区间距裂变碎片平均沉积能量,可见随着漂移区104间距的增大,平均沉积能量也随之增加,当漂移区104间距为3~5mm时,平均沉积能量将达到数十MeV,远大于235U衰变α粒子能量和环境γ本底能量。
由模拟过程获知,随着漂移区104间距的增大,沉积能量谱也随之展宽,这将对探测器的能量分辨不利。此外,漂移区104间距越大,电子扩散效应越明显,不利于探测器的时间分辨。综合考虑,可选择Micromegas微网102与各铝板108下边沿之间的间距(漂移区104间距)为4mm。选择Micromegas微网102与收集电极103之间的间距为100~500μm。
3、探测效率的阈值修正与α甄别
235U衰变α粒子进入探测器将给中子探测带来干扰,需要对探测器设置一定的甄别阈以剔除干扰。图7为漂移区间距为4mm时裂变碎片与α粒子沉积能量谱,当设置甄别阈为α粒子最大沉积能量,即4.4MeV时,可排除所有的α粒子干扰。甄别阈的存在将使低能裂变碎片计数损失从而造成探测效率的下降。本发明工艺简单、设计灵活,将来随着Micromegas制作工艺的进步,Micromegas裂变室有望实现在单一脉冲计数模式下对反应堆从物理启动到满功率运行过程的中子注量率监测全覆盖。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是局限性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护范围之内。
Claims (9)
1.一种基于Micromegas的裂变室,包括Micromegas探测器(1),所述Micromegas探测器(1)具有金属外壳,设于金属外壳内的漂移电极(101)、Micromegas微网(102)和收集电极(103),Micromegas微网(102)设于漂移电极(101)和收集电极(103)之间;漂移电极(101)、Micromegas微网(102)外加负电压,加在漂移电极(101)上的负电压的电压绝对值大于加在Micromegas微网(102)上的负电压的电压绝对值,收集电极(103)接地;收集电极(103)与脉冲信号采集电路电连接;Micromegas微网(102)与漂移电极(101)之间形成漂移区(104),Micromegas微网(102)与收集电极(103)之间形成收集区(105);金属外壳、漂移电极(101)和收集电极(103)之间围成气室(106),气室(106)内设有流动的电离气体;其特征在于,所述漂移区(104)内还设有若干铝板(108);各铝板(108)与漂移电极(101)垂直,各铝板(108)的一边与漂移电极(101)固连;各铝板(108)的两侧面均设有铀-235层(107)。
2.如权利要求1所述的基于Micromegas的裂变室,其特征在于,所述脉冲信号采集电路读取方式为盘阵列或像素读出方式。
3.如权利要求1所述的基于Micromegas的裂变室,其特征在于,铝板(108)的数量为80~100,铀-235层(107)的厚度为5~6mg/cm2。
4.如权利要求1所述的基于Micromegas的裂变室,其特征在于,各铝板(108)高度为10~20mm;Micromegas微网(102)与各铝板(108)下边沿之间的间距为3~5mm。
5.如权利要求1所述的基于Micromegas的裂变室,其特征在于,Micromegas微网(102)与收集电极(103)之间的间距为100~500μm。
6.如权利要求1所述的基于Micromegas的裂变室,其特征在于,脉冲信号采集电路的甄别阈为α粒子最大沉积能量。
7.如权利要求1所述的基于Micromegas的裂变室,其特征在于,Micromegas探测器(1)的增益为100~101。
8.如权利要求7所述的基于Micromegas的裂变室,其特征在于,电离气体由氩气和二氧化碳组成,其中氩气与二氧化碳的体积比为(7~9):(3~1);漂移区(104)的场强为1000~2500V/cm;收集区(105)的场强为4×104V/cm~5×104V/cm。
9.如权利要求8所述的基于Micromegas的裂变室,其特征在于,氩气与二氧化碳的体积比为4:1;收集区(105)的场强为4.5×104V/cm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010923123.8A CN112114351A (zh) | 2020-09-04 | 2020-09-04 | 基于Micromegas的裂变室 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010923123.8A CN112114351A (zh) | 2020-09-04 | 2020-09-04 | 基于Micromegas的裂变室 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112114351A true CN112114351A (zh) | 2020-12-22 |
Family
ID=73802083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010923123.8A Pending CN112114351A (zh) | 2020-09-04 | 2020-09-04 | 基于Micromegas的裂变室 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112114351A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104111471A (zh) * | 2013-04-18 | 2014-10-22 | 中国科学院高能物理研究所 | 中子探测器与中子探测方法 |
CN106199680A (zh) * | 2016-09-13 | 2016-12-07 | 清华大学 | 慢中子探测装置 |
CN206906283U (zh) * | 2017-07-03 | 2018-01-19 | 同方威视技术股份有限公司 | 大面积x射线气体探测器 |
US20180188409A1 (en) * | 2016-12-29 | 2018-07-05 | Schlumberger Technology Corporation | Systems and methods for monitoring radiation in well logging |
-
2020
- 2020-09-04 CN CN202010923123.8A patent/CN112114351A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104111471A (zh) * | 2013-04-18 | 2014-10-22 | 中国科学院高能物理研究所 | 中子探测器与中子探测方法 |
CN106199680A (zh) * | 2016-09-13 | 2016-12-07 | 清华大学 | 慢中子探测装置 |
US20180188409A1 (en) * | 2016-12-29 | 2018-07-05 | Schlumberger Technology Corporation | Systems and methods for monitoring radiation in well logging |
CN206906283U (zh) * | 2017-07-03 | 2018-01-19 | 同方威视技术股份有限公司 | 大面积x射线气体探测器 |
Non-Patent Citations (9)
Title |
---|
A.PIETROPAOLO ET AL.: "A new 3He-free thermal neutrons detector concept based on the GEM technology", 《NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTIO》 * |
F.ISSA ET AL.: "Characterization of thermal neutron beam monitors", 《PHYSICAL REVIEW ACCELERATORS AND BEAMS》 * |
S.ANDRIAMONJE ET AL.: "A new detector for neutron beam monitoring", 《HTTPS://WWW.RESEARCHGATE.NET/PUBLICATION/228882621_A_NEW_DETECTOR_FOR_NEUTRON_BEAM_MONITORING》 * |
S.ANDRIAMONJE ET AL.: "Development and performance of microbulk micromegas detectors", 《JOURNAL OF INSTRUMENTATION》 * |
S.ANDRIAMONJE ET AL.: "Recent developments of a micromegas detector for neutron physics", 《IEEE TRANSACTIONS ON NUCLEAR SCIECENCE》 * |
李科 等: "多层涂硼GEM中子探测器的研究", 《中国核科学技术进展报告(第四卷)》 * |
王文昕: "Micromegas探测器的研制、测试和计算机模拟", 《中国优秀博硕士学位论文全文数据库(硕士) 基础科学辑》 * |
田立朝 等: "基于10B4C转换体的多层多丝正比室中子探测器模拟", 《原子核物理评论》 * |
陈国祥: "基于Triple GEM新型快中子探测器中子解谱技术的研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Murtas | Applications of triple GEM detectors beyond particle and nuclear physics | |
CN102565846B (zh) | 蜂窝型热中子探测器 | |
Calviani et al. | A fast ionization chamber for fission cross-section measurements at n_TOF | |
CN112114350A (zh) | 基于Micromegas的裂变室 | |
Jewell et al. | Characterization of an ionization readout tile for nEXO | |
CN109085633A (zh) | 一种高浓度氚探测器及测量方法 | |
Jun-Jun et al. | 3D simulation of micromegas detector performance | |
Birch et al. | In-beam test of the Boron-10 Multi-Grid neutron detector at the IN6 time-of-flight spectrometer at the ILL | |
Petrascu et al. | A beginners' guide to gas-filled proportional detectors with delay line readout | |
Dado et al. | A new high gain thin gap detector for the OPAL hadron calorimeter | |
Gavrilyuk et al. | High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection | |
CN113671556A (zh) | 一种铀裂变电离室铀靶铀同位素原子核数量定值方法 | |
Croci et al. | GEM-based detectors for thermal and fast neutrons | |
CN112114351A (zh) | 基于Micromegas的裂变室 | |
CN213633848U (zh) | 一种中子-γ射线联合探测装置 | |
Gao et al. | First experiment on neutron resonance radiography with a Micromegas detector at the Back-n white neutron source | |
CN112114353A (zh) | 基于gem的裂变室 | |
CN112114352A (zh) | 基于gem的裂变室 | |
CN107064993B (zh) | 一种基于时间差进行中子检测的方法 | |
CN105137471A (zh) | 一种抑制γ干扰的低能β核素表面污染探测系统和方法 | |
Ye et al. | Design and characterization of a new high-count wide-range fission chamber based on GEM | |
RU2282215C2 (ru) | Позиционно-чувствительный детектор нейтронов | |
CN214704019U (zh) | 一种用于宽能区裂变截面测量的多层快裂变室 | |
RU2788834C1 (ru) | Позиционно-чувствительный детектор медленных и быстрых нейтронов | |
CN113640854B (zh) | 一种核反冲法气体探测器能量刻度方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201222 |
|
RJ01 | Rejection of invention patent application after publication |