CN112106295A - 具有可调电源的射频功率放大器 - Google Patents

具有可调电源的射频功率放大器 Download PDF

Info

Publication number
CN112106295A
CN112106295A CN201980006716.3A CN201980006716A CN112106295A CN 112106295 A CN112106295 A CN 112106295A CN 201980006716 A CN201980006716 A CN 201980006716A CN 112106295 A CN112106295 A CN 112106295A
Authority
CN
China
Prior art keywords
voltage
connection
semiconductor device
resistors
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980006716.3A
Other languages
English (en)
Inventor
郑毅
林晓童
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cool Star Technology Co ltd
Coolstar Technology Inc
Original Assignee
Cool Star Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cool Star Technology Co ltd filed Critical Cool Star Technology Co ltd
Publication of CN112106295A publication Critical patent/CN112106295A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5228Resistive arrangements or effects of, or between, wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • H01L23/5258Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive the change of state resulting from the use of an external beam, e.g. laser beam or ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0244Stepped control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

一种半导体器件,包括至少一个RF功率放大器(RFPA)以及与RFPA耦合用于基于所施加的输入电压向RFPA提供内部供应电压的电压供应调节网络。该电压供应调节网络包括多个电阻器、多个齐纳二极管、电压返回连接、与RFPA耦合以将供应电压传送到RFPA的内部供应电压连接、适于接收输入电压的输入电压连接以及与电阻器和齐纳二极管耦合的可配置连接网络。电阻器和齐纳二极管的子集经由相应的导电链路在输入电压与电压返回连接之间选择性地连接在一起,以根据所施加的输入电压向内部供应电压连接提供规定的输出电压。通过将能量源施加到连接网络中的一个或更多个选定的导电链路来配置连接网络。

Description

具有可调电源的射频功率放大器
技术领域
本发明总体上涉及电气、电子和计算机领域,并且更具体地涉及射频(RF)功率放大器。
背景技术
RF功率放大器(RFPA)是一种电子放大器,其适于接收低功率RF信号作为输入,并产生较高功率信号作为输出。RFPA的一种常见应用是驱动发射机的天线。RFPA设计目标通常包括最大化某些性能参数,例如增益、功率输出、带宽、功率效率(powerefficiency)和线性度(额定输出时的低信号压缩)等。这些性能参数中的大多数至少在一定程度上受到RFPA输出晶体管的供应电压或漏极电压VDD的影响。
RFPA可用的供应电压通常由单独的系统设计或印刷电路板(PCB)设计确定,供应电压可以取决于使用RFPA的特定应用而变化很大。由于RFPA通常被设计为在窄的供应电压范围内运行,以满足规定的性能标准,因此PCB上经常采用外部直流(DC)到DC(DC-DC)电压转换器来将各种可用的外部系统电压转换为适合RFPA使用的供应电压等级。
DC-DC转换器通常使用诸如在开关模式DC-DC转换器架构中的开关技术,通过暂时存储输入能量然后在不同的电压等级下将该能量释放到输出,来将输入DC电压等级转换为可能更高或更低的输出DC电压。该能量存储机构可以由磁场存储元件(例如,电感器,变压器等)或电场存储元件(例如,电容器)来实现,以增加或减小由DC-DC转换器产生的输出电压。与线性电压调节(例如电阻分压器等)相比,开关转换具有更高的功率效率(通常约为75%至95%),开关转换将多余的功率散发为热量。然而,DC-DC转换器在系统中表现出可测量的功率损耗。
开关模式DC-DC电压转换器通常包括控制器、开关晶体管(例如,金属-氧化物半导体场效应晶体管(MOSFET))、输入电容器、输出电容器和输出电感器。不幸的是,这些组件在PCB上需要大量空间,这也增加了成本。因此,RFPA电路或系统中的DC-DC电压转换器的使用会极大增加整个电路设计的成本和复杂性,增加RFPA电路所需的空间并增加功耗,所有这些都是不希望的。
发明内容
本发明的一个或更多个实施例提供了一种高效、高速的RF功率放大器(RFPA),该RF功率放大器(RFPA)适合与各种系统电压供应等级一起使用,而无需外部DC-DC电压转换器。根据本发明的一些实施例的各方面,提供一种RFPA电路,该RFPA电路包括集成电压供应调节网络,所述集成电压供应调节网络包括齐纳二极管和电阻器,该齐纳二极管和电阻器可以被选择性地连接以根据可用系统供应电压以及其他因素来提供期望的内部电压供应等级。
根据本发明实施例的示例性半导体器件包括至少一个RFPA电路和电压供应调节网络,所述电压供应调节网络与RFPA电路耦合,用于基于施加到该器件的输入电压向RFPA电路提供内部供应电压。该电压供应调节网络包括多个电阻器、多个齐纳二极管、电压返回连接(voltagereturnconnection)、与RFPA电路耦合以将供应电压传送到RFPA电路的内部供应电压连接、适于接收输入电压的输入电压连接以及与该电阻器和齐纳二极管耦合的可配置连接网络。该电阻器和齐纳二极管的子设备通过相应的导电链路在输入电压和电压返回连接之间选择性地连接在一起,以根据施加的输入电压向内部供应电压连接提供规定的输出电压。通过将能量源应用到连接网络中的一个或更多个选定的导电链路来配置该连接网络。
如本文中可能使用的,“促进(facilitating)”一个动作包括执行该动作,使该动作更容易,帮助执行该动作或使该动作被执行。因此,作为示例而非限制,在一个处理器上执行的指令可以通过发送适当的数据或命令以引起或帮助执行该动作来促进由在远程处理器上执行的指令所执行的动作。为了避免疑问,当参与者通过执行该动作以外的方式来促进动作时,该动作仍然是由某些实体或实体的组合来执行的。
各种单元、电路、模块或其他组件在本文中可被描述为被“配置为”执行一个或更多个特定任务。在这样的上下文中,术语“配置为”旨在广义地解释为对结构的叙述,该结构通常表示“具有在操作期间执行一个或更多个任务的电路”。这样,即使当前单元/电路/模块/组件没有上电,也可以将该单元/电路/模块/组件配置为执行关于主题的一个或更多个任务。通常,形成与“配置为”相对应的结构的电路可以包括硬件电路和/或存储可执行以实现该操作的程序指令的存储器。类似地,为了便于描述,各种单元/电路/模块/组件可以被描述为执行一个或更多个任务。此类描述应解释为包括短语“配置为”。明确指出被配置为执行一个或更多个任务的单元/电路/模块/组件的叙述不旨在调用35U.S.C.§112,(f)段对单元/电路/模块/组件的解释。
根据本发明实施例的技术提供了实质的有益技术效果。仅作为示例而非限制,本发明的一个或更多个实施例实现以下一个或更多个,以及其他优点:
·在硅衬底上提供单片集成电路接口,以接收任意系统供应电压;
·在系统电源和RFPA之间无需DC-DC转换器、相关组件和控制器;
·用与标准的前道工艺(FEOL)和后道工艺(BEOL)互补金属氧化物半导体(CMOS)加工兼容的制造工艺,提供集成的可调供应电压和精确的偏置调谐,从而允许提高性能并降低加工成本;
·实现了小的形状因数(formfactor),这在空间受限的应用中是有利的,在这些应用中,系统PCB的空间可能受到限制,无法容纳DC-DC转换器和相关的无源组件;
·消除了由DC-DC转换器引起的能量损失,从而实现了更好的整体系统效率;
·提供可在多种可用系统供应电压下操作的RFPA,无需更换RFPA或DC-DC转换器即可在系统设计中提供更大的灵活性。
从下面结合附图对示例性实施例的详细描述中,本发明的这些和其他特征和优点将变得显而易见。
附图说明
以下附图仅以示例而非限制的方式给出,其中,贯穿各个视图相同的附图标记(在使用时)表示相应的元件,其中:
图1A是示出采用DC-DC转换器的示例性标准RF前端模块的框图;
图1B是示出根据本发明的实施例的示例性RF前端模块的至少一部分的框图;
图2A和2B是概念性地示出了根据本发明的实施例的半导体器件中的示例性选择电路的至少一部分的示意图,该半导体器件用于分别在调节过程之前和之后、基于施加的外部系统电压源来调节器件的内部供应电压以满足规定的工作参数;
图3A和3B是概念性地示出了根据本发明的实施例的示例性半导体器件的至少一部分的俯视图,该半导体器件分别在用于控制器件的内部供应电压的调节过程之前和之后、带有具有各种预定电阻值的电阻器阵列和具有各种预定反向击穿电压的齐纳二极管;
图4A和4B分别是根据本发明的实施例的截面图和俯视图,其示出了在用于调节器件的内部供应电压的调节过程之前的示例性半导体器件的至少一部分;
图5A和5B分别是根据本发明的实施例的截面图和俯视图,其示出了在已经执行了激光或电子束退火以在器件的电压选择电路中形成选定的电连接之后的图4A和4B所示的示例性半导体器件的至少一部分;
图6A和6B分别是根据本发明的实施例的截面图和俯视图,其示出了在用于调节器件的内部供应电压的调节过程之前的示例性半导体器件的至少一部分,其中,该器件中的高阻抗层具有小于或等于用于执行退火过程的激光或电子束的宽度的宽度;
图7A和7B分别是根据本发明的实施例的截面图和俯视图,其示出了在已经执行了激光或电子束退火过程以在该器件的电压选择电路中形成选定的电连接之后的图6A和6B所示的示例性半导体器件的至少一部分;
图8A和8B是概念性地示出根据本发明的实施例的在用于调节器件的内部供应电压的调节过程之后的半导体器件中的选择电路的两个不同的说明性配置的至少一部分的示意图;
图9A和9B是概念性地示出了根据本发明的实施例的示例性半导体器件的至少一部分的俯视图,该示例性半导体器件分别在用于调节器件的内部供应电压的可选的调节过程之前和之后、带有具有各种预定电阻值的电阻器阵列和具有各种预定反向击穿电压的齐纳二极管;
图10A和10B分别是根据本发明的实施例的截面图和俯视图,其示出了在用于调节器件的内部供应电压的可选的调节过程之前的示例性半导体器件的至少一部分;
图11A和11B分别是根据本发明的实施例的截面图和俯视图,其示出了在用于调节器件的内部供应电压的可选的调节过程之后的示例性半导体器件的至少一部分;
图12A和12B分别是根据本发明的实施例的截面图和俯视图,其示出了在用于调节器件的内部供应电压的可选的调节过程之前的示例性半导体器件的至少一部分,该调节过程包括通过钝化层形成开口以暴露连接到该器件中的相应电阻器和齐纳二极管的导电垫;
图13A和13B分别是根据本发明的实施例的截面图和俯视图,其示出了在用于调节器件的内部供应电压的图12A和12B所示的可选的调节过程之前的示例性半导体器件的至少一部分,该器件包括外部电压或使用导电探针的电流的有针对性的应用;
图14A和14B分别是根据本发明的实施例的截面图和俯视图,其示出了在用于调节器件的内部供应电压的可选的调节过程之后的图13A至13B所示的示例性半导体器件的至少一部分;以及
图15是示出了根据本发明的一个或更多个实施例的半导体器件的选择电路中的电阻器和齐纳二极管的示例性组合的表格,该半导体器件用于根据不同的外部系统供应电压来实现某些内部供应电压等级。
应当理解,附图中的元件是为了简单和清楚而示出的。为便于尽量不阻碍对所示实施例的查看,可能未示出在商业上可行的实施例中可能有用的或必需的普通但易于理解的元件。
具体实施方式
本文将在示例性半导体结构的上下文中描述本发明的原理,所述半导体结构包括具有集成的可调电压供应的RF功率放大器(RFPA)电路。本发明的实施例提供了一种高效、高速的RFPA电路,该电路适合于与任意系统电压供应等级一起使用,而无需DC-DC电压转换器。在一个或更多个示例性实施例中,RFPA电路包括集成电压供应调节网络,所述集成电压供应调节网络包括齐纳二极管和电阻器,所述齐纳二极管和电阻器可以以各种配置被选择性地连接,以根据可用的系统供应电压以及其他因素来提供期望的内部电压供应等级,该RFPA电路具有与开关模式降压或升压DC-DC转换器相匹配或超过开关模式降压或升压DC-DC转换器的功率效率。
然而,应当理解,本发明不限于在此示例性示出和描述的特定器件、电路、系统和/或方法。而是,本公开的各方面更广泛地涉及无需要外部DC-DC电压转换器的、用于高效高速信号放大的技术,从而提供了易于集成的RFPA解决方案。而且,鉴于本文的教导,对于本领域技术人员而言将显而易见的是,可以在所要求保护的发明的范围内对所示实施例进行多种修改。即,不旨在或不应推断出对本文中示出和描述的实施例的限制。
尽管本文所述的全部半导体结构以及用于制造这种结构的方法是完全新颖的,但是实施根据本发明的一个或更多个实施例的技术的实施一个或更多个部分所需的某些单独的加工步骤可以利用常规的半导体制造技术和常规的半导体制造工具。这些技术和工具对于相关领域的普通技术人员已经是熟知的。此外,在许多容易获得的出版物中也描述了用于制造半导体器件的许多加工步骤和工具,所述出版物包括例如:P.H.Holloway等人的《Handbook of Compound Semiconductors:Growth,Processing,Characterization,andDevices》,剑桥大学出版社,2008年;以及R.K.Willardson等人的《Processing andProperties of Compound Semiconductors》,学术出版社,2001年,在此通过引用并入。要强调的是,尽管本文阐述了一些单独的加工步骤,但是这些步骤仅是说明性的,并且对于本领域技术人员而言可以熟知的是几个同样合适的替代方案也将落入本发明的范围内。
应理解,附图中所示的各种层和/或区域不必按比例绘制。此外,为了便于描述和清楚起见,在给定图中可能未明确示出在这种集成电路器件中通常使用的一种或更多种类型的半导体层。但是,这并不意味着在实际的集成电路器件中省略了未明确示出的半导体层。
图1A是示出了包括连接在FEM的发送信号路径中的RFPA的示例性标准RF前端模块(FEM)100的框图。通常将RF前端定义为天线与数字基带系统之间的一切。FEM100包括RFPA102,该RFPA102具有直接或通过阻抗匹配网络(未明确示出)与收发器104耦合的输入,并且适于接收发送输入信号(TXIN)。包括DC-DC转换器和相关电路的电源管理模块106,将外部DC系统电源转换为用于为RFPA102供电的合适的供应电压。由RFPA102产生的放大后的输出信号被直接或通过频带切换模块110和/或双工器与滤波器模块112提供给发送/接收(TX/RX)开关108。TX/RX开关108的输出被馈送到天线调谐模块114,然后被提供给天线116用于传输放大后的输出信号。
RFFEM100中的接收信号路径包括天线116、天线调谐模块114、TX/RX开关108以及双工器与滤波器模块112。双工器与滤波器模块112的输出被提供给低噪声放大器(LNA)118的输入,低噪声放大器(LNA)118适于在将接收到的信号提供给收发器104之前对接收到的信号进行放大。这种布置允许FEM的某些元件(诸如双工器与滤波器模块112和天线116)被发送和接收信号路径两者共享。本发明的各方面主要集中在发送信号路径中的RFPA上,因此,关于接收信号路径以及与接收信号路径相关的功能组件的具体细节将不在本文中进一步讨论。
如前所述,RFPA的设计目标通常试图优化包括诸如增益、功率输出、带宽、功率效率和线性度等某些工作参数。这些参数中的许多参数(包括线性度)至少在一些程度上受到RFPA的供应电压的影响。通常,RFPA可用的供应电压由单独的系统设计或PCB设计确定,取决于使用RFPA的特定应用,其变化范围可能很大。由于RFPA通常被设计为在窄的供应电压范围内运行以满足规定的性能标准,因此在PCB上采用了如图1A所示的电源管理模块106中所使用的外部DC-DC电压转换器,以将各种可用的外部系统电压转换为适合RFPA使用的供应电压等级。然而,DC-DC转换器的使用在FEM上带来了显著的缺点,其中一些缺点在本文中已经陈述过。
由于RFPA理想地适合与多种系统电压供应等级结合使用,而基本上不影响规定的性能标准且不损害可靠性,因此本发明的一个或更多个实施例提供了一种RFPA电路,该RFPA电路有益地包括集成电压调节网络,以根据系统电压供应等级以及受半导体加工变化影响的某些其他参数(例如,器件阈值电压,电阻值等)有选择地控制RFPA电路的内部供应电压。以此方式,根据本发明的一个或更多个实施例的RFPA电路有利地消除了对DC-DC转换器和相应组件(例如,图1A中的电源管理模块106)的需求,从而使得系统DC电源能够直接连接到RFPA,如图1B所示。
具体地,图1B是示出根据本发明的实施例的示例性RF前端模块(FEM)150的至少一部分的框图。FEM150类似于图1A所示的FEM100,除了FEM150包括具有集成电压调节网络以选择性地控制RFPA电路的内部供应电压的RFPA电路152。这允许系统DC电源直接连接到RFPA152,而无需外部电压转换电路。
根据施加到齐纳二极管的可变DC电压,齐纳二极管可用于提供稳定的DC电压。基于齐纳二极管的电压调节通常具有较差的功率效率。在基本配置中,由电压源VS输送的功率被分配至三个器件:负载RL;齐纳二极管;以及分流电阻R。功率效率定义为负载功率PL与输入功率PI的比值,取决于R、RL、VS和VZ各自的值,其中VZ定义为齐纳电压。当稳压器(regulator)效率等于VZ/VS时,将出现峰值效率。这意味着,为了提高稳压器效率,应使VS尽可能小。但是,较低的VS会降低最大可能负载功率PL,max。因此,R和VZ的最优值将分别取决于负载电阻RL和供应电压VS的条件而变化。负载RL通常由RFPA电路的设计确定,而VS则作为关键控制参数,这是因为VS是由最终应用中的系统设计确定的,最终应用中VS的变化范围很大,例如从9伏变化至20伏。因此,本发明的一个或更多个实施例控制RL和VZ以适应不同的系统供应电压VS,有利地允许RFPA电路保持规定的能量效率。
本发明的实施例解决的另一方面涉及一个或更多个重要器件参数(例如但不限于器件阈值电压和电阻值)在芯片之间的不可避免的变化。现代CMOS制造技术对许多工艺参数提供复杂的控制。但是,即使采用这种精确控制,工艺引起的变化通常仍然太大,以致无法满足例如在Wi-Fi应用中使用的RFPA的偏置控制约束,这对线性度和动态误差向量幅度(EVM)信号失真以及其他RFPA性能标准提出了严格要求。该工艺引起的变化至少部分归因于MOSFET阈值电压、齐纳二极管反向击穿电压和电阻值以及其他因素的变化。
例如,一个芯片的MOSFET阈值电压可能与相同设计但在同一晶片上不同位置的另一个芯片不同,这主要是由晶片加工变化(例如微负载效应)引起的。仅作为说明而非限制,在通过使用氯气化学的等离子体蚀刻进行的栅极蚀刻工艺步骤期间,局部氯浓度和等离子体密度根据栅极阵列图案密度而变化。结果,蚀刻速率以及最终的栅极长度将从芯片的密集区域到稀疏区域变化。同样,通常使用的多晶硅电阻器在加工后通常会表现出约±百分之十(10%)的电阻变化。这至少部分地是由于在多个热处理步骤之后掺杂剂注入浓度和掺杂剂扩散的变化。由于薄膜层的电阻值主要由正方形(即,平方值)确定,因此电阻器图案和面积也可以由于蚀刻加工而变化。因此,本发明的实施例提供了一种用于根据特定的阈值电压、栅极电阻和实际电阻值来控制每个单独芯片上所期望的栅极偏置值的机制。在一个或更多个实施例中,这是通过与RFPA单片集成的选择电路实现的,该选择电路包括一个连接到外部系统DC电压供应的可配置电阻器网络,并且涉及对该电阻器网络进行微调以获得用于最优RFPA性能的期望栅极电压。
图2A和2B是概念性地示出了根据本发明的实施例的与RFPA一起集成在半导体器件中的示例性电压选择电路200的至少一部分的示意图,该半导体器件用于分别在执行电压调节过程之前和之后、基于施加的外部系统DC电压源来调节RFPA的内部供应电压以满足规定的工作参数。应当理解,当在半导体器件中采用一个以上的放大级时,单个公共电压选择电路200可以用于向RFPA的全部级或RFPA的级的至少一部分子集提供内部供应电压。
现在参考图2A,选择电路200包括电阻器阵列R1、R2、R3、R4和R5,以及齐纳二极管阵列Z1、Z2、Z3、Z4和Z5。尽管仅示出了五个电阻器和五个二极管,但是应当理解,本发明的实施例不限于任何特定数量的电阻器或二极管;此外,选择电路200中的电阻器的数量不需要等于二极管的数量。每个电阻器具有与其相关的规定电阻值,在一个或更多个实施例中,该电阻值优选地不同于阵列中的其他电阻器的电阻值。同样地,每个齐纳二极管具有与其相关的规定的齐纳反向击穿电压,在一个或更多个实施例中,该齐纳反向击穿电压优选地不同于阵列中的其他二极管的齐纳反向击穿电压。
电阻器R1-R5的第一端子与公共系统电压供应连接202耦合,该公共系统电压供应连接202与所施加的外部系统DC电压源Vsystem连接。齐纳二极管Z1-Z5的阳极端子连接到RFPA的公共电压返回连接204,该公共电压返回连接204在该说明性实施例中接地。电阻器R1-R5的第二端子通过高电阻材料层208与RFPA内部电压供应连接206电耦合,该RFPA内部电压供应连接206在该说明性实施例中是VDD。电阻器和VDD之间的每个高电阻连接在图2A中被描述为开路。同样,齐纳二极管Z1-Z5的阴极端子通过高电阻材料层202与内部电压供应连接206电耦合;二极管和VDD之间的每个高电阻连接在图2A中被描述为开路。
在一个或更多个实施例中,高电阻材料层208可以由非晶硅或沉积膜等诸如此类的材料形成,这些材料在初始沉积时电阻率实质上很高(例如,大于约1-10兆欧-厘米(MΩ-cm)),但是通过根据需要选择性地退火材料层208的一个或更多个部分,其电阻率可以显著降低(例如,小于约10欧姆-厘米)。由于晶粒边界,未掺杂的多晶硅可以导电。晶粒边界的密度又取决于晶粒大小,该晶粒大小可以由激光条件控制。例如,非晶硅膜的厚度可以在约25至500nm的范围内,通常为50nm。较厚的膜导致较低的电阻。根据本发明的一个或更多个实施例,使用激光束、电子束或用于退火高电阻材料层208的特定部分的另一种受控机制,可以选择性地降低任何给定的电阻器与RFPA内部电压供应VDD之间、以及同样在任何给定的齐纳二极管与VDD之间的电阻值。该退火工艺导致在直接暴露于激光束的材料层部分附近的高电阻材料层208中发生相变,从而在由激光束的路径定义的材料层中有效地形成短路。
在一个或更多个实施例中,为了进一步减小所得材料的电阻率,可以通过在非晶硅膜沉积期间引入少量的掺杂剂气体来将硼或磷掺杂剂添加到高电阻材料层208中。适用于本发明实施例的掺杂剂气体包括,例如,硼烷(BH3),乙硼烷(B2H6)或三氢化磷(PH3)。掺杂剂也可以通过等离子体掺杂来添加;也就是说,材料层208可以用PH3/N2或BH3/N2等离子体处理,例如在沉积工艺结束时原位处理而不会破坏真空。在等离子体中产生的硼或磷离子种类由等离子体鞘电压被加速并被注入到高电阻材料层208中。退火之后,在由激光退火的掺杂激活之后,所得的多晶硅电阻率在大约5至0.005欧姆-厘米的范围内。
参考图2B,示出了在示例性退火工艺之后的选择电路200,其中高电阻材料层208的部分被选择性地退火(例如,使用激光或电子束),从而在电阻器R3的第二端子与RFA内部电压供应VDD之间、以及在齐纳二极管Z3的阴极端子与VDD之间形成低电阻电连接。通过在退火工艺中控制激光或电子束在高阻材料层208上的路径,可以实现在电阻R1-R5与RFPA内部电压供应VDD之间、以及齐纳二极管Z1-Z5与VDD之间的电连接的基本上任意的组合。
图3A和3B是概念性地示出了根据本发明的实施例的半导体结构300的至少一部分的俯视图,该半导体结构300包括图2A和2B中所示的示例性选择电路200,该示例性选择电路200带有具有不同的规定电阻值的电阻器阵列以及具有不同的规定齐纳反向击穿电压的齐纳二极管。图3A示出了在用于控制器件的内部供应电压的调节过程之前的选择电路200,图3B示出了在调节过程之后的选择电路。
参考图3A和3B,在一个或更多个实施例中,系统电压供应连接202、电压返回连接204以及内部电压供应(VDD)连接206由使用本领域技术人员已知的标准金属化技术进行图案化和蚀刻的诸如第一金属(M1)互连层的导电层形成。类似地,电阻器R1-R5的第一端子与公共系统电压供应连接202之间以及齐纳二极管Z1-Z5的阳极端子与公共电压返回连接204之间的电连接302使用本领域技术人员已知的标准互连加工技术、由一个或更多个导电层(M1,M2等)形成。
半导体结构300还包括高电阻材料层208,高电阻材料层208与电阻器R1-R5的第二端子、齐纳二极管Z1-Z5的阴极端子以及内部电压供应连接206电接触。在一个或更多个实施例中,高电阻材料层208包括薄膜材料(例如,非晶硅),该薄膜材料在初始沉积时具有实质上高的电阻率,因此有效地充当了各个连接元件之间的开路,但是当经受(例如,使用激光或电子束或诸如此类的)目标退火工艺时表现出显著降低的电阻率,从而有效地在沉积后的薄膜材料层208的选定区域中充当短路。
可选地,在一个或更多个实施例中,选择电路200包括耦合在系统电压供应连接202与高电阻材料层208之间的第一旁路连接304,以及耦合在电压返回连接204与高电阻材料层之间的第二旁路连接306。第一旁路连接304用于电旁路在选择电路中的电阻器R1至R5,第二旁路连接306用于电旁路在选定的连接配置中的齐纳二极管Z1至Z5,在该选定的连接配置中不需要选择电路200中的电阻或二极管。
图3B示出了在对材料的选定部分进行激光或电子束退火工艺之后的半导体结构300。有针对性的(例如,使用受控的激光或电子束的)退火工艺导致在电阻器R3的第二端子与内部电压供应连接206之间的薄膜材料层208的第一部分308、以及在齐纳二极管Z3的阴极与内部电压供应连接之间的薄膜材料层的第二部分310发生相变,如图3B所示。第一部分308和第二部分310分别具有实质上低的电阻率,从而在电阻器R3和齐纳二极管Z3的各个端子与内部电压供应连接206之间形成电连接。薄膜材料层208的未暴露于退火激光或电子束的区域保持高电阻率,因此选择电路200中的其余电阻器和齐纳二极管与内部电压供应连接206之间实际上没有电连接。
在包括旁路连接304、306的实施例中,可以采用退火激光或电子束将在第一旁路连接304与内部电压供应连接206之间的高电阻材料层208的部分选择性地转换为低电阻电短路,从而旁路选择电路200中的电阻。类似地,可以采用退火激光或电子束将在第二旁路连接306与内部电压供应连接206之间的高电阻材料层208的部分选择性地转换为低电阻电短路,从而旁路选择电路200中的齐纳二极管。
图4A和图4B分别是截面图和俯视图,其示出了根据本发明的实施例的在用于调节器件的内部供应电压的调节过程之前的半导体器件400的示例性布局的至少一部分;图4A是沿着图4B中的线4-4'截取的横截面。半导体器件400包括电压选择电路,该电压选择电路包括电阻器阵列和齐纳二极管阵列,优选地以与图2A所示的示例性电压选择电路200一致的方式形成。作为用于调节器件的内部供应电压的过程的一部分,在内部电压供应(VDD)连接与电压选择电路中的相应元件(例如,电阻和齐纳二极管)之间形成选择性的电连接,如将在下面进一步详细描述的。
参考图4A,半导体器件400包括衬底402和形成在衬底上的有源器件层404。有源层404表示其中形成有半导体晶体管、二极管、电阻器、其他器件以及互连金属与电介质层(例如,金属间电介质(IMD)和层间电介质(ILD))的各种层的层。半导体器件400包括在有源层404中形成的多个电阻器(以电阻器406为代表)以及在衬底402中形成的多个齐纳二极管(以齐纳二极管408为代表)。电阻器406可以在衬底402中(例如使用多晶硅)或在有源层404中(例如使用氮化钽(TaN))制造。在一个或更多个实施例中,电阻器406的至少一个子集中的每个包括多晶硅,尽管类似地考虑了其他材料,例如氮化钽。齐纳二极管408的至少一个子集中的每个包括工作在其反向击穿区域中的P-N结,如本领域技术人员将知道的,该P-N结可以以常规方式在半导体器件400中形成。
导电(例如金属)层被沉积在有源层404上,通过使用本领域技术人员已知的标准金属化技术通过图案化和蚀刻工艺来形成各种电连接,包括系统电压供应连接410、电压返回(接地)连接412、内部电压供应(VDD)连接414、以及导电垫416和418,所述系统电压供应连接410适于传送外部施加的外部系统电压,所述导电垫416和418分别提供与电阻406和齐纳二极管408的电连接。
具体地,如先前结合图3A所描述的,电阻器406的第一端子诸如通过使用穿过有源层404形成的导电通孔419(例如,通过硅通孔(TSV))等连接到系统电压供应连接410,齐纳二极管408的阳极端子诸如通过使用导电通孔连接到电压返回连接412。每个电阻器406的第二端子连接到相应的导电垫416,每个齐纳二极管408的阴极端子诸如通过使用穿过有源层404形成的各个导电通孔419连接到相应的导电垫418。
半导体器件400还包括沉积在有源层404的一部分上的高电阻层,使得高电阻层的第一部分420形成在给定电阻器406的导电垫416与内部电压供应连接414之间,并且高电阻层的第二部分422形成在给定的齐纳二极管408的阴极导电垫418与内部电压供应连接414之间。高电阻层420、422可以由非晶硅形成,尽管类似地考虑了其他材料,例如但不限于硅锗(SiGe)或薄金属膜(例如钨),它们通过激光或电子束退火在选定的厚度和/或成分范围内呈现出可以降低几个数量级的电阻率。如前所述,高电阻层420、422在初始沉积时具有高的电阻率(例如1-10MΩ-cm或更大),因此在相应的导电垫416、418与连接414之间起开路作用,但是当经过导致材料中发生相变的有针对性的退火工艺时表现出明显低的电阻率(例如10Ω-cm或更小),因此起短路作用。
继续参考图4A和4B,在半导体器件400的上表面上形成电介质(即,绝缘)层424,覆盖金属连接(例如410、412、414)、导电垫(例如416、418)以及高电阻层420、422。可以沿规定路径在高电阻层420、422上可控地扫描激光或电子束430,从而对高电阻层中的选定区域进行退火;激光或电子束与半导体器件可相对于彼此选择性地移动。作为该退火工艺的结果,在高电阻层420、422的暴露部分中形成低电阻率区域,该低电阻率区域有效地起到了在选定的导电垫416、418与内部电压供应连接414之间的电短路作用。在一个或更多个实施例中,形成电介质层424的材料包括氧化硅、氮化硅或对激光或电子束430透明的可替代的电介质材料。作为惰性材料,电介质层424将不经历由扫描产生的相变,因此仍然有效地用作钝化层,从而保护半导体器件400免受周围环境(例如,湿气、氧气等)的影响。
激光或电子束430的一个或更多个特征,例如波束强度(即能量)、波束宽度和扫描速率(即波束持续时间/曝光)等可以被选择性地调节,以便于控制由高电阻层420、422产生的最终材料的电阻率。例如,内部电压供应连接414与相应的导电垫416、418之间的所得连接的电阻将与激光或电子束430的波束宽度成正比;即,随着波束宽度的增加,在高电阻层中形成的连接路径的电导率也增加。
仅作为示例而非限制,激光束430可以是具有波长为248纳米(nm)的紫外(UV)氟化氪(KrF)准分子激光器,或者是308nm的一氯化氙(XeCl)准分子激光器。激光束430也可以是连续波绿光激光器或具有约为50-125飞秒(fs)脉冲持续时间的800nm的红外飞秒钛-蓝宝石激光器。用于退火的激光能量密度通常在大约50至1000mJ/cm2的范围内,从而产生大约1至200μm大小的多晶硅晶粒。激光束430的光路可以通过步进器使晶片移动而固定。可替代地,可以用振镜系统(galvomirrorsystem)等扫描激光束430。每个位置的照射可以是单个激光脉冲或多个脉冲。通常,结晶的非晶硅薄膜的晶粒大小最初会增加,然后随着激光脉冲的增加而饱和。
图5A和5B分别是截面图和俯视图,示出了根据本发明的实施例的在已经执行了用于在器件的电压选择电路中形成的选定的电连接的激光或电子束退火工艺之后的、图4A和4B所示的示例性半导体器件400的至少一部分;图5A是沿着图5B中的线5-5'截取的横截面。在图4A中,在退火工艺开始时,激光或电子束430位于给定电阻器406的导电垫416上。如图5A和5B所示,激光或电子束430已经在高电阻层420上扫描并且位于内部电压供应连接414上以通过高电阻层420产生导电区域502,该导电区域502将电阻电连接到内部电压供应连接。应当理解,退火高电阻层420、422所需的能量明显小于去除金属所需的能量,因此尽管激光或电子束430可能与导电垫416、418或内部电压供应连接414接触,但是也不会损害那些导电结构的完整性。
一旦激光或电子束430到达对应于给定电路元件的高电阻层的相对端上的垫或连接,则对该元件的退火工艺完成。此时,将激光或电子束430重新定位到高电阻材料层中的不同区域,或者,如果不需要创建其他电连接,则退火工艺结束。
参考图5B,使用激光或电子束退火工艺形成两个电连接502和504,以将电阻器406和齐纳二极管408分别连接到内部电压供应连接414。在该示例性实施例中,激光或电子束的宽度以及因此每个连接502、504的宽度小于其中形成有这些连接的高电阻层420、422的宽度。可替代地,图6A、6B、7A和7B示出了示例性实施例,其中(在其中选择性地形成有在相应的电路元件与内部电压供应连接之间的电连接的)高电阻层的宽度小于或等于激光或电子束的宽度。
更具体地,图6A和图6B分别是根据本发明的实施例的截面图和俯视图,其示出了在用于调节器件的内部供应电压的调节过程之前的示例性半导体器件600的至少一部分;图7A和7B分别是根据本发明的实施例的截面图和俯视图,其示出了在已经执行了用于在器件的电压选择电路中形成选定的电连接的激光或电子束退火工艺之后的图6A和6B所示的示例性半导体器件600的至少一部分;图6A是沿着图6B中的线6-6'截取的横截面,图7A是沿着图7B中的线7-7'截取的横截面。除了半导体器件600中的高电阻层602和604的宽度被配置为小于或等于激光或电子束430的宽度之外,图6A至图7B与图4A至图5B一致。在该实施例中,在激光或电子束退火之后,将整个高电阻材料转换为低电阻连接,如图7B的俯视图中更清楚地示出的那样。
图8A和图8B是概念性地示出了根据本发明的实施例的、在用于调节器件的内部供应电压的调节过程之后的、用于与RFPA一起集成在半导体器件中以调节RFPA的内部供应电压的选择电路的两个不同说明性配置的至少一部分的示意图。应当理解,本发明的实施例不限于选择电路中的电路元件的任何特定数量或组合。
参考图8A,示例性选择电路800包括R1至R5电阻器阵列以及Z1至Z5齐纳二极管阵列。尽管仅示出了五个电阻器和五个二极管,但是应当理解,本发明的实施例不限于任何特定数量的电阻器或二极管;此外,电阻器和二极管的数量不必彼此相等。每个电阻器具有与其相关的规定电阻值,在一个或更多个实施例中,该规定电阻值优选地不同于阵列中的其他电阻器。同样地,每个齐纳二极管具有与其相关的规定的齐纳反向击穿电压,在一个或更多个实施例中,该规定的齐纳反向击穿电压优选地不同于阵列中的其他二极管。
像图2B中所示的选择电路一样,电阻器R1-R5的第一端子与公共系统电压供应连接202耦合,该公共系统电压供应连接202与所施加的外部系统DC电压源VSYSTEM连接。齐纳二极管Z1-Z5的阳极端子连接到RFPA的公共电压返回连接204,所述公共电压返回连接204在该示例性实施例中接地。电阻器R1-R5的第二端子通过高电阻材料层802与RFPA内部电压供应连接206电耦合,该RFPA内部电压供应连接206在该说明性实施例中为VDD;在电阻器与VDD之间的、未经过激光或电子束退火的每个高电阻连接在图8A中被描述为开路。同样,齐纳二极管Z1-Z5的阴极端子通过高电阻材料层802与内部电压供应连接206电耦合;再次,未经过激光或电子束退火的、各个二极管与VDD之间的每个高电阻连接在图8A中被描述为开路。
在图8A所示的示例性实施例中,电阻器R3的第二端子通过低电阻连接电连接到内部电压供应连接206,该低电阻连接是以先前描述的方式通过对高电阻层802中的相应选定区域进行激光或电子束退火而形成的。该连接将具有一定的有限的电阻,由串联电阻器RS1表示。同样,齐纳二极管Z3的阴极通过低电阻连接电连接到内部电压供应连接206,该低电阻连接是通过对高电阻层802中的相应选定区域进行激光或电子束退火而形成的。该连接将具有一定的有限的电阻,由串联电阻RS2表示。
现在参考图8B,示出了示例性选择电路810,除了选择电路810包括齐纳二极管Z4的阴极与内部电压供应连接206之间的、由串联电阻RS3表示的低电阻电连接之外,选择电路810与图8A所示的选择电路800基本相同,并且齐纳二极管Z3的阴极保持断开(即未连接)。该电路配置表明,给定电阻器和内部电压供应连接206之间的连接无需与给定齐纳二极管和内部电压供应连接之间的连接对齐;也就是说,一个或更多个电阻器与内部电压供应连接之间的连接以及一个或更多个齐纳二极管与内部电压供应连接之间的连接彼此独立。
图2A至8B所示的示例性电压选择电路的实施例基本上全部涉及在电路元件与内部电压供应连接之间形成电连接,其中最初仅存在高电阻(即,开路)连接。在该方案中,激光或电子束用于对高电阻材料层的选定区域进行退火,从而将材料的相从高电阻率相(即开路)改变为低电阻率相(即短路)。作为可替代的电压调节方案,本发明的实施例类似地考虑去除电路元件与内部电压供应连接之间的电连接,其中这些元件最初都被连接。在该方案中,优选使用激光或电子束通过烧蚀工艺(例如,激光烧蚀)选择性地切断金属连接,从而产生开路。
图9A和9B是概念性地示出了根据本发明的实施例的、分别在用于调节器件的内部供应电压的替代调节过程之前和之后的示例性半导体器件900的至少一部分的俯视图,该半导体器件900包括电压选择电路902,该电压选择电路902带有具有各种预定电阻值的电阻器阵列和具有各种预定反向击穿电压的齐纳二极管。与图3A中所示的半导体器件300一样,一个或更多个实施例中的半导体器件900包括系统电压供应连接202、电压返回连接204以及内部电压供应(VDD)连接206,它们可以由诸如第一金属(M1)互连层的导电层形成,该导电层使用本领域技术人员已知的标准金属化技术进行图案化和蚀刻制成。类似地,在电压选择电路902中,在一个或更多个实施例中,电阻器R1-R5的第一端子与公共系统电压供应连接202之间以及齐纳二极管Z1-Z5的阳极端子与公共电压返回连接204之间的电连接302使用本领域技术人员已知的标准互连加工技术、由一个或更多个导电层(M1,M2等)形成。
如图9A所示,不是使电阻器的第二端子和齐纳二极管的阴极端子与内部电压供应连接206断开连接(例如,在图3A所示的选择电路200中),而是在晶片加工期间,使选择电路902中的电阻器R1-R5中的每一个的第二端子最初都使用对应的导体(即,导电链路)904全部连接到内部电压供应连接206。同样地,在晶片加工期间,齐纳二极管Z1-Z5中的每一个的阴极端子最初使用对应的导体906连接到内部电压供应连接206。在一个或更多个实施例中,导体904、906由金属形成,例如铝或具有低熔点的另一种合适的金属等。
可选地,在一个或更多个实施例中,选择电路902包括耦合在系统电压供应连接202与内部电压供应连接206之间的第一旁路连接908,以及耦合在电压返回连接204与内部电压供应连接之间的第二旁路连接910。第一旁路连接908用于在选择电路中电旁路电阻器R1至R5,第二旁路连接910用于在选定的连接配置中电旁路齐纳二极管Z1至Z5,在选定的连接配置中选择电路902中不需要电阻器或二极管。
作为电压调节机制的一部分,对电压选择电路902中的选定导体904、906进行激光烧蚀,以有效去除至少一部分导体,从而导致创建的开路。在图9B所示的示例中,电阻器R1、R2、R4以及R5之间的导体904已被去除,仅电阻器R3电连接至内部电压供应连接206。同样,齐纳二极管Z1、Z2、Z3以及Z4之间的导体906已被去除,仅齐纳二极管Z5连接至内部电压供应连接206。
在包括旁路连接908、910的实施例中,默认配置是使用旁路连接将电阻器和二极管短路。对于需要至少一个电阻器的配置,诸如通过使用退火激光或电子束或替代能量源,将第一旁路连接908电气开路,以使系统电压供应连接202与内部电压供应连接206之间除了通过选定的电阻器之外没有直接连接。同样地,对于需要至少一个齐纳二极管的配置,第二旁路连接910被电气开路,使得除了通过选定的齐纳二极管之外,在电压返回连接204与内部电压供应连接206之间没有直接连接。
图10A和10B分别是根据本发明的实施例的截面图和俯视图,示出了在执行用于调节器件的内部供应电压的激光或电子束烧蚀工艺之前的图9A所示的示例性半导体器件900的至少一部分。图11A和11B分别是根据本发明的实施例的截面图和俯视图,其示出了在已经执行了用于去除器件的电压选择电路902中的选定的电连接的激光或电子束烧蚀工艺之后的示例性半导体器件900的至少一部分;图10A是沿着图10B中的线10-10'截取的横截面,并且图11A是沿着图11B中的线11-11'截取的横截面。
图10A示出了图9A所示的示例性半导体器件900的至少一部分。半导体器件900优选以与图4A所示的半导体器件400一致的方式形成。具体地,半导体器件900包括衬底402和形成在衬底上的有源器件层404。半导体器件900包括多个电阻器和多个齐纳二极管,所述多个电阻器分别在衬底402或有源层404中形成,其中电阻器406是代表性的;所述多个齐纳二极管在衬底402中形成,其中齐纳二极管408是代表性的。电阻器406的至少一个子集中的每个优选地包括(形成在衬底402中的)多晶硅,尽管类似地考虑其他材料(例如,形成在有源层404中的氮化钽)。齐纳二极管408的至少一个子集中的每个包括相对于一个或更多个其他齐纳二极管具有不同反向击穿电压的PN结,该PN结工作在其反向击穿区域中,该PN结可以以本领域技术人员所知的常规方式在半导体器件900中形成。
在一个或更多个实施例中,适于传送外部施加的外部系统电压的系统电压供应连接410、电压返回(接地)连接412、内部电压供应(VDD)连接414以及分别提供了与电阻器406和齐纳二极管408的电连接的导电垫416和418,如本领域技术人员所公知的那样分别使用标准金属化技术形成在有源层404上。电阻器406的第一端子诸如通过使用穿过有源层404形成的导电通孔419(例如,通过硅通孔(TSV))等连接至系统电压供应连接410,以及齐纳二极管408的阳极端子诸如通过使用导电通孔连接至电压返回连接412。每个电阻器406的第二端子连接到相应的导电垫416,并且每个齐纳二极管408的阴极端子诸如通过使用穿过有源层404形成的各个导电通孔419连接到相应的导电垫418。
可以使用标准金属化工艺(例如,M1金属化)形成的导体904设置在相应的电阻器垫416与内部电压供应连接414之间,最初在各个电阻器元件(例如,图9A中的R1-R5)与内部电压供应连接之间提供电连接。类似地,可以使用标准的金属化技术形成的连接器906设置在相应的齐纳二极管阴极垫418与内部电压供应连接414之间,最初在各个齐纳二极管元件(例如,图9A中的Z1-Z5)与内部电压供应连接之间提供电连接。
参照图10A,在一个或更多个实施例中,激光或电子束1002被用作烧蚀选定导体904、906以形成开路的能量源。激光或电子束1002优选地定位在要去除的给定导体904、906的中心上方或附近。在一个或更多个实施例中,导体904、906的宽度是窄的(例如,大约1-3μm),优选地比激光或电子束1002的宽度更窄,使得可以在不重新定位(即,扫描)激光的情况下烧蚀导体。可选地,如果导体904、906比激光或电子束1002的宽度更宽,则优选垂直于其主轴在导体的表面上扫描激光或电子束,以便完全去除导体从而形成开路。
烧蚀过程通常涉及通过用激光或电子束或替代能量源照射材料来从固体表面(例如,金属)去除材料。在低激光通量下,材料被吸收的激光能量加热,导致暴露的材料蒸发或升华。在高激光通量下,材料通常会转换为等离子体。通常,脉冲激光由于其较高的峰值强度而用于去除材料,但是,如果激光强度足够高,则可以用连续波(CW)激光束来烧蚀材料。与退火工艺所需的能量相比,激光烧蚀所需的能量要高得多。因此,激光或电子束1002至少在波长、CW或脉冲持续时间以及波束能量(即通量)方面与图4A所示的激光或电子束430不同。
图11A和11B示出了如前所述的在已经执行了用于去除器件的电压选择电路902中的选定的电连接的激光或电子束烧蚀工艺之后的示例性半导体器件900的至少一部分。参考图11A,激光或电子束用于形成穿过电介质钝化层424并穿过导体906的开口1102,以暴露出有源层404的上表面。如在图11B的俯视图中所示的,穿过导体906形成的开口1102被配置为完全切割导体,从而在相应的齐纳二极管与内部电压供应连接414之间形成开路。在对给定的选定导体904、906执行激光烧蚀工艺之后,将激光束重新定位在另一个选定导体上,并重复该工艺,直到没有待烧蚀的其他导体为止。至此,内部电压调节步骤完成。
图12A和图12B分别是根据本发明的替代实施例的截面图和俯视图,其示出了在用于调节器件的内部供应电压的替代调节过程之前的示例性半导体器件1200的至少一部分。图12A是沿着图12B中的线12-12'截取的横截面。以类似于如图10A至11B所示的去除选定的电连接的方式,该说明性实施例涉及外部能量源的目标应用以创建用于去除器件1200的电压选择电路(图9A中的902)中的选定的电连接的开路。
然而,不是使用激光或电子束来提供烧蚀能量,而是使用探针阵列(arrayofprobes)(见图13A和13B)来施加规定的电压或电流(例如,脉冲电流)以烧掉连接两个探针(类似于保险丝)的选定金属导体的一部分。为了实现这一点,在一个或更多个实施例中,半导体器件1200包括以与图10A至图11B所示的电压选择电路902一致的方式形成的电压选择电路,除了第一多个导电链路1202中的每一个可以是在相应的电阻器406与内部电压供应连接414之间提供电连接的电阻器导电链路,并且第二多个导电链路1204中的每一个可以是在相应的齐纳二极管408与内部电压供应连接之间提供电连接的二极管导电链路,该电压选择电路沿其主轴的长度方向具有狭窄的(即薄的)区域1206。例如,在一个或更多个实施例中,导体1202、1204被成形为狗骨形状,尽管本发明的实施例不限于任何特定的形状或尺寸。
给定导电链路1202、1204的狭窄的区域1206在导电链路中创建薄弱部位(即断点),当电流流经该链路时,该薄弱部位会在指定位置引起破裂,因为相对于导电链路的其他部分,该狭窄区域的电阻明显更高。具体地,当被迫使经过选定的导电链路1202、1204的电流足够高(例如,大约100-200毫安(mA))时,在链路的狭窄区域1206中产生的热量将烧掉(即,烧蚀)材料(例如金属)以在导电链路中创建开路。
导电链路的狭窄区域1206有利地减少了烧断(blow)该链路以形成开路所需的能量。狭窄区域1206的尺寸(例如,长度、宽度和横截面厚度)优选地被配置为使得一旦被烧蚀,烧断后的链路将不会重新形成电连接,而是将保持开路。此外,导电链路被配置为在期望时提供可靠的短路连接;也就是说,给定的导电链路1204、1206在正常操作过程中不会无意地形成开路。
在一个或更多个实施例中,穿过电介质钝化层424形成多个开口1208,以暴露分别连接到对应的电阻器406和齐纳二极管408的下面的导电垫416和418以及内部电压供应连接414的至少一部分,以提供对其的电气接入。在一个或更多个实施例中,开口1208可以使用例如等离子体蚀刻(例如,反应离子蚀刻(RIE))、湿法蚀刻(例如,各向异性湿法蚀刻)、干法蚀刻等蚀刻工艺来形成。
图13A和13B分别是根据本发明的实施例的截面图和俯视图,其示出了在用于调节器件的内部供应电压的图12A和12B的替代调节过程之前的示例性半导体器件1200的至少一部分,其示出了使用导电探针来选择性地施加外部电压或电流;图13A是沿着图13B中的线13-13'截取的横截面。如图13A和13B所示,采用了多个导电探针1210。探针1210的形状和大小合适,以便穿过开口1208,并适于与相应的下面的导电垫416、418和内部电压供应连接414电接触。
图14A和图14B分别是根据本发明的实施例的截面图和俯视图,其示出了在用于调节器件的内部供应电压的替代调节过程之后的图13A至图13B所示的示例性半导体器件1200的至少一部分;图14A是沿着图14B中的线14-14'截取的横截面。参考图14A和图14B,为了在给定的导电链路中形成开路,电流源1212被施加在两个穿过电介质层424中的开口1208被定位的探针1210上,以使得与下面的内部电压供应连接414和对应的导电链路1204的导电垫418的电接触被经由强制电迁移形成的空洞破坏。由电流源1212产生的电流ILINK优选地足够高以至于能够破坏选定的导电链路1204。
电流ILINK的方向并不重要,但是在导电链中产生的热量将主要取决于电流大小。在施加足够高的电流时,选定的导电链路1204、1206的狭窄区域1206将经受剧烈的电迁移(即,原子沿电流流动方向移动),从而在导电材料中形成足以在选定的链接中创建开路1214的空洞。通过将探针1210重新定位在另一条期望的链路上以进行烧断然后施加电流,来对每个期望的烧断的链条重复该过程。
图15是根据本发明的一个或更多个实施例的表格1500,其示出了用于根据不同的外部系统供应电压来获得特定内部供应电压等级的半导体器件的选择电路中的电阻器和齐纳二极管值的示例性组合。更具体地,表格1500包括基于外部施加的系统DC电压源VSYSTEM的齐纳二极管和电阻器的示例性配置,假设典型的负载功率为约3.5瓦。名为“齐纳选择”的列代表期望的齐纳电压额定值,名为“R”的列代表理想电阻值。
本发明的一个或更多个实施例利用包括在带有具有各种规定的电阻值的电阻器阵列以及具有各种规定的反向击穿电压的齐纳二极管的电压选择电路(例如,图9A中的902)中的可选择的链路(例如,图10A中的904、906),来将至少一个期望的齐纳二极管和至少一个期望的电阻器连接到最终配置的电路中,从而实现期望的RF性能和功率效率参数。对于诸如施加10或12伏的外部系统DC电压源VSYSTEM的某些配置,在电压选择电路中不需要齐纳二极管或电阻器;该外部系统DC电压源VSYSTEM可以直接连接到VDD,以实现最优RFPA效率。但是,这样的配置要求RFPA中使用的功率晶体管能够承受VDD值,这需要复杂的半导体器件设计和工程。
具体地,仅作为示例而非限制,参考图15,表格1500中的行1502指示对于外部施加的8伏的系统电压VSYSTEM和期望的8伏的内部电压供应VDD,假设任意的负载功率要求,在电压选择电路中无需齐纳二极管或电阻器(即VDD直接连接至VSYSTEM)即可实现约100%的功率效率。在这种情况下,电阻器和齐纳二极管旁路连接(例如,图3A中的304、306或图9A中的908、910)。在行1504中,对于施加的10伏的VSYSTEM、期望的10伏的VDD以及任意的负载功率要求,均未选择齐纳二极管或电阻器-也就是说,使用各自的旁路连接将齐纳二极管和电阻器旁路以实现约为100%的功率效率。在行1506中,对于施加的12伏的VSYSTEM、期望的10伏的VDD以及1瓦的负载功率要求,选择10伏的齐纳二极管和20欧姆的电阻以实现约83%的功率效率。在行1508中,对于施加的12伏的VSYSTEM、期望的10伏的VDD和3.5瓦的负载功率要求,选择10伏的齐纳二极管和5.6欧姆的电阻器的组合,以实现约83%的功率效率。在行1510中,对于施加的12伏的VSYSTEM、期望12V的VDD以及任意的负载功率要求,均未选择齐纳二极管或电阻器-也就是说,VSYSTEM直接连接至VDD,而没有任何电阻器或齐纳二极管-实现了约100%的功率效率。
类似地,在行1512中,对于施加的15伏的VSYSTEM、期望的12伏的VDD和1瓦的负载功率要求,选择12伏的齐纳二极管和36欧姆的电阻器的组合以实现约80%的功率效率。在行1514中,对于施加的15伏的VSYSTEM、期望的12伏的VDD和3.5瓦的负载功率要求,选择12伏的齐纳二极管和10欧姆的电阻器的组合,以实现约80%的功率效率。在行1516中,对于施加的19伏的VSYSTEM、期望的15伏的VDD和1瓦的负载功率要求,选择15伏的齐纳二极管和60欧姆的电阻以实现约79%的功率效率。在行1518中,对于施加的19伏的VSYSTEM、期望的15伏的VDD和3.5瓦的负载功率要求,选择15伏的齐纳二极管和17.1的欧姆电阻器的组合,以实现约79%的功率效率。在行1520中,对于施加20伏的的VSYSTEM、期望的15伏的VDD和3.5瓦特的负载功率要求,选择15伏齐纳二极管和20.8欧姆电阻器以实现约75%的功率效率。在行1522中,对于施加的20伏的VSYSTEM、期望的18伏的VDD和3.5瓦特的负载功率要求,选择18伏齐纳二极管和10.3欧姆电阻器的组合,以实现约90%的功率效率。尽管示出了齐纳二极管电压和电阻器值的几种组合,以根据几种不同的施加的系统电压等级实现各种期望的内部VDD供应电压,但是应当理解,本发明的实施例不限于齐纳二极管电压和电阻器值的任何特定组合。
对于更一般的情况,可以使用以下表达式来确定电压选择电路中的最优电阻选择R:
Figure BDA0002549888360000261
其中VSYSTEM是(例如,经由图2A所示的公共系统电压供应连接202)施加到电压选择电路的输入系统电压,VDD是(例如,在图2A的内部电压供应连接206上输出的)期望的内部供应电压,PLOAD是期望的负载功率。如图8A和8B所示,考虑到相应激光形成的链路的有限电阻RS1,上述表达式(1)变为:
Figure BDA0002549888360000262
理想情况下,齐纳二极管选择的反向击穿电压应等于期望的内部供应电压VDD。功率效率百分比E可以使用以下表达式确定:
Figure BDA0002549888360000263
鉴于目前的讨论,将理解,根据本发明实施例的示例性单片半导体器件包括至少一个RFPA电路和与RFPA电路耦合的、用于基于施加到器件的输入电压来向RFPA电路提供内部供应电压的电压供应调节网络。该电压供应调节网络包括多个电阻器、多个齐纳二极管、电压返回连接、与RFPA电路耦合用于将供应电压传送到RFPA电路的内部供应电压连接、适于接收输入电压的输入电压连接、以及与电阻器和齐纳二极管耦合的可配置连接网络。电阻器和齐纳二极管的子集通过相应的导电链路在输入电压与电压返回连接之间选择性地连接在一起,以根据施加的输入电压向内部供应电压连接提供规定的输出电压。通过将能量源施加到连接网络中的一个或更多个选定的导电链路来配置该连接网络。
本发明的技术的至少一部分可以在集成电路中实现。在形成集成电路时,通常以重复的图案在半导体晶片的表面上制造相同的管芯。每个管芯包括本文描述的器件,可以包括其他结构和/或电路。从晶片上切割或切下单个管芯,然后封装为集成电路。本领域技术人员将知道如何切割晶片以及如何封装管芯以生产集成电路。附图中示出的任何示例性电路或其部分可以是集成电路的一部分。这样制造的集成电路被认为是本发明的一部分。
根据本发明的一个或更多个实施例,本领域技术人员将理解,以上讨论的示例性结构可以原始形式(即,具有多个未封装芯片的单个晶片)、作为裸露的管芯、以封装形式、或合并为得益于电压调节和/或电压转换的中间产品或最后产品的一部分而分布。
根据本公开的各方面的集成电路可以基本上在需要高频信号放大的任何应用和/或电子系统中采用。这种新颖的体系结构可用于消除对DC-DC转换器和相关组件的需求,从而有利地减少了所需空间、电路复杂性、功耗和系统成本以及其他重要优点。包含这种集成电路的系统被认为是本发明的一部分。给定本文提供的本公开的教导,本领域普通技术人员将能够预期本发明的实施例的其他实现和应用。
在此描述的本发明的实施例的图示旨在提供对各种实施例的一般理解,并且它们并不旨在用作可能利用本文所述的电路和技术的装置和系统的所有元件和特征的完整描述。鉴于本文的教导,许多其他实施例对于本领域技术人员将变得显而易见。利用其他实施例并从中得出其他实施例,使得可以在不脱离本公开的范围的情况下进行结构和逻辑上的替换和改变。附图也仅是代表性的,并且未按比例绘制。因此,说明书和附图应被认为是说明性的而不是限制性的。
本文中,仅是为了方便,本发明的实施例单独地和/或整体地由术语“实施例”指代,并且如果实际上如所示的那样有一个以上实施例,本发明的实施例不旨在将本申请的范围限制于任何单个实施例或发明构思。因此,尽管在此已经示出和描述了特定的实施例,但是应该理解的是,实现相同目的的布置可以代替所示的特定实施例。也就是说,本公开旨在覆盖各种实施例的任何和所有改编或变型。本文给出的教导使得以上实施例的组合以及本文中未具体描述的其他实施例对于本领域技术人员将变得显而易见。
本文中使用的术语仅用于描述特定的实施例,而不旨在限制本发明。如本文所使用的,单数形式“一”,“一个”和“该”也旨在包括复数形式,除非上下文另外明确指出。还将理解的是,当在本说明书中使用术语“包括”和/或“包含”时,其指定了所述特征、步骤、操作、元件和/或组件的存在,但并不排除一个或更多个其他特征、步骤、操作、元件、组件和/或它们的组合的存在或添加。所使用的诸如“上”,“下”,“前”和“后”之类的用语旨在表示当元件或结构以特定方式取向时,元件或结构彼此之间的相对位置,而不是定义元件的绝对位置。
可以使用的以下权利要求中的所有手段或步骤加功能元件的对应结构、材料、行为和等同物,旨在包括用于与特别要求保护的其他要求保护的元素组合来执行功能的任何结构、材料或行为。已经出于说明和描述的目的给出了各种实施例的描述,但是其并不旨在是穷举的或限于所公开的形式。在不脱离本发明的范围和精神的情况下,许多修改和变化对于本领域普通技术人员将是显而易见的。选择和描述实施例是为了最好地解释本发明的原理和实际应用,并使本领域的其他普通技术人员能够理解适合于预期的特定用途的具有各种修改的各种实施例。
提供摘要以符合37C.F.R.§1.72(b),其需要摘要使读者可以快速确定本技术公开的性质。提交本文档时应理解为不会将其用于解释或限制权利要求的范围或含义。另外,在前述详细说明中,可以看出,在单个实施例中将各种特征分组在一起以简化本公开。本公开的方法不应被解释为反映了以下意图:所要求保护的实施例需要比每个权利要求中明确叙述的特征更多的特征。而是,如所附权利要求所反映的,发明主题在于少于单个实施例的所有特征。因此,以下权利要求据此被结合到详细说明中,其中每个权利要求独立地作为单独要求保护的主题。
给定本文提供的本发明的实施例的教导,本领域普通技术人员将能够预期本发明的实施例的技术的其他实现和应用。尽管这里已经参考附图描述了本发明的示例性实施例,但是应当理解,本发明的实施例不限于本文示出和描述的那些精确的实施例,以及在不脱离所附权利要求书的范围的情况下由本领域技术人员在其中进行的各种其他改变和修改。

Claims (17)

1.一种半导体器件,包括:
至少一个射频(RF)功率放大器;和
与所述RF功率放大器耦合的电压供应调节网络,所述电压供应调节网络用于基于施加到所述半导体器件的输入电压向所述RF功率放大器提供内部供应电压;所述电压供应调节网络包括:
多个电阻器;
多个齐纳二极管;
电压返回连接,所述电压返回连接与所述RF功率放大器的电压返回耦合;
内部供应电压连接,所述内部供应电压连接与所述RF功率放大器耦合,用于将所述供应电压传送到所述RF功率放大器;
输入电压连接,所述输入电压连接适于接收所述输入电压;以及
可配置连接网络;所述可配置连接网络与所述电阻器和齐纳二极管耦合;所述电阻器和齐纳二极管的子集经由相应的导电链路在所述输入电压连接与所述电压返回连接之间选择性地连接在一起,以根据所施加的输入电压向所述内部供应电压连接提供规定的输出电压;通过将能量源施加到所述连接网络中的一个或更多个选定的导电链路来配置所述连接网络。
2.根据权利要求1所述的半导体器件,其中,所述可配置连接网络还包括第一旁路连接以及第二旁路连接中的至少一个;所述第一旁路连接选择性地直接耦合在所述输入电压连接与所述内部供应电压连接之间;所述第二旁路连接选择性地直接耦合在所述电压返回连接与所述内部供应电压连接之间;所述第一旁路连接和第二旁路连接电旁路所述电压供应调节网络中的所述多个电阻器和所述多个齐纳二极管。
3.根据权利要求1所述的半导体器件,其中,所述可配置连接网络还包括高电阻材料层;所述高电阻材料层连接在所述多个电阻器与所述内部供应电压连接之间以及所述多个齐纳二极管与所述内部供应电压连接之间;所述高电阻材料层在第一状态下具有第一电阻率并且在第二状态下具有第二电阻率,所述第一电阻率远高于所述第二电阻率。
4.根据权利要求3所述的半导体器件,其中,当暴露于目标能量源时,所述高电阻材料层中的选定区域从所述第一状态改变为所述第二状态,从而形成穿过所述高电阻材料层的低电阻导电路径。
5.根据权利要求4所述的半导体器件,其中,所述目标能量源是激光束和电子束中的一个。
6.根据权利要求5所述的半导体器件,其中,所述激光束或电子束与所述半导体器件可相对于彼此选择性地移动。
7.根据权利要求3所述的半导体器件,其中,所述高电阻材料层包括相变材料。
8.根据权利要求3所述的半导体器件,其中,所述高电阻材料层包括非晶硅和沉积膜中的一个。
9.根据权利要求3所述的半导体器件,其中,所述高电阻材料层包括在所述高电阻材料层的沉积期间引入的掺杂剂。
10.根据权利要求9所述的半导体器件,其中,所述掺杂剂包括硼和磷中的一种。
11.根据权利要求3所述的半导体器件,其中,所述多个电阻器中的每一个的第一端子连接到所述输入电压连接,所述多个齐纳二极管中的每一个的阳极连接到所述电压返回连接,所述多个电阻器中的每一个的第二端子以及所述多个齐纳二极管中的每一个的阴极端子均连接至所述高电阻材料层,其中,当暴露于目标能量源时,所述高电阻材料层中的至少一个选定区域从所述第一状态改变为所述第二状态,从而形成穿过所述高电阻材料层的相应的低电阻导电路径,每个导电路径将所述多个电阻器之一或所述多个齐纳二极管之一电连接到所述内部供应电压连接。
12.根据权利要求1所述的半导体器件,其中,所述多个电阻器中的每一个的第一端子连接到所述输入电压连接,所述多个齐纳二极管中的每一个的阳极连接到所述电压返回连接,所述多个电阻器中的每一个的第二端子经由相应的第一多个导电链路连接至所述内部供应电压连接,所述多个齐纳二极管中的每一个的阴极经由相应的第二多个导电链路连接至所述内部供应电压连接;其中,所述第一多个导电链路以及所述第二多个导电链路中的选定的导电链路是开路的,以调节提供给所述内部供应电压连接的输出电压的电压等级。
13.根据权利要求12所述的半导体器件,其中,所述第一多个导电链路以及所述第二多个导电链路中的选定的导电链路通过激光或电子束烧蚀被开路。
14.根据权利要求12所述的半导体器件,其中,所述第一多个导电链路以及所述第二多个导电链路的至少一个子集中的每个均包括沿导电链路主轴的长度方向的狭窄区域,其中,通过使规定的电流流经所述第一多个导电链路以及所述第二多个导电链路中的给定的一个来使所述第一多个导电链路以及所述第二多个导电链路中的给定的一个开路。
15.根据权利要求1所述的半导体器件,其中,所述电压供应调节网络还包括:
第一多个导电链路,所述第一多个导电链路在对应的多个电阻器与所述内部电压供应连接之间提供电连接;
第二多个导电链路,所述第二多个导电链路在对应的多个齐纳二极管与所述内部电压供应连接之间提供电连接;
多个导电垫,所述导电垫提供到对应的多个电阻器和所述多个齐纳二极管的电连接;
电介质层,所述电介质层形成在所述半导体器件的上表面上,覆盖所述第一多个导电链路、所述第二多个导电链路、所述导电垫以及所述内部电压供应连接;以及
多个开口,所述多个开口穿过所述电介质层形成,以暴露出下面的导电垫的至少一部分以及靠近所述导电链路中的每一个的一端的所述内部电压供应连接的一部分,所述开口中的每一个被配置成容纳导电探针以用于使规定的电流流经选定的导电链路,从而在所述选定的导电链路中形成开路。
16.根据权利要求1所述的半导体器件,其中,所述多个齐纳二极管中的至少一个被选定为具有大约等于所述RF功率放大器所需的供应电压等级的反向击穿电压,其中,根据表达式
Figure FDA0002549888350000041
选择所述多个电阻器中的至少一个;其中R表示选定的所述多个电阻器中至少一个的总电阻,VSYSTEM表示所施加的输入电压,VDD表示所述RF功率放大器所需的所述供应电压等级,RS1表示由激光或电子束处理形成的相应连接链路的电阻,以及PLOAD表示所述RF功率放大器的负载功率。
17.根据权利要求1所述的半导体器件,其中,所述至少一个RF功率放大器包括多个放大级,其中,由所述电压供应调节网络提供的所述内部供应电压经由所述内部供应电压连接被所述多个放大级的至少一个子集所共享。
CN201980006716.3A 2019-04-02 2019-04-02 具有可调电源的射频功率放大器 Pending CN112106295A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/373,172 US10826434B2 (en) 2019-04-02 2019-04-02 Radio frequency power amplifier with adjustable power supply
PCT/US2019/025405 WO2020204912A1 (en) 2019-04-02 2019-04-02 Radio frequency power amplifier with adjustable power supply

Publications (1)

Publication Number Publication Date
CN112106295A true CN112106295A (zh) 2020-12-18

Family

ID=72662081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980006716.3A Pending CN112106295A (zh) 2019-04-02 2019-04-02 具有可调电源的射频功率放大器

Country Status (3)

Country Link
US (1) US10826434B2 (zh)
CN (1) CN112106295A (zh)
WO (1) WO2020204912A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050285684A1 (en) * 2004-06-23 2005-12-29 Burgener Mark L Stacked transistor method and apparatus
WO2013188694A1 (en) * 2012-06-14 2013-12-19 Skyworks Solutions, Inc. Process-compensated hbt power amplifier bias circuits and methods

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338590A (en) 1980-01-07 1982-07-06 National Semiconductor Corporation Multi stage resistive ladder network having extra stages for trimming
JPH05343316A (ja) 1991-09-30 1993-12-24 Nec Corp 半導体装置の製造方法
WO2003034586A1 (en) 2001-10-16 2003-04-24 Koninklijke Philips Electronics N.V. Rf power amplifier circuit
JP3883925B2 (ja) * 2002-07-30 2007-02-21 三菱電機株式会社 電力用半導体素子の駆動回路
US7683718B2 (en) * 2006-05-17 2010-03-23 Dishop Steven M Solid-state RF power amplifier for radio transmitters
EP3010145A3 (en) * 2007-10-16 2016-06-01 THX Ltd Efficient power amplifier
WO2012158423A2 (en) * 2011-05-13 2012-11-22 Skyworks Solutions, Inc. Apparatus and methods for biasing power amplifiers
CN205195665U (zh) 2015-11-26 2016-04-27 安徽华东光电技术研究所 一种小型化功率放大器电源控制电路
US10291191B2 (en) 2016-11-04 2019-05-14 Qorvo Us, Inc. Low leakage protection circuit for RF power amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050285684A1 (en) * 2004-06-23 2005-12-29 Burgener Mark L Stacked transistor method and apparatus
WO2013188694A1 (en) * 2012-06-14 2013-12-19 Skyworks Solutions, Inc. Process-compensated hbt power amplifier bias circuits and methods

Also Published As

Publication number Publication date
US10826434B2 (en) 2020-11-03
US20200321916A1 (en) 2020-10-08
WO2020204912A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
EP1750298B1 (en) RF power transistor with impedance matched output electrode
TWI285993B (en) RF power transistor with internal bias feed
US7479681B2 (en) Multilayered semiconductor structure containing a MISFET, a resistor, a capacitor, and an inductor
US9647209B2 (en) Integrated phase change switch
US7944658B2 (en) Integrated circuit and assembly therewith
US6731167B2 (en) High frequency power amplifier module and wireless communication apparatus
TWI772360B (zh) 90度集總與分散式杜赫阻抗反相器
TW201834386A (zh) 用於結合杜赫放大器訊號與90度集總與分散式阻抗反相器的方法
US11196401B2 (en) Radio frequency (RF) module using a tunable RF filter with non-volatile RF switches
DE102015108468A1 (de) Hybrider Leistungsverstärker mit Heteroübergang-Bipolartransistoren (HBTs) und komplementären Metalloxid-Halbleiter (CMOS)-Einrichtungen
US6177716B1 (en) Low loss capacitor structure
FR2833114A1 (fr) Amplificateur de puissance multibande
JPH01184942A (ja) トリミング素子とその電気短絡方法
TW201832461A (zh) 90度集總與分散式杜赫阻抗反相器
JPH11308059A (ja) 高周波増幅装置
US6775525B1 (en) Radio communication apparatus and semiconductor device
FR3119269A1 (fr) Impression par transfert pour applications RF
US10826434B2 (en) Radio frequency power amplifier with adjustable power supply
US20020074319A1 (en) Laser-trimmable digital resistor
WO2016161212A1 (en) Methods of forming conductive and resistive circuit structures in an integrated circuit or printed circuit board
CN115004367B (zh) 用于电子装置的保护电路的晶片级调节的方法和用于促进所述方法的晶片
JP2001196865A (ja) 無線通信装置及び半導体装置
DE102015108471A1 (de) Hybrider Leistungsverstärker mit einem elektrischen und thermischen Leitfähigkeitspfad
Yishay et al. A variable gain E-band power amplifier using highly linear embedded attenuator
Chien et al. An 18.6-dBm, 8-Way-Combined D-Band Power Amplifier with 21.6% PAE in 22-nm FD-SOI CMOS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination