CN112105581A - 封装前将材料虚拟粘附到表面的方法 - Google Patents

封装前将材料虚拟粘附到表面的方法 Download PDF

Info

Publication number
CN112105581A
CN112105581A CN201980031255.5A CN201980031255A CN112105581A CN 112105581 A CN112105581 A CN 112105581A CN 201980031255 A CN201980031255 A CN 201980031255A CN 112105581 A CN112105581 A CN 112105581A
Authority
CN
China
Prior art keywords
initial structure
magnetic
virtual
coating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980031255.5A
Other languages
English (en)
Inventor
凯瑟琳·特伦特
加里·A·弗雷泽
凯尔·L·格罗斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of CN112105581A publication Critical patent/CN112105581A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/001Magnets
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/006Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/26Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids using electric currents, e.g. electroplating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本申请提供了一种虚拟粘附方法。所述虚拟粘附方法包括增加初始结构的磁性特性,将所述初始结构支撑在衬底的表面上,产生被定向使得所述初始结构被迫朝向所述衬底的表面的磁场以及在初始结构周围形成绑定到表面的暴露部分的封装。

Description

封装前将材料虚拟粘附到表面的方法
背景技术
本公开涉及磁性粘附,并且更具体地涉及在封装之前提供材料对表面的虚拟粘附的方法。
碳纳米管(CNT)是具有圆柱形纳米结构的碳的同素异形体。它们具有不同寻常的性质,诸如特殊的强度和刚度,因此在各个领域,包括但不限于纳米技术、电子学、光学和材料科学与技术的其他领域都具有价值。
在一个或多个技术领域中利用CNT通常需要将它们固定到由无机材料形成的衬底上。然而,将CNT固定或粘附到无机衬底上的当前的方法通常存在问题,因为粘附通常需要使用环氧树脂、凝胶或化学粘合剂。在这些情况下,污染物会被引入系统,这会抑制或降低进一步处理的性能,并最终削弱所得的结构或使所得的结构变得毫无用处。其他粘附技术利用范德华力或静电引力,但通常强度不足以将CNT固定在适当的位置。
发明内容
根据一种实施方式,提供了一种虚拟粘附方法。所述虚拟粘附方法包括增加初始结构的磁性特性,将所述初始结构支撑在衬底的表面上,产生被定向使得所述初始结构被迫朝向所述衬底的表面的磁场以及在初始结构周围形成与所述表面的暴露部分绑定的封装。
根据另一种实施方式,提供了一种虚拟粘附方法并且所述方法包括用磁性颗粒涂覆初始结构以在初始结构上形成磁性颗粒涂层,用磁性颗粒涂层将所述初始结构支撑在衬底的表面上,产生被定向使得所述磁性颗粒涂层的所述磁性颗粒被迫朝向所述衬底的表面的磁场以及在具有所述磁性颗粒涂层的初始结构周围形成与所述表面的暴露部分绑定的封装。
根据又一种实施方式,提供了一种非金属元件封装并且所述封装包括无机和非金属衬底,非磁性元件,磁性颗粒涂层,其被设置用于涂覆非金属元素;以及无机和非金属封装,其设置为围绕所述磁性颗粒涂层并与所述磁性颗粒涂层直接接触,以将具有所述磁性颗粒涂层的非磁性元件固定到所述无机和非金属衬底的表面上。
通过本发明的技术实现了附加的特征和优点。在本文中详细描述本发明的其他实施方式和方面,并且将其视为所要求保护的发明的一部分。为了更好地理解本发明的优点和特征,请参考说明书和附图。
附图说明
为了更完整地理解本公开,现在结合附图和详细描述参考以下简要描述,其中相同的附图标记表示相同的部件:
图1是示出了根据实施方式的虚拟粘附方法的流程图;
图2是根据实施方式的图1中虚拟粘附方法的图形显示;
图3是根据实施方式的图1中虚拟粘附方法的图形显示;
图4是根据实施方式的被部分封装包围的初始结构的轴向视图。
图5A是根据实施方式的在磁化之前的初始时刻具有涂层带的初始结构的图示;
图5B是根据实施方式的在磁化之后的时刻具有涂层带的初始结构的图示;
图6是根据实施方式的具有图案化的磁性颗粒涂层的初始结构的透视图;以及
图7是根据实施方式的用磁性颗粒涂层半涂覆的初始结构的轴向视图。
具体实施方式
如下所述,提供了一种虚拟粘附方法,以及允许在结构被保护层封装之前将结构转移和临时固定到表面上。该虚拟粘附方法避免了胶水或粘合剂的使用,而胶水或粘合剂会不利地影响表面性质,以实现结构与表面的临时粘附。
参考图1-图3,提供了一种虚拟粘附方法。如图1和图2所示,该方法包括用磁性颗粒11涂覆或集成初始结构10以在初始结构10上形成磁性颗粒涂层20(图1的框101)。初始结构10可以被提供为CNT 12,但是应当理解,任何小规模的非磁性结构都可以用作初始结构10。然而,为了清楚和简洁起见,以下描述将涉及将初始结构10提供为CNT 12的情况。
如图2所示,可以通过将铁磁材料溅射或电镀到初始结构10的外表面13上来实现涂覆。替代地,如图3所示,可以通过将磁性颗粒集成到液体悬浮液中的初始结构10中来实现涂覆或集成。然而,初始结构10被磁性颗粒涂覆或集成,应当理解,涂覆或集成过程的结果是至少在初始结构10的外表面13上的磁性特性(即,在磁场中施加到带有磁性颗粒涂层20的初始结构10的磁力)增加了。
尽管可以将磁性颗粒涂覆到初始结构10上或集成到初始结构10中,但是下面的描述将总体上涉及将磁性颗粒涂覆到初始结构10的外表面13上的情况。这样做是为了清楚和简洁起见,而不是要以其他方式限制权利要求或整个申请的范围。
该方法进一步包括用磁性颗粒涂层20将初始结构10支撑在衬底30的表面301上(图1的框102)以及产生被定向为使得磁性颗粒涂层的磁性颗粒借助于磁性吸引力将磁性颗粒涂层20朝向衬底30的表面301的磁场B(图1的框103)。衬底30可以由石英或其他类似的无机和非金属材料形成。表面301可以是基本平坦的,或者否则不适合于在没有磁场B的情况下牢固地保持其上具有磁性颗粒涂层20的初始结构10。然而,在产生磁场B并且迫使磁性颗粒涂层20的磁性颗粒朝向表面301的情况下,具有磁性颗粒涂层20的初始结构10被牢固地保持在表面301上,并且结构10遵循其上所保留的表面的轮廓。
根据实施方式,可以通过将衬底30安设在施加电流的永磁体或电磁体上来实现磁场B的产生。
在任一情况下,磁场B的产生可以包括生成具有足以将带有磁性颗粒涂层20的初始结构10约束在表面301上的量级的磁场B,以及产生具有不足以使磁性颗粒涂层20从初始结构10上脱落的量级的磁场B。
在将具有磁性颗粒涂层20的初始结构10牢固地保留在衬底30的表面301上的情况下,该方法还包括在具有磁性颗粒涂层20的初始结构10周围形成与表面301的暴露部分绑定的封装40(图1中的框104)。封装40可以由与衬底30类似的材料形成,使得在衬底30是由石英形成的情况下,封装40类似地由石英形成。
封装40可以由溅射工艺、蒸发(evaporation)工艺、液体干燥工艺和/或其他合适的工艺中的至少一种形成,并且可以但不必要表现出沿着初始表面301延伸的接缝特征。
由于封装40围绕具有磁性颗粒涂层20的初始结构10形成,因此所得结构50包括提供为非磁性元素的初始结构10,被设置为涂覆非金属元素的磁性颗粒涂层20以及围绕磁性颗粒涂层20设置并与之直接接触的无机和非金属封装40。因此,所得到的结构50的特征在于,封装40的内表面直接接触磁性颗粒涂层20的外表面,其中磁性颗粒涂层20可以具有但不必要具有任何进一步结构或功能目的以及所得到的结构50在封装40的内表面与磁性颗粒涂层20的外表面以及表面301之间没有粘合剂、胶水、树脂或环氧树脂。
继续参考图1-图3并另外参考图4,一旦至少部分地或完全地形成封装40,就可以脱离或停止磁场B的产生(图1中的框105)以及可以进行进一步的处理。如图4所示,一旦封装40部分地完成到一定程度,使得具有磁性颗粒涂层20的初始结构10被封装40的完成部分牢固地保持在适当的位置,则可以停止磁场B的产生。也就是说,一旦在具有磁性颗粒涂层20的初始结构10的两侧上的封装40的壁41足够高以围绕并沿着带有磁性颗粒涂层20的初始结构10紧密地形成凹槽,就可以停止磁场B的产生。
根据进一步实施方式并且参考图5A和图5B以及图6,初始结构10的涂层可以包括图案化磁性颗粒涂层20。可以将这样的图案化用于提高某些磁性性质,同时限制由于涂层20的存在而引起的其他问题和/或用于提高所得结构50的某些EM性能特性(例如,促进电磁信号的传输和接收)。例如,如图5A和图5B所示,可以进行初始结构10的涂覆以将涂层20限制为沿着初始结构10的侧面延伸的涂层带201。在此,在初始结构10被放置在衬底30的表面301上且涂层带201偏移表面301的情况下(参见图5A),初始结构10将朝着涂层带的位置滚动,一旦由于磁场B与涂层带201的磁性颗粒的相互作用而产生了磁场B,则涂层带201与表面301接触(参见图5B)。作为另一示例,如图6所示,可以图案化磁性颗粒涂层20以展现自重复涂层图案202或提供透射区域,以便为所得结构50提供某些EM透射能力或性质。选择性磁性使10的大部分浮动在衬底上方,以方便封装。
参考图7,在又一个示例中,初始结构10的仅一侧可以通过例如真空蒸镀和溅射沉积用涂层20的磁性材料涂覆。
所附权利要求中的所有装置或步骤以及功能元件的相应结构、材料、作用和等同物旨在包括用于与如具体要求保护的其他要求保护的元件组合地执行功能的任何结构、材料或作用。已经出于说明和描述的目的给出了本发明的描述,但并不意图是穷举的或将本发明限制为所公开的形式。在不脱离本发明的范围和精神的情况下,许多修改和变型对于本领域普通技术人员将是显而易见的。选择和描述实施方式是为了最好地解释本发明的原理和实际应用,并使本领域的其他普通技术人员能够理解具有适合于预期的特定用途的各种修改的本发明的各种实施方式。
尽管已经描述了本发明的优选的实施方式,但是应该理解,本领域技术人员现在和将来都可以做出各种改进和增强,它们都落入所附权利要求的范围之内。这些权利要求应被解释为对首次描述的发明保持适当的保护。

Claims (20)

1.一种虚拟粘附方法,包括:
增加初始结构的磁性特性;
将所述初始结构支撑在衬底的表面上;
产生被定向为使得所述初始结构被迫朝向所述衬底的所述表面的磁场;以及
在所述初始结构周围形成与所述表面的暴露部分绑定的封装。
2.根据权利要求1所述的虚拟粘附方法,其中,所述增加所述初始结构的磁性特性包括以下中的至少之一:
通过溅射和电镀中的至少一种用磁性颗粒涂覆所述初始结构的外表面;以及
通过液相悬浮集成将所述磁性颗粒集成到所述初始结构。
3.根据权利要求1所述的虚拟粘附方法,其中,所述产生所述磁场包括将所述衬底安设在永磁体或电磁体上。
4.根据权利要求1所述的虚拟粘附方法,进一步包括在至少部分完成所述形成所述封装之后使所述磁场脱离。
5.根据权利要求1所述的虚拟粘附方法,其中,所述产生所述磁场包括:
产生具有足以将所述初始结构约束在所述表面上的量级的磁场;以及
产生具有不足以降低所述初始结构的磁性特性的量级的磁场。
6.根据权利要求1所述的虚拟粘附方法,其中,所述形成所述封装包括形成具有足够大小以将所述初始结构固定到所述表面的所述封装。
7.根据权利要求1所述的虚拟粘附方法,其中,所述形成所述封装包括溅射、蒸发和液体干燥中的至少一种。
8.根据权利要求1所述的虚拟粘附方法,其中,所述初始结构包括碳纳米管,所述衬底包括无机非金属材料,并且所述衬底和所述封装包括石英。
9.一种虚拟粘附方法,包括:
用磁性颗粒涂覆初始结构以在初始结构上形成磁性颗粒涂层;
用磁性颗粒涂层将所述初始结构支撑在衬底的表面上;
产生被定向使得所述磁性颗粒涂层的所述磁性颗粒被迫朝向所述衬底的表面的磁场;以及
在具有所述磁性颗粒涂层的初始结构周围形成与所述表面的暴露部分绑定的封装。
10.根据权利要求9所述的虚拟粘附方法,其中,所述涂覆初始结构包括溅射和电镀以及液体悬浮集成中的至少一种。
11.根据权利要求9所述的虚拟粘附方法,其中,所述产生所述磁场包括将所述衬底安设在永磁体或电磁体上。
12.根据权利要求9所述的虚拟粘附方法,进一步包括在至少部分完成所述形成所述封装之后使所述磁场脱离。
13.根据权利要求9所述的虚拟粘附方法,其中,所述产生所述磁场包括:
产生具有足以将具有磁性颗粒涂层的初始结构约束在所述表面上的量级的磁场;以及
产生具有不足以将所述磁性颗粒涂层从所述初始结构上移走的量级的磁场。
14.根据权利要求9所述的虚拟粘附方法,其中,所述形成所述封装包括形成具有足够大小以将所述初始结构固定到所述表面的所述封装。
15.根据权利要求9所述的虚拟粘附方法,其中,所述形成所述封装包括溅射、蒸发和液体干燥中的至少一种。
16.根据权利要求9所述的虚拟粘附方法,其中,所述初始结构包括碳纳米管,所述衬底包括无机非金属材料,并且所述衬底和所述封装包括石英。
17.根据权利要求9所述的虚拟粘附方法,其中:
所述初始结构的所述涂层包括图案化所述磁性颗粒涂层,以及
所述图案化所述磁性颗粒涂层包括形成磁性颗粒涂层,以促进迫使所述磁性颗粒涂层朝向所述衬底的所述表面。
18.根据权利要求17所述的虚拟粘附方法,其中:
所述初始结构的所述涂层包括图案化所述磁性颗粒涂层,以及
所述图案化所述磁性颗粒涂层包括形成磁性颗粒涂层以促进电磁信号的传输和接收。
19.一种非金属元件封装,包括:
无机和非金属衬底;
非磁性元件;
磁性颗粒涂层,其被设置用于涂覆非金属元素;以及
无机和非金属封装,设置为围绕所述磁性颗粒涂层并与所述磁性颗粒涂层直接接触,以将具有所述磁性颗粒涂层的非磁性元件固定到所述无机和非金属衬底的表面上。
20.根据权利要求19所述的非金属元件封装,其中:
所述非金属元素包括碳纳米管,
所述无机和非金属衬底以及所述无机和非金属封装各自包括石英,并且
在没有所述无机和非金属封装的情况下,所述无机和非金属衬底的所述表面不能用磁性涂层固定所述非磁性元件。
CN201980031255.5A 2018-05-30 2019-05-29 封装前将材料虚拟粘附到表面的方法 Pending CN112105581A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/992,965 US11615900B2 (en) 2018-05-30 2018-05-30 Method of virtually adhering materials to surfaces prior to encapsulation
US15/992,965 2018-05-30
PCT/US2019/034237 WO2019231940A1 (en) 2018-05-30 2019-05-29 Method for magentically adhering and encapsulating materials to surfaces

Publications (1)

Publication Number Publication Date
CN112105581A true CN112105581A (zh) 2020-12-18

Family

ID=66998483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980031255.5A Pending CN112105581A (zh) 2018-05-30 2019-05-29 封装前将材料虚拟粘附到表面的方法

Country Status (5)

Country Link
US (1) US11615900B2 (zh)
EP (1) EP3802408A1 (zh)
JP (1) JP7053863B2 (zh)
CN (1) CN112105581A (zh)
WO (1) WO2019231940A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741019B1 (en) * 1999-10-18 2004-05-25 Agere Systems, Inc. Article comprising aligned nanowires
CN1640810A (zh) * 2004-12-24 2005-07-20 清华大学 一种基于宏观长多壁碳纳米管束的正光控电导器件
US20050255313A1 (en) * 2004-05-14 2005-11-17 Fujitsu Limited Carbon nanotube composite material, magnetic material and production thereof
WO2005122235A2 (en) * 2004-06-08 2005-12-22 Nanosys, Inc. Methods and devices for forming nanostructure monolayers and devices including such monolayers
US6987302B1 (en) * 2003-07-01 2006-01-17 Yingjian Chen Nanotube with at least a magnetic nanoparticle attached to the nanotube's exterior sidewall and electronic devices made thereof
US20090202644A1 (en) * 2005-04-06 2009-08-13 Drexel University Functional nanoparticle filled carbon nanotubes and methods of their production
CN101609802A (zh) * 2009-06-23 2009-12-23 华中科技大学 一种低热阻热界面制备方法
CN102468402A (zh) * 2010-11-17 2012-05-23 展晶科技(深圳)有限公司 发光二极管封装结构及其制造方法
CN106463648A (zh) * 2015-02-17 2017-02-22 株式会社Lg化学 包封薄膜
US20170203256A1 (en) * 2016-01-19 2017-07-20 Uchicago Argonne, Llc Magnetic nanotube composite membranes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547748A (en) 1994-01-14 1996-08-20 Sri International Carbon nanoencapsulates
US6387485B1 (en) 1999-08-12 2002-05-14 Flexcon Company, Inc. Composite substrate with adhesive and ferromagnetic properties
US7968273B2 (en) * 2004-06-08 2011-06-28 Nanosys, Inc. Methods and devices for forming nanostructure monolayers and devices including such monolayers
JP2013195331A (ja) * 2012-03-22 2013-09-30 Jsr Corp 異方導電性シートおよびその用途
CN105565295B (zh) * 2015-12-31 2018-06-26 北京化工大学 一种取向碳纳米管薄膜的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741019B1 (en) * 1999-10-18 2004-05-25 Agere Systems, Inc. Article comprising aligned nanowires
US6987302B1 (en) * 2003-07-01 2006-01-17 Yingjian Chen Nanotube with at least a magnetic nanoparticle attached to the nanotube's exterior sidewall and electronic devices made thereof
US20050255313A1 (en) * 2004-05-14 2005-11-17 Fujitsu Limited Carbon nanotube composite material, magnetic material and production thereof
WO2005122235A2 (en) * 2004-06-08 2005-12-22 Nanosys, Inc. Methods and devices for forming nanostructure monolayers and devices including such monolayers
CN1640810A (zh) * 2004-12-24 2005-07-20 清华大学 一种基于宏观长多壁碳纳米管束的正光控电导器件
US20090202644A1 (en) * 2005-04-06 2009-08-13 Drexel University Functional nanoparticle filled carbon nanotubes and methods of their production
CN101609802A (zh) * 2009-06-23 2009-12-23 华中科技大学 一种低热阻热界面制备方法
CN102468402A (zh) * 2010-11-17 2012-05-23 展晶科技(深圳)有限公司 发光二极管封装结构及其制造方法
CN106463648A (zh) * 2015-02-17 2017-02-22 株式会社Lg化学 包封薄膜
US20170203256A1 (en) * 2016-01-19 2017-07-20 Uchicago Argonne, Llc Magnetic nanotube composite membranes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EVA BALDRICH等: "Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes: Application to dopamine detection", 《BIOSENSORS AND BIOELECTRONICS》, vol. 26, pages 1876, XP027580087 *
黄国智等: "《全自磨半自磨磨矿技术》", 冶金工业出版社, pages: 97 *

Also Published As

Publication number Publication date
WO2019231940A1 (en) 2019-12-05
EP3802408A1 (en) 2021-04-14
US20190371502A1 (en) 2019-12-05
JP2021514340A (ja) 2021-06-10
JP7053863B2 (ja) 2022-04-12
US11615900B2 (en) 2023-03-28

Similar Documents

Publication Publication Date Title
CN103842838B (zh) 磁传感器装置
US20080135956A1 (en) Articles and assembly for magnetically directed self assembly and methods of manufacture
CN1797438A (zh) 制造用于射频识别标签的天线的方法
US11521878B2 (en) Adsorption device, transferring system having same, and transferring method using same
US9236565B2 (en) Method for fabricating a magnetoresistive device
US20150076960A1 (en) Ferrofluid motor
JP2016514819A (ja) 強磁性体インレイを有するバランスウェイト
CN112105581A (zh) 封装前将材料虚拟粘附到表面的方法
KR102137510B1 (ko) 정전척
JPS6191909A (ja) 硬質磁気材料永久磁石の取り付け方法
JP5570010B2 (ja) コンデンサマイクロホンユニット及びコンデンサマイクロホンの振動板組立体の製造方法
US9000764B2 (en) Method for the production of printed magnetic functional elements for resistive sensors and printed magnetic functional elements
RU2020140245A (ru) Способ виртуальной адгезии материалов к поверхностям перед инкапсуляцией
US20170036306A1 (en) Bonded Brazing Ring System and Method for Adhering a Brazing Ring to a Tube
US8173446B2 (en) Method of producing an integrated micromagnet sensor assembly
JP2004325344A (ja) 制御素子と一体化した感磁素子
TWI439979B (zh) 電子紙結構及電子紙製造方法
Huang et al. Preparation and physical properties of stretchable FeRh films with periodic wrinkle structure
JP2021111675A (ja) 半導体チップと支持基板との貼合わせ方法、半導体チップ研磨方法、及びウェハと支持基板との貼合わせ方法
US10487245B2 (en) Electronically reversible adhesive methods
Son et al. Dual Coil Patterned Ultra‐Thin Silicon Film Enable by Double‐Sided Process
Cullen et al. Critical behavior of cubic magnetostrictive materials under stress
JPS5884477A (ja) プレ−ナ・ホ−ル素子
TWI291207B (en) Stack structure of mini-cap for protecting RF device
JP2010239792A (ja) コア部材とリング状希土類系永久磁石を接着固定してなる接着体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201218

WD01 Invention patent application deemed withdrawn after publication