CN112103365A - 一种制作三结太阳电池的方法及三结太阳电池 - Google Patents

一种制作三结太阳电池的方法及三结太阳电池 Download PDF

Info

Publication number
CN112103365A
CN112103365A CN202011264394.3A CN202011264394A CN112103365A CN 112103365 A CN112103365 A CN 112103365A CN 202011264394 A CN202011264394 A CN 202011264394A CN 112103365 A CN112103365 A CN 112103365A
Authority
CN
China
Prior art keywords
layer
gaas
manufacturing
gasb
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011264394.3A
Other languages
English (en)
Inventor
李俊承
米万里
孙志泉
杨文斐
吴洪清
徐培强
张银桥
王向武
潘彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Kaixun Photoelectric Co ltd
Original Assignee
Nanchang Kaixun Photoelectric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Kaixun Photoelectric Co ltd filed Critical Nanchang Kaixun Photoelectric Co ltd
Priority to CN202011264394.3A priority Critical patent/CN112103365A/zh
Publication of CN112103365A publication Critical patent/CN112103365A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种制作三结太阳电池的方法及三结太阳电池,其中,制作三结太阳电池的方法包括以下步骤:首先GaSb电池以及InGaP子电池与GaAs子电池,采用外延生长技术在GaSb衬底上外延生长GaSb电池结构,采用倒置生长技术在GaAs衬底上一次外延出InGaP子电池、GaAs子电池结构;而后在两种外延片上,沉积ITO导电薄膜;之后对ITO导电薄膜表面进行抛光;而后将两种外延片进行键合;键合完成即可将GaAs衬底从外延层上剥离;而后进行芯片制作工艺,制作上下电机、减反射膜,并通过划片形成单体电池。本发明公开的制作三结太阳电池的方法具有制作良率高、成本低的优点,并且制成的电池可以对长波段的太阳光谱进行良好吸收的优点。

Description

一种制作三结太阳电池的方法及三结太阳电池
技术领域
本发明涉及太阳电池领域,尤其涉及一种制作三结太阳电池的方法及三结太阳电池。
背景技术
以锗为基板的砷化镓(GaAs)三结太阳电池(结构InGaP/GaAs/Ge),目前已经基本代替了晶硅太阳电池,成为了现有空间飞行器使用的主要空间电源。主要原因是三结砷化镓太阳电池拥有更高的转换效率,目前三结砷化镓太阳电池的转换效率平均达到30%的水平。但是由于外延技术与材料本身带隙的限制,现在主流的砷化镓三结太阳电池对于1000nm之后的太阳光谱的吸收,主要是依靠Ge(锗)电池,但是Ge材料吸收有限,这样就大大限制整体电池转换效率的提升,造成长波段太阳光谱的浪费。
发明内容
为了克服现有技术中三结太阳电池存在无法对1000nm之后的太阳光谱进行有效的吸收,导致电池转换效率无法提升的缺陷,本发明所需要解决的问题在于提出一种制作三结太阳电池的方法及三结太阳电池,具有可以有效的吸收波长超过1000nm的太阳光的功能,进而提高整体电池转换效率。
为达此目的,本发明采用以下技术方案:
本发明的一方面提供了一种制作三结太阳电池的方法,包括以下步骤:
S1、制作GaSb电池,采用外延生长技术在GaSb衬底上外延生长GaSb电池结构;
S2、制作InGaP子电池与GaAs子电池,采用倒置生长技术在GaAs衬底上一次外延出InGaP子电池、GaAs子电池结构;
S3、沉积ITO导电薄膜,在GaSb衬底外延生长的最前端的端面上沉积ITO导电薄膜,并在GaAs衬底外延生长的最前端的端面上同样沉积ITO导电薄膜;
S4、抛光,采用CMP技术对GaSb衬底以及GaAs衬底上的ITO导电薄膜进行表面抛光;
S5、直接键合,采用直接键合技术将两种外延片进行键合,键合的面为步骤S4中的抛光面;
S6、剥离GaAs衬底,将步骤S2中使用的GaAs衬底从外延层上剥离;
S7、芯片制作,利用芯片制造工艺,制作上下电极、减反射膜,最后划片形成单体电池。
优选地,步骤S1中的GaSb衬底上依次外延生长出背反射层、基区层、发射区层、窗口层、GaSb cap层,且背反射层同时作为缓冲层。
优选地,所述GaSb cap层、所述发射区层、所述窗口层掺杂均为N型,所述背反射层、所述基区层掺杂均为P型。
优选地,步骤S2中的GaAs衬底依次外延生长出牺牲层、GaAs cap层、AlInPwindow、InGaP emitter、InGaP base、GaAs/AlGaAs TJ、GaAs window、GaAs emitter、GaAsbase、AlGaAs BSF。
优选地,步骤S6中剥离GaAs衬底的方式具体为通过HF溶液将所述牺牲层腐蚀去除,进而使得GaAs衬底与其它外延生长层脱离,以便于对GaAs衬底的回收再利用。
优选地,步骤S6中还包括采用磁力搅拌的方式对HF溶液进行搅拌。
优选地,步骤S7具体包括以下步骤:
S71、利用电子束蒸发技术结合光刻技术,在电池表面蒸镀金属电极并于金属电极上制出电极图形;
S72、使用柠檬酸与双氧水混合溶液,去除电极图形以外的GaAs;
S73、蒸镀减反射膜;
S74、制作下电极;
S75、划片,得到单体电池。优选地,步骤S71中的电极材料包括Au、AuGeNi、Ag。
优选地,电极材料由内至外依次设置有Au层、AuGeNi层、Au层、Ag层、Au层。
本发明的另一方面提供了一种三结太阳电池,采用上述制作三结太阳电池的方法制成。
本发明的有益效果为:
本发明提供了一种制作三结太阳电池的方法及三结太阳电池,其中,制作三结太阳电池的方法包括以下步骤:首先GaSb电池以及InGaP子电池与GaAs子电池,采用外延生长技术在GaSb衬底上外延生长GaSb电池结构,采用倒置生长技术在GaAs衬底上一次外延出InGaP子电池、GaAs子电池结构;而后在两种外延片上,沉积ITO导电薄膜;之后采用CMP技术(化学机械抛光)对ITO导电薄膜表面进行抛光;而后通过直接键合技术将两种外延片进行键合,键合的面为步骤S4中的抛光面;键合完成即可将GaAs衬底从外延层上剥离;而后进行芯片制作工艺,制作上下电机、减反射膜,并通过划片形成单体电池。
综上所述,本发明公开的一种制作三结太阳电池的方法采用GaSb电池,使得电池可以更好的利用长波段的太阳光谱(1000nm之后的太阳光谱);并且采用直接键合技术的使用,降低外延难度,规避了晶格不匹配的问题(因为如果直接在GaSb材料上外延生长GaAs材料,由于晶格常数的差异,导致外延生长需要非常后的缓冲层,厚的缓冲层,一是会吸收太阳光,减少光的有效利用,二是生长难度非常大,耗时非常长,极大影响成品的良率,提高成本。);并且由于GaAs衬底在后续工序中剥离后可以重复使用,故而降低了生产成本。本发明提供的三结太阳电池,采用上述方法制造,具有制作成本低,并且可以对长波段的太阳光谱进行良好吸收的优点。
附图说明
图1为GaSb衬底完成ITO导电薄膜沉积后的示意图;
图2为GaAs衬底完成ITO导电薄膜沉积后的示意图;
图3为本发明公开的三结太阳电池的结构示意图。
图中:
1、GaSb衬底;2、背反射层;3、基区层;4、发射区层;5、窗口层;6、GaSb cap层;7、ITO导电薄膜;8、GaAs衬底;9、牺牲层;10、GaAs cap层;11、AlInP window;12、InGaP emitter;13、InGaP base;14、GaAs/AlGaAs TJ;15、GaAs window;16、GaAs emitter;17、GaAs base;18、AlGaAs BSF;19、电极;20、ARC。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例一:
如图1至图3所示,本实施例公开了一种制作三结太阳电池的方法,包括以下步骤:
S1、制作GaSb电池,采用外延生长技术(MBE技术,又称分子束外延技术)在GaSb衬底1上外延生长GaSb电池结构。
S2、制作InGaP子电池与GaAs子电池,采用倒置生长技术在GaAs衬底8上一次外延出InGaP子电池、GaAs子电池结构;
S3、沉积ITO导电薄膜,在GaSb衬底1外延生长的最前端的端面上沉积ITO导电薄膜,并在GaAs衬底8外延生长的最前端的端面上同样沉积ITO导电薄膜。其中,沉积ITO导电薄膜的方式可为电子束蒸发或磁控溅射等方法。制作ITO导电薄膜,ITO导电薄膜沉积温度在140℃~150℃之间,厚度为0.9μm~1.1μm中的任意一个值。
S4、抛光,采用CMP技术(化学机械抛光,即采用化学腐蚀与机械摩擦的方法对物体表面进行抛光)对GaSb衬底1以及GaAs衬底8上的ITO导电薄膜进行表面抛光。抛光条件为工作压力处于1.5 psi ~2.5 psi之间,上盘转速100±5rpm,下盘转速90±5rpm,抛光时间5min~8min。磨料使用SiO2,直径为30nm~50nm的球形。优选地,抛光液配比为:磨料25g、无机碱3g、40%硅胶140ml以及添加剂10.5g。
S5、直接键合,采用直接键合技术将两种外延片进行键合,键合的面为步骤S4中的抛光面。键合条件为:压力15000kgf(外延片的直径为4寸时),25000kgf(外延片的直径为6寸时),键合温度处于250℃~270℃之间,真空镀为5.0E-01Torr,键合时间120min。
S6、剥离GaAs衬底8,将步骤S2中使用的GaAs衬底8从外延层上剥离。通过采用化学药剂将最靠近GaAs衬底8的AlAs sacrificial layer(牺牲层9)腐蚀去除,使得GaAs衬底8可以从外延块上脱离,以便于对GaAs衬底8的回收再利用。
S7、芯片制作,利用芯片制造工艺(包括光刻技术以及电子束蒸镀技术),制作上下电极、减反射膜,最后划片形成单体电池。
综上,本实施例提供的一种制作三结太阳电池的方法,采用GaSb作为衬底,制作成GaSb电池,使得三结太阳电池可以更好的利用长波段的太阳光谱(1000nm之后的太阳光谱),提高对太阳光的吸收率;并且采用直接键合技术的使用,降低外延难度,规避了晶格不匹配的问题(因为如果直接在GaSb材料上外延生长GaAs材料,由于晶格常数的差异,导致外延生长需要非常后的缓冲层,厚的缓冲层,一是会吸收太阳光,减少光的有效利用,二是生长难度非常大,耗时非常长,极大影响成品的良率,提高成本。)。并且由于GaAs衬底8在后续工序中剥离后可以重复使用,故而降低了生产成本。
进一步地,步骤S1中的GaSb衬底1上依次外延生长出背反射层2、基区层3、发射区层4、窗口层5、GaSb cap层,且背反射层2同时作为缓冲层。进一步地,背反射层2(GaSbBSF)、基区层3(GaSb base)掺杂为P型,发射区层4(GaSb emitter)、窗口层5(GaSbwindow)、GaSb cap掺杂为N型。
进一步地,步骤S2中的GaAs衬底8依次外延生长出牺牲层9、GaAscap层、AlInPwindow、InGaP emitter、InGaP base、GaAs/AlGaAs TJ、GaAs window、GaAs emitter、GaAsbase、AlGaAs BSF。其中 GaAs cap、AlInP window、GaAs window、InGaP emitter、GaAsemitter层掺杂均为N型,InGaP base、GaAs base、AlGaAs BSF掺杂均为P型。
进一步地,步骤S6中剥离GaAs衬底8的方式具体为通过HF溶液将牺牲层9腐蚀去除,进而使得GaAs衬底8与其它外延生长层脱离,以便于对GaAs衬底8的回收再利用。使用HF(氢氟酸)溶液,腐蚀掉AlAs sacrificial layer(牺牲层9),从而实现GaAs衬底8的剥离与回收利用。溶液具体溶液配比为:HF:H2O=1:10,溶液温度控制在35℃±2℃之间。通过对采用HF溶液将牺牲层9腐蚀去除,而后以便于将GaAs衬底8进行回收再利用,降低制作电池的成本。
为了使得HF溶液对牺牲层9(AlAs sacrificial layer)腐蚀的更加均匀,速率稳定,进一步地,步骤S6中还包括采用磁力搅拌的方式对HF溶液进行搅拌。通过采用磁力搅拌,持续不断的搅拌溶液。使得在整个腐蚀过程,HF溶液内各个位置的HF(氢氟酸)浓度均相同,进而使得HF溶液对牺牲层9更加均匀,速率稳定。
进一步地,步骤S7具体包括以下步骤:
S71、利用电子束蒸发技术结合光刻技术,在电池表面蒸镀金属电极并于金属电极上制出电极图形。上电极采用梳状电极结构,遮光比不超过4%。具体步骤包括:使用负胶剥离技术,制作正面电极图形;利用电子束蒸发技术,在电池表面蒸镀金属电极;电极剥离,将蒸镀完成的电池,浸入丙酮溶液中,进行超声波清洗。光刻胶被丙酮溶解,继而带掉了辅佐在光刻胶上面的金属,而没有光刻胶部分的金属则保留在外延层上,从而使得留在外延层上的金属围成电极图形。
S72、使用柠檬酸与双氧水混合溶液,去除电极图形以外的GaAs。溶液的具体配比为C6H8O7(g):H2O2(ml):H2O(ml)=2:1:2.溶液使用温度为33℃~35℃之间。去除电极图形以外的GaAs,目的是防止电极图形以外的GaAs吸光。
S73、蒸镀减反射膜;蒸镀减反射膜使用的材料为氧化钛与氧化铝。其中与外延片接触层为氧化钛,厚度为43nm~50nm之间,第二层为氧化铝,厚度为60nm~78nm之间。为保持折射率稳定,材料的镀率均为5Å/s,真空度保持在1.0E-04Pa,蒸镀氧化钛是需要补充O2,O2流量为15sccm。
S74、制作下电极;下电极材料使用AuZn合金,厚度为200nm以上,通过电子束蒸发的方式蒸镀下电极。
S75、划片,得到单体电池。划片采用刀片切割,刀痕宽度为20μm。
进一步地,步骤S71中的电极材料包括Au、AuGeNi、Ag。
进一步地,电极材料由内至外依次设置有Au层、AuGeNi层、Au层、Ag层、Au层。其中,第一层Au为底金,作用是增加电极粘附性,第二层AuGeNi是掺杂层,是为了实现电极与半导体材料之间的欧姆接触。后续的AuAgAu是为了后续焊线而准备的焊点。采用金包银的结构,是因为Ag材料成本低,表面金可以保证金属不被氧化。第一层Au厚度20nm~50nm,AgGeNi合金厚度为150nm~200nm,第二层Au厚度为100nm±10nm,Ag厚度为2.5μm,最后一层Au厚度为250nm~300nm。
实施例二:
本发明的另一方面提供了一种三结太阳电池,采用上述实施例一种的制作三结太阳电池的方法制成。进而由于三结太阳电池采用GaSb作为基板(GaSb作为直接带隙材料,在长波段有非常优秀的光电转换能力),可以更好的吸收长波段的太阳光谱,从而使整体的电池的光电转换能力提高,输出更多的功率。并且由于制作三结太阳电池的后续过程中剥离下来的GaAs衬底8,还可以进行二次利用,进而极大的降低了三结太阳电池的生产成本。综上,本实施例提供的三结太阳电池具有可以更好的吸收长波段的太阳光谱,整体的电池的光电转换能力高,输出功率更高,生产成本较低的优点。
本发明是通过优选实施例进行描述的,本领域技术人员知悉,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。本发明不受此处所公开的具体实施例的限制,其他落入本申请的权利要求内的实施例都属于本发明保护的范围。

Claims (9)

1.一种制作三结太阳电池的方法,其特征在于,包括以下步骤:
S1、制作GaSb电池,采用外延生长技术在GaSb衬底上外延生长GaSb电池结构;
S2、制作InGaP子电池与GaAs子电池,采用倒置生长技术在GaAs衬底上一次外延出InGaP子电池、GaAs子电池结构;
S3、沉积ITO导电薄膜,在GaSb衬底外延生长的最前端的端面上沉积ITO导电薄膜,并在GaAs衬底外延生长的最前端的端面上同样沉积ITO导电薄膜;
S4、抛光,采用CMP技术对GaSb衬底以及GaAs衬底上的ITO导电薄膜进行表面抛光;
S5、直接键合,采用直接键合技术将两种外延片进行键合,键合的面为步骤S4中的抛光面;
S6、剥离GaAs衬底,将步骤S2中使用的GaAs衬底从外延层上剥离;
S7、芯片制作,利用芯片制造工艺,制作上下电极、减反射膜,最后划片形成单体电池;
步骤S7具体包括以下步骤:
S71、利用电子束蒸发技术结合光刻技术,在电池表面蒸镀金属电极并于金属电极上制出电极图形;
S72、使用柠檬酸与双氧水混合溶液,去除电极图形以外的GaAs;
S73、蒸镀减反射膜;
S74、制作下电极;
S75、划片,得到单体电池。
2.根据权利要求1所述的一种制作三结太阳电池的方法,其特征在于:
步骤S1中的GaSb衬底上依次外延生长出背反射层、基区层、发射区层、窗口层、GaSbcap层,且背反射层同时作为缓冲层。
3.根据权利要求2所述的一种制作三结太阳电池的方法,其特征在于:
所述GaSb cap层、所述发射区层、所述窗口层掺杂均为N型,所述背反射层、所述基区层掺杂均为P型。
4.根据权利要求2所述的一种制作三结太阳电池的方法,其特征在于:
步骤S2中的GaAs衬底依次外延生长出牺牲层、GaAscap层、AlInPwindow、InGaPemitter、InGaPbase、GaAs/AlGaAs TJ、GaAs window、GaAs emitter、GaAs base、AlGaAs BSF。
5.根据权利要求4所述的一种制作三结太阳电池的方法,其特征在于:
步骤S6中剥离GaAs衬底的方式具体为通过HF溶液将所述牺牲层腐蚀去除,进而使得GaAs衬底与其它外延生长层脱离,以便于对GaAs衬底的回收再利用。
6.根据权利要求5所述的一种制作三结太阳电池的方法,其特征在于:
步骤S6中还包括采用磁力搅拌的方式对HF溶液进行搅拌。
7.根据权利要求1所述的一种制作三结太阳电池的方法,其特征在于:
步骤S71中的电极材料包括Au、AuGeNi、Ag。
8.根据权利要求7所述的一种制作三结太阳电池的方法,其特征在于:
电极材料由内至外依次设置有Au层、AuGeNi层、Au层、Ag层、Au层。
9.一种三结太阳电池,其特征在于,采用权利要求1-8中任意一项所述的制作三结太阳电池的方法制成。
CN202011264394.3A 2020-11-13 2020-11-13 一种制作三结太阳电池的方法及三结太阳电池 Pending CN112103365A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011264394.3A CN112103365A (zh) 2020-11-13 2020-11-13 一种制作三结太阳电池的方法及三结太阳电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011264394.3A CN112103365A (zh) 2020-11-13 2020-11-13 一种制作三结太阳电池的方法及三结太阳电池

Publications (1)

Publication Number Publication Date
CN112103365A true CN112103365A (zh) 2020-12-18

Family

ID=73785587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011264394.3A Pending CN112103365A (zh) 2020-11-13 2020-11-13 一种制作三结太阳电池的方法及三结太阳电池

Country Status (1)

Country Link
CN (1) CN112103365A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594286A (zh) * 2021-07-27 2021-11-02 南昌凯捷半导体科技有限公司 一种多结太阳能电池及制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916725A (zh) * 2015-04-22 2015-09-16 中国科学院半导体研究所 一种三结叠层太阳能电池及其制造方法
US20150372179A1 (en) * 2013-02-08 2015-12-24 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Multi-junction solar cell, methods for the production thereof, and uses thereof
CN106575681A (zh) * 2014-05-20 2017-04-19 蒙彼利埃大学 基于锑化物材料的多结光伏电池
CN108054231A (zh) * 2018-01-29 2018-05-18 扬州乾照光电有限公司 一种基于Si衬底的四结太阳电池及制作方法
CN111312843A (zh) * 2018-12-11 2020-06-19 君泰创新(北京)科技有限公司 三结叠层太阳能电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150372179A1 (en) * 2013-02-08 2015-12-24 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Multi-junction solar cell, methods for the production thereof, and uses thereof
CN106575681A (zh) * 2014-05-20 2017-04-19 蒙彼利埃大学 基于锑化物材料的多结光伏电池
CN104916725A (zh) * 2015-04-22 2015-09-16 中国科学院半导体研究所 一种三结叠层太阳能电池及其制造方法
CN108054231A (zh) * 2018-01-29 2018-05-18 扬州乾照光电有限公司 一种基于Si衬底的四结太阳电池及制作方法
CN111312843A (zh) * 2018-12-11 2020-06-19 君泰创新(北京)科技有限公司 三结叠层太阳能电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GEORGE T. NELSON 等: ""GaSb solar cells grown on GaAs via interfacial misfit arrays for use in the III-Sb multi-junction cell"", 《APPLIED PHYSICAL LETTERS》 *
PETER RAMM 等: "《晶圆键合手册》", 30 November 2016 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594286A (zh) * 2021-07-27 2021-11-02 南昌凯捷半导体科技有限公司 一种多结太阳能电池及制造方法

Similar Documents

Publication Publication Date Title
US9318643B2 (en) Fabrication method of inverted solar cells
US20060185582A1 (en) High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials
US4774194A (en) Process for manufacturing a solar cell device
EP1005095A1 (en) Photovoltaic element and method for manufacture thereof
CN103000759B (zh) 砷化镓薄膜多结叠层太阳电池的制备方法
JPH10270361A (ja) 半導体装置とその製造方法
CN103367465B (zh) 一种有金属反射镜的多结太阳能电池及其制备方法
JPH09506739A (ja) 新型シリコン半導体ウェーハ及びその製造方法
CN111725340A (zh) 一种超薄柔性砷化镓太阳能电池芯片及其制备方法
RU2391745C1 (ru) Способ изготовления каскадных солнечных элементов (варианты)
WO2015196767A1 (zh) 四结太阳能电池的制备方法
CN112103365A (zh) 一种制作三结太阳电池的方法及三结太阳电池
CN111463303B (zh) 一种高电压串联结构多结太阳能电池及其制作方法
CN117153948A (zh) 一种钝化接触太阳能电池制备方法
CN109755351B (zh) 一种柔性薄膜太阳电池及其制作方法
CN113066907B (zh) 一种纳米网状表面电极的三结砷化镓太阳电池的制备方法
JP2001026500A (ja) 薄膜単結晶デバイスの製造法
CN110739357A (zh) 纳米倒金字塔-准微米金字塔背钝化太阳电池及制法
CN111312843A (zh) 三结叠层太阳能电池及其制备方法
CN102790098B (zh) 背反射式太阳能电池及其制作方法
CN101997270A (zh) 硅基化合物半导体激光器的制作方法
CN111524992A (zh) 一种GaInP/GaAs/HIT三结叠层太阳能电池及其制备方法
WO2020029581A1 (zh) 柔性太阳能电池及其制作方法
JP5351628B2 (ja) 結晶シリコン系太陽電池
CN104681652A (zh) 一种倒装多结太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201218