CN112103278B - 一种具备微结构的硅基叠层太阳能电池及其制备方法 - Google Patents

一种具备微结构的硅基叠层太阳能电池及其制备方法 Download PDF

Info

Publication number
CN112103278B
CN112103278B CN202010781222.7A CN202010781222A CN112103278B CN 112103278 B CN112103278 B CN 112103278B CN 202010781222 A CN202010781222 A CN 202010781222A CN 112103278 B CN112103278 B CN 112103278B
Authority
CN
China
Prior art keywords
layer
thin film
silicon substrate
solar cell
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010781222.7A
Other languages
English (en)
Other versions
CN112103278A (zh
Inventor
况亚伟
张树德
郑豪
魏青竹
刘玉申
倪志春
洪学鹍
张德宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Suzhou Talesun Solar Technologies Co Ltd
Original Assignee
Changshu Institute of Technology
Suzhou Talesun Solar Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology, Suzhou Talesun Solar Technologies Co Ltd filed Critical Changshu Institute of Technology
Priority to CN202010781222.7A priority Critical patent/CN112103278B/zh
Publication of CN112103278A publication Critical patent/CN112103278A/zh
Application granted granted Critical
Publication of CN112103278B publication Critical patent/CN112103278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种具备微结构的硅基叠层太阳能电池,包括底电池结构和层叠于底电池结构之上的顶电池结构,底电池结构包括n型单晶硅衬底,n型单晶硅衬底上表面的四周设置SiO2绝缘层,中间刻蚀制备纳米截头锥孔周期阵列结构并形成p型掺杂层,在纳米截头锥孔内壁制备Ag薄膜反射层,n型单晶硅衬底的下表面设置金属薄膜层;顶电池结构由下至上依次包括TiO2薄膜层、钙钛矿吸收层、空穴传输层、透明导电薄膜层和金属电极。本发明还公开了该电池的制备方法。本发明利用纳米截头锥孔周期阵列优异的光捕获能力,同时利用TiO2填充硅孔阵列提高载流子的收集效率,在提高光子吸收效率的同时提高光电流密度。

Description

一种具备微结构的硅基叠层太阳能电池及其制备方法
技术领域
本发明涉及一种太阳能电池及其制备方法,尤其是涉及一种具备微结构的硅基叠层太阳能电池及其制备方法。
背景技术
太阳能是一种可再生的清洁能源,对于人类的可持续发展具有重要的意义。而太阳能电池直接将光能转化为电能,光电转换效率和制备成本是决定其工业化应用的关键因素。目前,硅基太阳能电池的极限效率约29.4%,要达到该效率制备成本极高。在硅基电池顶层叠加宽带隙光吸收材料构成叠层电池,在兼顾硅电池成熟工艺的同时,可以提高电池效率,现有的硅基叠层电池的理论极限效率可从29%提高到42.5%。
钙钛矿太阳能电池采用具有钙钛矿结构的CH3NH3PbX3(X=I,C,Br)作为光电转换材料,当钙钛矿太材料和硅晶自上而下构成叠层电池时,二者吸收光谱互补,大大提高了太阳光谱的利用率,同时也降低了制备成本。香港理工大学研发的钙钛矿晶硅叠层太阳能电池,不仅成本比硅基电池降低了30.6%,而且效率达到了25.5%。
公开号为CN111261779A的中国专利公开了一种硅基叠层太阳能电池,包括底电池结构和层叠于底电池结构之上的顶电池结构,底电池结构包括n型单晶硅衬底,n型单晶硅衬底上表面的四周设置SiO2绝缘层,中间制备p型掺杂层,在p型掺杂层和n型单晶硅衬底的层叠区域刻蚀制备竖直方向的纳米孔周期阵列结构,n型单晶硅衬底的纳米孔内为空隙,n型单晶硅衬底的下表面设置金属薄膜层;顶电池结构由下至上依次包括TiO2薄膜层、钙钛矿吸收层、空穴传输层、透明导电薄膜层和金属电极。利用周期纳米孔阵列优异的光吸收和电荷传输性能,提高了底电池长波光子的利用效率,在兼容硅基电池工艺的同时提高了叠层太阳能电池的光电转换效率。
发明内容
本发明的一个目的是提供一种具备微结构的硅基叠层太阳能电池,解决叠层电池中长波长光子吸收效率、载流子的收集效率不高的问题,进一步提高叠层太阳能电池的光电转换效率。本发明的另一个目的是提供这种具备微结构的硅基叠层太阳能电池的制备方法。
本发明技术方案如下:一种具备微结构的硅基叠层太阳能电池,包括底电池结构和顶电池结构,所述顶电池结构层叠于所述底电池结构之上,所述底电池结构包括n型单晶硅衬底,所述n型单晶硅衬底上表面的四周设置SiO2绝缘层以在所述n型单晶硅衬底的中央区域形成受光窗口,所述受光窗口区域的所述n型单晶硅衬底上刻蚀制备上大下小的纳米截头锥孔周期阵列结构,在所述受光窗口区域的所述n型单晶硅衬底及所述纳米截头锥孔周期阵列结构的纳米截头锥孔内壁制备p型掺杂层,在所述纳米截头锥孔内壁的p型掺杂层表面制备Ag反射层,所述n型单晶硅衬底的下表面设置金属薄膜层;所述顶电池结构由下至上依次包括TiO2薄膜层、钙钛矿吸收层、空穴传输层、透明导电薄膜层和金属电极,所述TiO2薄膜层层叠于所述SiO2绝缘层和所述受光窗口区域的所述n型单晶硅衬底表面的所述p型掺杂层之上以及填充于所述纳米截头锥孔内;所述金属电极和所述金属薄膜层分别引出作为导电电极对外电路供电。
优选的,所述纳米截头锥孔周期阵列结构的周期为200~1200nm,所述纳米截头锥孔的大端直径为50~1000nm,所述纳米截头锥孔周期阵列结构的占空比为0.4~0.8。
优选的,所述纳米截头锥孔的深度为400~800nm,所述纳米截头锥孔的小端直径与大端直径比为0.2~0.8,所述纳米截头锥孔的大端直径与深度比为0.2~2。
优选的,所述TiO2薄膜层叠于所述SiO2绝缘层的厚度为50~200nm。
优选的,所述Ag反射层的厚度为10~80nm。
一种具备微结构的硅基叠层太阳能电池的制备方法,依次包括步骤:一、在n型单晶硅衬底上表面利用纳米粒子自组装薄膜掩蔽的亚微米干法刻蚀工艺制备纳米截头锥孔周期阵列结构;二、在所述n型单晶硅衬底上于所述纳米截头锥孔周期阵列结构四周沉积一层SiO2绝缘层形成受光窗口;三、在所述受光窗口区域的所述n型单晶硅衬底及所述纳米截头锥孔周期阵列结构的纳米截头锥孔内壁利用液体硼源高温扩散制备PN结;四、利用掩模版辅助在所述纳米截头锥孔内壁的p型掺杂层表面制备Ag反射层;五、利用磁控溅射法在SiO2绝缘层和所述受光窗口区域的所述n型单晶硅衬底表面的所述p型掺杂层之上制备TiO2薄膜层作为电子传输层,所述TiO2薄膜层填充嵌入所述纳米截头锥孔内;六、进行退火固化并在所述TiO2薄膜层上利用旋涂法依次制备钙钛矿吸收层和空穴传输层;七、在所述空穴传输层表面上采用电子束蒸发工艺分别制备透明导电薄膜层和金属电极;八、在所述n型单晶硅衬底下表面沉积金属薄膜层引出导线作为所述硅基叠层太阳能电池的负极,所述金属电极引出导线作为所述硅基叠层太阳能电池的正极。
优选的,所述利用纳米粒子自组装薄膜掩蔽的亚微米干法刻蚀工艺制备纳米截头锥孔周期阵列结构的过程中,采用体积流量为10~22sccm的SF6和体积流量为15~35sccmC4F8混合气体,功率500~900W,偏压15~35V,干法刻蚀时间为0.2~1h,在所述纳米截头锥孔周期阵列结构形成后用去离子水清洗0.5~2h。
优选的,所述n型单晶硅衬底的电阻率为1.12~1.35Ω·cm,所述利用液体硼源高温扩散制备PN结时以浓度为10~16mg/cm3的BBr3液态硼源在1000~1350℃下进行高温扩散制备p型掺杂层。
优选的,所述利用磁控溅射法制备TiO2薄膜层时,TiO2靶材纯度99.98%,本地真空10-2~10-5torr,工作气体为氩气,所述退火固化时退火温度350~650℃,退火时间为1~3h。
本发明所提供的技术方案的优点在于:利用陷光特性较好的纳米截头锥孔周期阵列作为钙钛矿硅基阵列叠层太阳能电池的底电池结构,相对于平面硅结构,光吸收性能更好,可以通过调控锥孔的径深比和周期,通过各个纳米截头锥孔及锥孔间的倾斜锥面间隙对长波长区间形成共振强吸收;锥孔内Ag反射层的设置,增加了光程,提高了短波光子在顶电池的吸收;相对于现有绒面陷光结构技术,纳米截头锥孔阵列的表面更加平整,机械性能更稳定;以硅基纳米孔阵列作为底电池结构,利用周期纳米孔阵列优异的光吸收以及孔阵列填充TiO2层提高电荷传输性能,综合提高了电池长波光子的利用效率,在兼容硅基电池工艺的同时提高了叠层太阳能电池的光电转换效率。
附图说明
图1为具备微结构的硅基叠层太阳能电池的结构示意图。
图2为上大下小的纳米截头锥孔周期阵列结构SEM图。
图3为纳米截头锥孔周期阵列结构截面结构示意图。
图4为实施例1、2、3与钙钛矿平面结构硅基叠层太阳能电池的光谱吸收对比图。
图5为平面结构钙钛矿硅基太阳能电池的500nm光场吸收分布图。
图6为平面结构钙钛矿硅基太阳能电池的1000nm光场吸收分布图。
图7为实施例1具备微结构的硅基叠层太阳能电池的500nm光场吸收分布图。
图8为实施例1具备微结构的硅基叠层太阳能电池的1000nm光场吸收分布图。
图9为实施例2具备微结构的硅基叠层太阳能电池的500nm光场吸收分布图。
图10为实施例2具备微结构的硅基叠层太阳能电池的1000nm光场吸收分布图。
图11为实施例3具备微结构的硅基叠层太阳能电池的500nm光场吸收分布图。
图12为实施例3具备微结构的硅基叠层太阳能电池的1000nm光场吸收分布图。
图13为实施例4具备微结构的硅基叠层太阳能电池的500nm光场吸收分布图。
图14为实施例4具备微结构的硅基叠层太阳能电池的1000nm光场吸收分布图。
图15为实施例5具备微结构的硅基叠层太阳能电池的500nm光场吸收分布图。
图16为实施例5具备微结构的硅基叠层太阳能电池的1000nm光场吸收分布图。
具体实施方式
下面结合实施例对本发明作进一步说明,但不作为对本发明的限定。
实施例1,请参见图1、图2及图3所示,首先n型单晶硅衬底1选取尺寸为1cm×1cm的n型直拉单晶硅片,厚度100μm,电阻率为1.6Ω·cm。清洗后利用纳米粒子自组装薄膜掩蔽的亚微米干法刻蚀工艺制备倒置的纳米截头锥孔11周期阵列结构,采用SF6和C4F8混合气体,其体积流量分别为16sccm和18sccm,功率600W,偏压20V,干法刻蚀时间为0.3h。在硅基表面形成倒置的纳米截头锥孔11周期阵列后用去离子水清洗。形成的纳米截头锥孔11周期阵列结构的周期P为400nm,纳米截头锥孔11的小端直径d为100nm,大端直径D为300nm,孔深度h为500nm,占空比为0.75。
样品清洗并烘干后,经过氧化刻蚀工艺在n型单晶硅衬底1表面四周形成SiO2绝缘层2,位于SiO2绝缘层2中间的暴露区域为受光窗口,尺寸为0.8cm×0.8cm。经去离子水清洗干燥后,放置于扩散炉中,以BBr3液态硼源在1200℃下进行高温扩散制备p型掺杂层3形成发射区,构成PN结,BBr3浓度为15mg/cm3。p型掺杂层2覆盖于受光窗口区域的n型单晶硅衬底1表面及纳米截头锥孔11内壁。然后在锥孔内壁利用掩模版辅助在纳米截头锥孔11内壁制备Ag薄膜反射层4,厚度30nm。
样品清洗并烘干后,利用磁控溅射制备TiO2薄膜层5,以高纯TiO2靶材为原料,纯度99.99%,本地真空10-5torr,以氩气作为工作气体,基板温度控制在350℃,成膜后退火,退火温度400℃,退火时间为1.5h。TiO2薄膜层5层叠于SiO2绝缘层2和p型掺杂层3之上并填充嵌入纳米截头锥孔11内。TiO2薄膜层5的层叠于p型掺杂层2表面的厚度为100nm。
退火固化后,在TiO2薄膜层5上利用旋涂法制备钙钛矿吸收层6,将0.003molCH3NH3I(纯度99.5%)和0.003molPbI2(纯度为99%)加入装有1mlN-二甲基甲酰胺溶液的小烧杯。经过搅拌后得到CH3NH3PbI3旋涂液,利用匀胶机将钙钛矿溶液滴在基板上,匀液后放置在烤胶机上固胶200分钟,固胶温度范围85℃,得到厚度为300nm的钙钛矿薄膜构成钙钛矿吸收层6。再在钙钛矿吸收层6上设置厚度150nm的Spiro-OMeTAD空穴传输层7;在空穴传输层7上设置厚度50nm的ITO薄膜为透明导电薄膜层7,最后在透明导电薄膜层7的上表面沉积厚度30nm的Ag金属电极9作为引出电极,在n型单晶硅衬底1的下表面沉积厚度50nm的Al金属薄膜层10,由Ag金属电极9和Al金属薄膜层10作为导电电极引出光生电荷实现对外电路供电。
实施例2,请参考实施例1,首先n型单晶硅衬底1选取尺寸为1cm×1cm的n型直拉单晶硅片,厚度100μm,电阻率为1.6Ω·cm。清洗后利用纳米粒子自组装薄膜掩蔽的亚微米干法刻蚀工艺制备倒置的纳米截头锥孔11周期阵列结构,采用SF6和C4F8混合气体,其体积流量分别为16sccm和18sccm,功率700W,偏压30V,干法刻蚀时间为0.5h。在硅基表面形成倒置的纳米截头锥孔11周期阵列后用去离子水清洗。形成的纳米截头锥孔11周期阵列结构的周期P为400nm,纳米截头锥孔11的小端直径d为100nm,大端直径D为300nm,孔深度h为800nm,占空比为0.75。
样品清洗并烘干后,经过氧化刻蚀工艺在n型单晶硅衬底1表面四周形成SiO2绝缘层2,位于SiO2绝缘层2中间的暴露区域为受光窗口,尺寸为0.8cm×0.8cm。经去离子水清洗干燥后,放置于扩散炉中,以BBr3液态硼源在1200℃下进行高温扩散制备p型掺杂层3形成发射区,构成PN结,BBr3浓度为15mg/cm3。p型掺杂层2覆盖于受光窗口区域的n型单晶硅衬底1表面及纳米截头锥孔11内壁。然后在锥孔内壁利用掩模版辅助在纳米截头锥孔11内壁制备Ag薄膜反射层4,厚度30nm。
样品清洗并烘干后,利用磁控溅射制备TiO2薄膜层5,以高纯TiO2靶材为原料,纯度99.99%,本地真空10-5torr,以氩气作为工作气体,基板温度控制在350℃,成膜后退火,退火温度400℃,退火时间为1.5h。TiO2薄膜层5层叠于SiO2绝缘层2和p型掺杂层3之上并填充嵌入纳米截头锥孔11内。TiO2薄膜层5的层叠于p型掺杂层2表面的厚度为100nm。
退火固化后,在TiO2薄膜层5上利用旋涂法制备钙钛矿吸收层6,将0.003molCH3NH3I(纯度99.5%)和0.003molPbI2(纯度为99%)加入装有1mlN-二甲基甲酰胺溶液的小烧杯。经过搅拌后得到CH3NH3PbI3旋涂液,利用匀胶机将钙钛矿溶液滴在基板上,匀液后放置在烤胶机上固胶200分钟,固胶温度范围85℃,得到厚度为300nm的钙钛矿薄膜构成钙钛矿吸收层6。再在钙钛矿吸收层6上设置厚度150nm的Spiro-OMeTAD空穴传输层7;在空穴传输层7上设置厚度50nm的ITO薄膜为透明导电薄膜层7,最后在透明导电薄膜层7的上表面沉积厚度30nm的Ag金属电极9作为引出电极,在n型单晶硅衬底1的下表面沉积厚度50nm的Al金属薄膜层10,由Ag金属电极9和Al金属薄膜层10作为导电电极引出光生电荷实现对外电路供电。
实施例3,请参考实施例1,首先n型单晶硅衬底1选取尺寸为1cm×1cm的n型直拉单晶硅片,厚度100μm,电阻率为1.6Ω·cm。清洗后利用纳米粒子自组装薄膜掩蔽的亚微米干法刻蚀工艺制备倒置的纳米截头锥孔11周期阵列结构,采用SF6和C4F8混合气体,其体积流量分别为12sccm和22sccm,功率600W,偏压20V,干法刻蚀时间为0.3h。在硅基表面形成倒置的纳米截头锥孔11周期阵列后用去离子水清洗。形成的纳米截头锥孔11周期阵列结构的周期P为600nm,纳米截头锥孔11的小端直径d为100nm,大端直径D为400nm,孔深度h为500nm,占空比为0.66。
样品清洗并烘干后,经过氧化刻蚀工艺在n型单晶硅衬底1表面四周形成SiO2绝缘层2,位于SiO2绝缘层2中间的暴露区域为受光窗口,尺寸为0.8cm×0.8cm。经去离子水清洗干燥后,放置于扩散炉中,以BBr3液态硼源在1200℃下进行高温扩散制备p型掺杂层3形成发射区,构成PN结,BBr3浓度为15mg/cm3。p型掺杂层2覆盖于受光窗口区域的n型单晶硅衬底1表面及纳米截头锥孔11内壁。然后在锥孔内壁利用掩模版辅助在纳米截头锥孔11内壁制备Ag薄膜反射层4,厚度30nm。
样品清洗并烘干后,利用磁控溅射制备TiO2薄膜层5,以高纯TiO2靶材为原料,纯度99.99%,本地真空10-5torr,以氩气作为工作气体,基板温度控制在350℃,成膜后退火,退火温度400℃,退火时间为1.5h。TiO2薄膜层5层叠于SiO2绝缘层2和p型掺杂层3之上并填充嵌入纳米截头锥孔11内。TiO2薄膜层5的层叠于p型掺杂层2表面的厚度为100nm。
退火固化后,在TiO2薄膜层5上利用旋涂法制备钙钛矿吸收层6,将0.003molCH3NH3I(纯度99.5%)和0.003molPbI2(纯度为99%)加入装有1mlN-二甲基甲酰胺溶液的小烧杯。经过搅拌后得到CH3NH3PbI3旋涂液,利用匀胶机将钙钛矿溶液滴在基板上,匀液后放置在烤胶机上固胶200分钟,固胶温度范围85℃,得到厚度为300nm的钙钛矿薄膜构成钙钛矿吸收层6。再在钙钛矿吸收层6上设置厚度150nm的Spiro-OMeTAD空穴传输层7;在空穴传输层7上设置厚度50nm的ITO薄膜为透明导电薄膜层7,最后在透明导电薄膜层7的上表面沉积厚度30nm的Ag金属电极9作为引出电极,在n型单晶硅衬底1的下表面沉积厚度50nm的Al金属薄膜层10,由Ag金属电极9和Al金属薄膜层10作为导电电极引出光生电荷实现对外电路供电。
实施例4,请参考实施例1,首先n型单晶硅衬底1选取尺寸为1cm×1cm的n型直拉单晶硅片,厚度100μm,电阻率为1.6Ω·cm。清洗后利用纳米粒子自组装薄膜掩蔽的亚微米干法刻蚀工艺制备倒置的纳米截头锥孔11周期阵列结构,采用SF6和C4F8混合气体,其体积流量分别为12sccm和22sccm,功率700W,偏压30V,干法刻蚀时间为0.5h。在硅基表面形成倒置的纳米截头锥孔11周期阵列后用去离子水清洗。形成的纳米截头锥孔11周期阵列结构的周期P为600nm,纳米截头锥孔11的小端直径d为100nm,大端直径D为400nm,孔深度h为800nm,占空比为0.66。
样品清洗并烘干后,经过氧化刻蚀工艺在n型单晶硅衬底1表面四周形成SiO2绝缘层2,位于SiO2绝缘层2中间的暴露区域为受光窗口,尺寸为0.8cm×0.8cm。经去离子水清洗干燥后,放置于扩散炉中,以BBr3液态硼源在1200℃下进行高温扩散制备p型掺杂层3形成发射区,构成PN结,BBr3浓度为15mg/cm3。p型掺杂层2覆盖于受光窗口区域的n型单晶硅衬底1表面及纳米截头锥孔11内壁。然后在锥孔内壁利用掩模版辅助在纳米截头锥孔11内壁制备Ag薄膜反射层4,厚度30nm。
样品清洗并烘干后,利用磁控溅射制备TiO2薄膜层5,以高纯TiO2靶材为原料,纯度99.99%,本地真空10-5torr,以氩气作为工作气体,基板温度控制在350℃,成膜后退火,退火温度400℃,退火时间为1.5h。TiO2薄膜层5层叠于SiO2绝缘层2和p型掺杂层3之上并填充嵌入纳米截头锥孔11内。TiO2薄膜层5的层叠于p型掺杂层2表面的厚度为100nm。
退火固化后,在TiO2薄膜层5上利用旋涂法制备钙钛矿吸收层6,将0.003molCH3NH3I(纯度99.5%)和0.003molPbI2(纯度为99%)加入装有1mlN-二甲基甲酰胺溶液的小烧杯。经过搅拌后得到CH3NH3PbI3旋涂液,利用匀胶机将钙钛矿溶液滴在基板上,匀液后放置在烤胶机上固胶200分钟,固胶温度范围85℃,得到厚度为300nm的钙钛矿薄膜构成钙钛矿吸收层6。再在钙钛矿吸收层6上设置厚度150nm的Spiro-OMeTAD空穴传输层7;在空穴传输层7上设置厚度50nm的ITO薄膜为透明导电薄膜层7,最后在透明导电薄膜层7的上表面沉积厚度30nm的Ag金属电极9作为引出电极,在n型单晶硅衬底1的下表面沉积厚度50nm的Al金属薄膜层10,由Ag金属电极9和Al金属薄膜层10作为导电电极引出光生电荷实现对外电路供电。
实施例5,请参考实施例1,首先n型单晶硅衬底1选取尺寸为1cm×1cm的n型直拉单晶硅片,厚度100μm,电阻率为1.6Ω·cm。清洗后利用纳米粒子自组装薄膜掩蔽的亚微米干法刻蚀工艺制备倒置的纳米截头锥孔11周期阵列结构,采用SF6和C4F8混合气体,其体积流量分别为12sccm和22sccm,功率700W,偏压30V,干法刻蚀时间为0.5h。在硅基表面形成倒置的纳米截头锥孔11周期阵列后用去离子水清洗。形成的纳米截头锥孔11周期阵列结构的周期P为600nm,纳米截头锥孔11的小端直径d为100nm,大端直径D为400nm,孔深度h为800nm,占空比为0.66。
样品清洗并烘干后,经过氧化刻蚀工艺在n型单晶硅衬底1表面四周形成SiO2绝缘层2,位于SiO2绝缘层2中间的暴露区域为受光窗口,尺寸为0.8cm×0.8cm。经去离子水清洗干燥后,放置于扩散炉中,以BBr3液态硼源在1200℃下进行高温扩散制备p型掺杂层3形成发射区,构成PN结,BBr3浓度为15mg/cm3。p型掺杂层2覆盖于受光窗口区域的n型单晶硅衬底1表面及纳米截头锥孔11内壁。然后在锥孔内壁利用掩模版辅助在纳米截头锥孔11内壁制备Ag薄膜反射层4,厚度50nm。
样品清洗并烘干后,利用磁控溅射制备TiO2薄膜层5,以高纯TiO2靶材为原料,纯度99.99%,本地真空10-5torr,以氩气作为工作气体,基板温度控制在350℃,成膜后退火,退火温度400℃,退火时间为1.5h。TiO2薄膜层5层叠于SiO2绝缘层2和p型掺杂层3之上并填充嵌入纳米截头锥孔11内。TiO2薄膜层5的层叠于p型掺杂层2表面的厚度为100nm。
退火固化后,在TiO2薄膜层5上利用旋涂法制备钙钛矿吸收层6,将0.003molCH3NH3I(纯度99.5%)和0.003molPbI2(纯度为99%)加入装有1mlN-二甲基甲酰胺溶液的小烧杯。经过搅拌后得到CH3NH3PbI3旋涂液,利用匀胶机将钙钛矿溶液滴在基板上,匀液后放置在烤胶机上固胶200分钟,固胶温度范围85℃,得到厚度为300nm的钙钛矿薄膜构成钙钛矿吸收层6。再在钙钛矿吸收层6上设置厚度150nm的Spiro-OMeTAD空穴传输层7;在空穴传输层7上设置厚度50nm的ITO薄膜为透明导电薄膜层7,最后在透明导电薄膜层7的上表面沉积厚度30nm的Ag金属电极9作为引出电极,在n型单晶硅衬底1的下表面沉积厚度50nm的Al金属薄膜层10,由Ag金属电极9和Al金属薄膜层10作为导电电极引出光生电荷实现对外电路供电。
对比例为平面结构钙钛矿硅基太阳能电池,从图4至图16可以看出,本发明层叠太阳能电池的光吸收和光电流密度均显著提高;锥形孔在长波长形成的共振吸收大幅增加了光子的吸收效率。

Claims (9)

1.一种硅基叠层太阳能电池,包括底电池结构和顶电池结构,所述顶电池结构层叠于所述底电池结构之上,其特征在于,所述底电池结构包括n型单晶硅衬底,所述n型单晶硅衬底上表面的四周设置SiO2绝缘层以在所述n型单晶硅衬底的中央区域形成受光窗口,所述受光窗口区域的所述n型单晶硅衬底上刻蚀制备上大下小的纳米截头锥孔周期阵列结构,在所述受光窗口区域的所述n型单晶硅衬底及所述纳米截头锥孔周期阵列结构的纳米截头锥孔内壁制备p型掺杂层,在所述纳米截头锥孔内壁的p型掺杂层表面制备Ag反射层,所述n型单晶硅衬底的下表面设置金属薄膜层;所述顶电池结构由下至上依次包括TiO2薄膜层、钙钛矿吸收层、空穴传输层、透明导电薄膜层和金属电极,所述TiO2薄膜层层叠于所述SiO2绝缘层和所述受光窗口区域的所述n型单晶硅衬底表面的所述p型掺杂层之上以及填充于所述纳米截头锥孔内;所述金属电极和所述金属薄膜层分别引出作为导电电极对外电路供电。
2.根据权利要求1所述的硅基叠层太阳能电池,其特征在于,所述纳米截头锥孔周期阵列结构的周期为200~1200nm,所述纳米截头锥孔的大端直径为50~1000nm,所述纳米截头锥孔周期阵列结构的占空比为0.4~0.8。
3.根据权利要求2所述的硅基叠层太阳能电池,其特征在于,所述纳米截头锥孔的深度为400~800nm,所述纳米截头锥孔的小端直径与大端直径比为0.2~0.8,所述纳米截头锥孔的大端直径与深度比为0.2~2。
4.根据权利要求1所述的硅基叠层太阳能电池,其特征在于,所述TiO2薄膜层叠于所述SiO2绝缘层的厚度为50~200nm。
5.根据权利要求1所述的硅基叠层太阳能电池,其特征在于,所述Ag反射层的厚度为10~80nm。
6.一种具备微结构的硅基叠层太阳能电池的制备方法,其特征在于,依次包括步骤:一、在n型单晶硅衬底上表面利用纳米粒子自组装薄膜掩蔽的亚微米干法刻蚀工艺制备纳米截头锥孔周期阵列结构;二、在所述n型单晶硅衬底上于所述纳米截头锥孔周期阵列结构四周沉积一层SiO2绝缘层形成受光窗口;三、在所述受光窗口区域的所述n型单晶硅衬底及所述纳米截头锥孔周期阵列结构的纳米截头锥孔内壁利用液体硼源高温扩散制备PN结;四、利用掩模版辅助在所述纳米截头锥孔内壁的p型掺杂层表面制备Ag反射层;五、利用磁控溅射法在SiO2绝缘层和所述受光窗口区域的所述n型单晶硅衬底表面的所述p型掺杂层之上制备TiO2薄膜层作为电子传输层,所述TiO2薄膜层填充嵌入所述纳米截头锥孔内;六、进行退火固化并在所述TiO2薄膜层上利用旋涂法依次制备钙钛矿吸收层和空穴传输层;七、在所述空穴传输层表面上采用电子束蒸发工艺分别制备透明导电薄膜层和金属电极;八、在所述n型单晶硅衬底下表面沉积金属薄膜层引出导线作为所述硅基叠层太阳能电池的负极,所述金属电极引出导线作为所述硅基叠层太阳能电池的正极。
7.根据权利要求6所述的具备微结构的硅基叠层太阳能电池的制备方法,其特征在于,所述利用纳米粒子自组装薄膜掩蔽的亚微米干法刻蚀工艺制备纳米截头锥孔周期阵列结构的过程中,采用体积流量为10~22sccm的SF6和体积流量为15~35sccm C4F8混合气体,功率500~900W,偏压15~35V,干法刻蚀时间为0.2~1h,在所述纳米截头锥孔周期阵列结构形成后用去离子水清洗0.5~2h。
8.根据权利要求6所述的具备微结构的硅基叠层太阳能电池的制备方法,其特征在于,所述n型单晶硅衬底的电阻率为1.12~1.35Ω·cm,所述利用液体硼源高温扩散制备PN结时以浓度为10~16mg/cm3的BBr3液态硼源在1000~1350℃下进行高温扩散制备p型掺杂层。
9.根据权利要求6所述的具备微结构的硅基叠层太阳能电池的制备方法,其特征在于,所述利用磁控溅射法制备TiO2薄膜层时,TiO2靶材纯度99.98%,本地真空10-2~10-5torr,工作气体为氩气,所述退火固化时退火温度350~650℃,退火时间为1~3h。
CN202010781222.7A 2020-08-06 2020-08-06 一种具备微结构的硅基叠层太阳能电池及其制备方法 Active CN112103278B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010781222.7A CN112103278B (zh) 2020-08-06 2020-08-06 一种具备微结构的硅基叠层太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010781222.7A CN112103278B (zh) 2020-08-06 2020-08-06 一种具备微结构的硅基叠层太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN112103278A CN112103278A (zh) 2020-12-18
CN112103278B true CN112103278B (zh) 2021-05-11

Family

ID=73750663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010781222.7A Active CN112103278B (zh) 2020-08-06 2020-08-06 一种具备微结构的硅基叠层太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN112103278B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652747A (zh) * 2021-07-12 2021-11-16 杭州电子科技大学 一种可产生热载流子弛豫效应的低维硅设计制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449273A (zh) * 2018-12-11 2019-03-08 常熟理工学院 一种紫外led封装结构
CN111370520A (zh) * 2020-02-14 2020-07-03 常熟理工学院 一种硅基阵列叠层太阳能电池及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941421A (zh) * 2005-09-29 2007-04-04 董毓 带有散射器的太阳电池
US9515218B2 (en) * 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US20100259826A1 (en) * 2009-04-10 2010-10-14 Lightwave Power, Inc. Planar plasmonic device for light reflection, diffusion and guiding
KR20120085571A (ko) * 2011-01-24 2012-08-01 엘지이노텍 주식회사 태양 전지
TWI453927B (zh) * 2011-06-29 2014-09-21 Ind Tech Res Inst 多重反射結構以及光電元件
CN106098817A (zh) * 2016-06-24 2016-11-09 中国科学院长春光学精密机械与物理研究所 光电子器件、半导体基板及其制作方法
CN108511539B (zh) * 2017-02-28 2020-02-04 比亚迪股份有限公司 一种太阳能电池片制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449273A (zh) * 2018-12-11 2019-03-08 常熟理工学院 一种紫外led封装结构
CN111370520A (zh) * 2020-02-14 2020-07-03 常熟理工学院 一种硅基阵列叠层太阳能电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"石墨烯硅基异质结太阳能电池中Gr/Si3N4/Si"光学微腔的优化设计;李萌 等;《淮北师范大学学报(自然科学版)》;20181231;第39卷(第4期);全文 *

Also Published As

Publication number Publication date
CN112103278A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
KR20100049724A (ko) 스크린 인쇄법을 이용한 실리콘 태양전지 및 그 제조방법
TW201010094A (en) Nano or micro-structured PN junction diode array thin-film solar cell and manufacturing method thereof
WO2012055302A1 (zh) 电极及其制造方法
CN105720197A (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
Dzhafarov et al. Porous silicon and solar cells
Zhang et al. n-ZnO/p-Si 3D heterojunction solar cells in Si holey arrays
CN110611030A (zh) 具有阵列结构电子传输层的钙钛矿太阳能电池及其制备方法
CN112103278B (zh) 一种具备微结构的硅基叠层太阳能电池及其制备方法
US11222988B2 (en) Photovoltaic device having a light absorbing layer including a plurality of grains of a doped semiconducting material
WO2018021952A1 (en) A light absorbing layer and a photovoltaic device including a light absorbing layer
KR101019382B1 (ko) 양극 산화 알루미나를 사용한 태양 전지 및 그 제조방법
KR100995833B1 (ko) 유기물-무기물 복합재료를 이용한 태양전지 및 그 제조방법
CN111370520A (zh) 一种硅基阵列叠层太阳能电池及其制备方法
CN112652720B (zh) 一种基于二维光子晶体结构的钙钛矿太阳能电池
Aliaghayee et al. A new method for improving the performance of dye sensitized solar cell using macro-porous silicon as photoanode
CN211455704U (zh) 一种硅基阵列叠层太阳能电池
CN211455724U (zh) 一种硅基叠层太阳能电池
CN111261779A (zh) 一种硅基叠层太阳能电池及其制备方法
Patel et al. A study of the optical properties of wide bandgap oxides for a transparent photovoltaics platform
KR20110068217A (ko) 박막 태양전지 및 그 제조방법
Hao et al. Photoelectrochemical performance of a sub-micron structured film with poly (3-methylthiophene)(P3MT)-modified CdTe/ZnO shell-core sub-micron tube arrays
Mehrabian et al. Highly efficient hybrid solar cell using ZnO nanorods and assessment of changes in cell performance by varying the growth period
KR20220026705A (ko) 개구부를 포함하는 양면 수광형 실리콘 탠덤형 태양 전지
CN104091850A (zh) 一种非晶硅纳米线微晶硅薄膜双结太阳能电池
WO2019011681A1 (en) PHOTOVOLTAIC DEVICE HAVING A LIGHT ABSORPTION LAYER COMPRISING A PLURALITY OF GRAINS OF A DOPED SEMICONDUCTOR MATERIAL

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant