CN112100851A - Method for evaluating tunnel water inrush disaster risk based on set pair analysis - Google Patents

Method for evaluating tunnel water inrush disaster risk based on set pair analysis Download PDF

Info

Publication number
CN112100851A
CN112100851A CN202010972557.7A CN202010972557A CN112100851A CN 112100851 A CN112100851 A CN 112100851A CN 202010972557 A CN202010972557 A CN 202010972557A CN 112100851 A CN112100851 A CN 112100851A
Authority
CN
China
Prior art keywords
level
sub
risk
parameter
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010972557.7A
Other languages
Chinese (zh)
Inventor
朱宏伟
杜义祥
李明骏
宋明建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Jianliyuan Engineering Technology Consulting Co ltd
Sichuan Zhentong Highroad Project Experimentation & Detection Co ltd
Southwest University of Science and Technology
Original Assignee
Sichuan Jianliyuan Engineering Technology Consulting Co ltd
Sichuan Zhentong Highroad Project Experimentation & Detection Co ltd
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Jianliyuan Engineering Technology Consulting Co ltd, Sichuan Zhentong Highroad Project Experimentation & Detection Co ltd, Southwest University of Science and Technology filed Critical Sichuan Jianliyuan Engineering Technology Consulting Co ltd
Priority to CN202010972557.7A priority Critical patent/CN112100851A/en
Publication of CN112100851A publication Critical patent/CN112100851A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Computer Hardware Design (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供了一种基于集对分析的评价隧道发生突涌水灾害风险的方法。所述方法选取4个一级层次参数、12个二级层次参数,构建了隧道发生突涌水灾害风险的评估体系,并采用AHP(层次分析法)法确定了各层次参数的权重。在此基础上,引入集对分析理论,提出了基于改进联系度计算的评价隧道发生突涌水风险的集对分析方法,通过计算隧道发生突涌水灾害风险的综合联系度,选取综合联系度最大的风险等级作为隧道发生突涌水风险灾害的等级,从而指导隧道的施工过程。本发明具有能够根据隧道的初步开挖结果确定各层次参数的值,从而计算得出隧道发生突涌水风险的等级,对工程实践具有理论指导意义等优点。

Figure 202010972557

The invention provides a method for evaluating the risk of water inrush disaster in a tunnel based on set pair analysis. The method selects 4 first-level parameters and 12 second-level parameters, constructs an assessment system for the risk of water inrush disaster risk in tunnels, and uses AHP (Analytical Hierarchy Process) method to determine the weights of parameters at each level. On this basis, the set-pair analysis theory is introduced, and a set-pair analysis method for evaluating the risk of water inrush in a tunnel based on the improved connection degree calculation is proposed. The risk level is used as the level of water inrush risk disaster in the tunnel, so as to guide the construction process of the tunnel. The invention has the advantages of being able to determine the values of parameters of each level according to the preliminary excavation results of the tunnel, thereby calculating the level of the risk of water inrush in the tunnel, and having theoretical guiding significance for engineering practice and the like.

Figure 202010972557

Description

基于集对分析的评价隧道发生突涌水灾害风险的方法A method for evaluating the risk of water inrush disasters in tunnels based on set pair analysis

技术领域technical field

本发明涉及一种基于集对分析的评价隧道发生突涌水灾害风险的方法,属于隧道施工技术领域。The invention relates to a method for evaluating the risk of water inrush disaster in a tunnel based on set pair analysis, and belongs to the technical field of tunnel construction.

背景技术Background technique

突涌水灾害是隧道施工中最具危险性的地质灾害之一。为了实现对突涌水风险的有效管控,提出了一种基于集对分析来系统辨识和评价隧道突涌水风险等级的方法。本发明基于采用层次分析法,选取了4个一级层次参数、12个二级层次参数,构建了隧道突涌水灾害危险性评估体系,并采用AHP(层次分析法)法确定了各评价层次参数的权重。在此基础上,引入集对分析理论,提出了基于改进联系度计算的隧道突涌水风险集对分析方法,并以某隧道出口K7+940~K8+160段为例,具体说明了该方法的具体应用过程,最后基于实际开挖结果验证了该方法的可靠性,对工程技术人员决策有一定的借鉴意义。Water inrush is one of the most dangerous geological disasters in tunnel construction. In order to realize the effective management and control of water inrush risk, a method based on set pair analysis to systematically identify and evaluate the risk level of tunnel water inrush is proposed. Based on the Analytic Hierarchy Process, the present invention selects 4 first-level parameters and 12 second-level parameters, constructs a risk assessment system for tunnel water inrush disaster, and adopts AHP (Analytic Hierarchy Process) method to determine the parameters of each evaluation level the weight of. On this basis, the set-pair analysis theory is introduced, and a set-pair analysis method for tunnel water inrush risk based on improved connection degree calculation is proposed. In the specific application process, the reliability of the method is finally verified based on the actual excavation results, which has certain reference significance for the decision-making of engineering and technical personnel.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于解决现有技术存在的上述不足中的至少一项。例如,本发明的目的在于提供一种基于集对分析来系统辨识和评价隧道发生突涌水风险等级的方法。The purpose of the present invention is to solve at least one of the above deficiencies of the prior art. For example, the purpose of the present invention is to provide a method for systematically identifying and evaluating the risk level of water inrush in a tunnel based on set pair analysis.

为了实现上述目的,本发明提供了一种基于集对分析的评价隧道发生突涌水灾害风险的方法。所述方法通过式1来计算隧道发生突涌水灾害风险的综合联系度,In order to achieve the above object, the present invention provides a method for evaluating the risk of water inrush disaster in a tunnel based on set pair analysis. The method calculates the comprehensive connection degree of the water inrush disaster risk in the tunnel through Equation 1,

式1为:

Figure BDA0002684626090000011
Formula 1 is:
Figure BDA0002684626090000011

其中,μδ为隧道发生突涌水灾害的综合联系度,μi,δ为各个二级层次参数对Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级的联系度,wi为各个二级层次参数对应的权重值向量,δ=1,2,……,m。Among them, μ δ is the comprehensive connection degree of water inrush disaster in the tunnel, μ i, δ is the connection degree of each second-level parameter to the risk levels I, II, III and IV, and wi is the corresponding level of each second-level parameter. Weight value vector, δ=1, 2, ..., m.

在本发明的一个示例性实施例中,所述各个二级层次参数对Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级的联系度μi,δ通过以下方法计算:In an exemplary embodiment of the present invention, the degree of connection μ i,δ of the respective second-level parameters to the I, II, III and IV risk levels is calculated by the following method:

对任意一个二级层次参数i所对应Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级的分级论域集合为:For any second-level parameter i corresponding to the I, II, III and IV risk levels, the hierarchical universe set is:

{(S(i,1),S(i,2)),(S(i,2),S(i,3)),.......,(.S(i,m),S(i,m+1))},则任意一个二级层次参数i的联系度计算方法如下:{(S (i,1) ,S (i,2) ),(S (i,2) ,S (i,3) ),.......,(.S (i,m) , S (i,m+1) )}, the calculation method of the connection degree of any second-level parameter i is as follows:

传统的集对联系度计算是将个体实测值与相隔分级论域组成的集对均视为对立集对,联系度取值均为-1,从而使评价结果失真。其实,实测层次参数与所有的分级论域均具备不同程度的关联,且这种关联度随相隔区间的渐远而递减,即在评价体系中,集对联系度呈渐变趋势。因此,取消集对的对立性,保留其同一性和差异性。则,The traditional set-pair connection degree calculation is to treat the set pair composed of the individual measured value and the separated hierarchical universe as an opposite set pair, and the connection degree value is -1, which distorts the evaluation result. In fact, the measured hierarchical parameters have different degrees of correlation with all the hierarchical universes, and this correlation decreases with the distance of the interval, that is, in the evaluation system, the set-pair connection degree shows a gradual trend. Therefore, the opposition of the set pair is cancelled, and its identity and difference are preserved. but,

(1)在任意一个二级层次参数i的取值λ位于分级论域(S(i,k),S(i,k+1))之内的情况下,任意一个二级层次参数i的取值λ与分级论域(S(i,k),S(i,k+1))组成的集对{λ,(S(i,k),S(i,k+1))}具有同一性,任意一个二级层次参数i的联系度μi,k=1;(1) In the case that the value λ of any second-level parameter i is within the hierarchical universe (S (i,k) , S (i,k+1) ), the value of any second-level parameter i is The set pair {λ,(S (i,k) ,S (i,k+1) )} composed of the value λ and the hierarchical universe (S (i,k) ,S ( i,k+1)) has Identity, the connection degree of any second-level parameter i i,k =1;

(2)在任意一个二级层次参数i的取值λ位于分级论域(S(i,k),S(i,k+1))之外的情况下,任意一个二级层次参数i的取值λ与其他分级论域组成的集对,均视为差异性集对,则任意一个二级层次参数i的联系度的计算分以下三种情况:(2) When the value λ of any second-level parameter i is outside the hierarchical universe (S (i,k) , S (i,k+1) ), the value of any second-level parameter i is The set pairs composed of the value λ and other hierarchical universes are regarded as different set pairs, and the calculation of the connection degree of any second-level parameter i is divided into the following three cases:

①其它分级论域位于(S(i,k),S(i,k+1))之前,则任意一个二级层次参数i的联系度μi,δ通过式2计算,①Other hierarchical universes are located before (S (i,k) , S (i,k+1) ), then the connection degree μ i,δ of any second-level parameter i is calculated by formula 2,

式2为:

Figure BDA0002684626090000021
Formula 2 is:
Figure BDA0002684626090000021

其中,δ=1,2,……,k-1;Among them, δ=1, 2, ..., k-1;

②其它分级论域位于(S(i,k),S(i,k+1))之后,则任意一个二级层次参数i的联系度μi,δ通过式3计算,②Other hierarchical universes are located after (S (i,k) , S (i,k+1) ), then the connection degree μ i,δ of any second-level parameter i is calculated by formula 3,

式3为:

Figure BDA0002684626090000022
Formula 3 is:
Figure BDA0002684626090000022

其中,δ=k+1,k+2,……,m;Among them, δ=k+1, k+2, ..., m;

③任意一个二级层次参数i的取值λ等于两分级论域的分界值,即λ=S(i,k),分别就以下两种情况进行计算:③The value λ of any two-level parameter i is equal to the boundary value of the two-level universe of discourse, that is, λ=S (i,k) , and the calculation is performed for the following two cases:

a.任意一个二级层次参数i的取值λ与两相邻分级论域分别组成集对,则任意一个二级层次参数i的联系度μi,k或μi,k-1通过式4或5计算,a. The value λ of any second-level parameter i and two adjacent hierarchical universes respectively form a set pair, then the connection degree μ i,k or μ i,k-1 of any second-level parameter i is calculated by formula 4 or 5 calculations,

式4为:

Figure BDA0002684626090000031
Formula 4 is:
Figure BDA0002684626090000031

式5为:

Figure BDA0002684626090000032
Formula 5 is:
Figure BDA0002684626090000032

b.任意一个二级层次参数i的取值λ与两其他相隔分级论域分别组成集对,则任意一个二级层次参数i的联系度μi,δ通过式6和7计算,b. The value λ of any second-level parameter i and two other separated hierarchical universes respectively form a set pair, then the connection degree μ i,δ of any second-level parameter i is calculated by formulas 6 and 7,

式6为:

Figure BDA0002684626090000033
Formula 6 is:
Figure BDA0002684626090000033

其中,δ=1,2,……,k-2;Among them, δ=1, 2, ..., k-2;

式7为:

Figure BDA0002684626090000034
Formula 7 is:
Figure BDA0002684626090000034

其中,δ=k+1,k+2,……,m。Among them, δ=k+1, k+2, ..., m.

在本发明的一个示例性实施例中,所述权重向量wi可通过以下方法得到:In an exemplary embodiment of the present invention, the weight vector w i can be obtained by the following method:

将不良地质、地层岩性、水力条件和人为因素四个参数作为评价隧道发生突涌水灾害风险的一级层次参数,其中,不良地质又分为断层、褶皱和层间裂隙三类,将断层、褶皱和层间裂隙作为不良地质对应的二级层次参数;地层岩性又分为围岩级别、岩层产状和岩层组合三类,将围岩级别、岩层产状和岩层组合作为地层岩性对应的二级层次参数;水力条件又分为大气降水、地形地貌和水头压力三类,将大气降水、地形地貌和水头压力作为水力条件对应的二级层次参数;人为因素又分为施工方法、超前预报和超前支护三类,将施工方法、超前预报和超前支护作为人为因素对应的二级层次参数;四个一级层次参数对应十二个二级层次参数,十二个二级层次参数中每个二级层次参数根据严重程度分别对应Ⅰ、Ⅱ、Ⅲ和Ⅳ级分级论域;生成一级判别矩阵和分别对应四个一级层次参数的四个二级判别矩阵,计算一级判别矩阵和二级判别矩阵的特征值和特征向量,得到十二个二级层次参数对应的权重值向量wiThe four parameters of unfavorable geology, stratigraphic lithology, hydraulic conditions and human factors are used as the first-level parameters for evaluating the risk of water inrush disaster in tunnels. Among them, unfavorable geology is further divided into three categories: faults, folds and interlayer fissures. Folds and interlayer fissures are the secondary level parameters corresponding to poor geology; stratum lithology is further divided into three types: surrounding rock grade, rock formation occurrence and rock formation combination, and the surrounding rock grade, rock formation occurrence and rock formation combination are used as the corresponding formation lithology. The hydraulic conditions are further divided into three categories: atmospheric precipitation, topography and head pressure, and atmospheric precipitation, topography and head pressure are taken as the second-level parameters corresponding to hydraulic conditions; human factors are further divided into construction methods, advanced There are three types of forecasting and advanced support, with construction methods, advanced forecasting and advanced support as the second-level parameters corresponding to human factors; four first-level parameters correspond to twelve second-level parameters, and twelve second-level parameters Each second-level parameter corresponds to the I, II, III, and IV-level classification universes according to the severity; the first-level discriminant matrix and four second-level discriminant matrices corresponding to the four first-level parameters are generated, and the first-level discriminant is calculated. The eigenvalues and eigenvectors of the matrix and the second-level discriminant matrix are used to obtain the weight value vector w i corresponding to the twelve second-level parameters.

在本发明的一个示例性实施例中,所述权重向量wi的计算可包括步骤:In an exemplary embodiment of the present invention, the calculation of the weight vector w i may include the steps:

采用1~9级标度法对四个一级层次参数进行标度得到十二个一级赋值;采用1~9级标度法对不良地质对应的三个二级层次参数进行标度得到九个第一二级赋值;采用1~9级标度法对地层岩性对应的三个二级层次参数进行标度得到九个第二二级赋值;采用1~9级标度法对水力条件对应的三个二级层次参数进行标度得到九个第三二级赋值;采用1~9级标度法对人为因素对应的三个二级层次参数进行标度得到九个第四二级赋值;将十二个一级级赋值按行和列排列得到一级判别矩阵;将九个第一二级赋值按行和列排列得到第一二级判别矩阵;将九个第二二级赋值按行和列排列得到第二二级判别矩阵;将九个第三二级赋值按行和列排列得到第三二级判别矩阵;将九个第四二级赋值按行和列排列得到第四二级判别矩阵;分别计算一级判别矩阵、第一二级判别矩阵、第二二级判别矩阵、第三二级判别矩阵和第四二级判别矩阵的特征值以及特征向量并进行一致性检验,将第一二级判别矩阵、第二二级判别矩阵、第三二级判别矩阵和第四二级判别矩阵的特征向量归一化处理得到各个二级层次参数相对各自的一级层次参数的权重值向量wiThe four first-level parameters are scaled by the 1-9 scale method to obtain twelve first-level assignments; the 1-9 scale method is used to scale the three second-level parameters corresponding to the poor geology, and nine first-level assignments are obtained. The first and second-level assignments are obtained; the 1-9 scale method is used to scale the three second-level parameters corresponding to the formation lithology to obtain nine second-level assignments; the 1-9 scale method is used to evaluate the hydraulic conditions The corresponding three second-level parameters are scaled to obtain nine third-level assignments; the 1-9 scale method is used to scale the three second-level parameters corresponding to human factors to obtain nine fourth-level assignments ; Arrange the twelve first-level assignments in rows and columns to obtain the first-level discrimination matrix; arrange the nine first-level assignments in rows and columns to obtain the first-level discrimination matrix; arrange the nine second-level assignments according to Arrange the rows and columns to obtain the second-level discrimination matrix; arrange the nine third-level assignments in rows and columns to obtain the third-level discrimination matrix; arrange the nine fourth-level assignments in rows and columns to obtain the fourth-level discrimination matrix Level discriminant matrix; calculate the eigenvalues and eigenvectors of the first level discriminant matrix, the first level discriminant matrix, the second level discriminant matrix, the third level discriminant matrix and the fourth level discriminant matrix respectively and perform consistency check, Normalize the eigenvectors of the first-level discriminant matrix, the second-level discriminant matrix, the third-level discriminant matrix, and the fourth-level discriminant matrix to obtain the weight of each level-two-level parameter relative to the respective level-one parameter value vector w i .

在本发明的一个示例性实施例中,所述Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级可分别对应隧道发生低风险、中等风险、高风险和极高风险突涌水灾害。In an exemplary embodiment of the present invention, the risk levels I, II, III and IV may correspond to low risk, medium risk, high risk and extremely high risk of sudden water inrush disasters occurring in the tunnel, respectively.

在本发明的一个示例性实施例中,所述评价隧道发生突涌水灾害风险的风险等级可根据式8得到,In an exemplary embodiment of the present invention, the risk level for evaluating the risk of water inrush disaster in a tunnel can be obtained according to Equation 8,

式8为:

Figure BDA0002684626090000041
Formula 8 is:
Figure BDA0002684626090000041

与现有技术相比,本发明的有益效果可包括以下内容中的至少一项:Compared with the prior art, the beneficial effects of the present invention may include at least one of the following:

(1)本发明选取4个一级层次参数和12个二级层次参数,构建了隧道突涌水灾害危险性评估体系,并采用AHP(层次分析法)法确定了各评价层次参数的权重,在此基础上,引入集对分析理论,提出了基于改进联系度计算的隧道突涌水风险集对分析方法,对工程实践具有理论指导意义;(1) The present invention selects 4 first-level level parameters and 12 second-level level parameters to construct a risk assessment system for tunnel water inrush disasters, and uses AHP (Analytical Hierarchy Process) method to determine the weight of each evaluation level parameter. On this basis, the set-pair analysis theory is introduced, and a set-pair analysis method for tunnel water inrush risk based on the calculation of improved connection degree is proposed, which has theoretical guiding significance for engineering practice.

(2)以现场施工隧道出口段为例,具体说明了该方法的具体应用过程,最后基于实际开挖结果验证了该方法的可靠性,对工程技术人员决策有一定的借鉴意义。(2) Taking the tunnel exit section of on-site construction as an example, the specific application process of the method is explained in detail, and finally the reliability of the method is verified based on the actual excavation results, which has certain reference significance for engineering and technical personnel to make decisions.

附图说明Description of drawings

图1示出了根据本发明的一个示例性实施例的基于集对分析的评价隧道发生突涌水灾害风险的方法构建的评价层次参数体系。FIG. 1 shows an evaluation hierarchical parameter system constructed by a method for evaluating the risk of water inrush disaster in a tunnel based on set pair analysis according to an exemplary embodiment of the present invention.

具体实施方式Detailed ways

在下文中,将结合附图和示例性实施例来详细说明本发明的基于集对分析的评价隧道发生突涌水灾害风险的方法。Hereinafter, the method for evaluating the risk of water inrush disaster in a tunnel based on the set pair analysis of the present invention will be described in detail with reference to the accompanying drawings and exemplary embodiments.

图1示出了根据本发明的一个示例性实施例的基于集对分析的评价隧道发生突涌水灾害风险的方法构建的评价层次参数体系。FIG. 1 shows an evaluation hierarchical parameter system constructed by a method for evaluating the risk of water inrush disaster in a tunnel based on set pair analysis according to an exemplary embodiment of the present invention.

在本发明的一个示例性实施例中,基于集对分析的评价隧道发生突涌水灾害风险的方法可通过式1来计算隧道发生突涌水灾害风险的综合联系度,In an exemplary embodiment of the present invention, the method for evaluating the risk of water inrush disaster in a tunnel based on set pair analysis can calculate the comprehensive connection degree of the risk of water inrush disaster in a tunnel through Equation 1,

式1为:

Figure BDA0002684626090000051
其中,μδ为隧道发生突涌水灾害的综合联系度。所待评价隧道发生突涌水灾害风险的风险等级可根据式8得到,式8为:
Figure BDA0002684626090000052
具体来讲,通过式1分别计算出对应Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级的综合联系度,通过式8得到隧道发生突涌水灾害的风险等级。也就是说,通过比较隧道发生Ⅰ、Ⅱ、Ⅲ和Ⅳ级突涌水灾害的综合联系度大小,综合联系度越大说明越容易发生该等级的风险,综合联系度值最大的一级风险等级即为隧道发生突涌水的风险等级μi,δ为各个二级层次参数对Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级的联系度。所述各个二级层次参数对Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级的联系度μi,δ通过以下方法计算:Formula 1 is:
Figure BDA0002684626090000051
Among them, μ δ is the comprehensive connection degree of the water inrush disaster in the tunnel. The risk level of the water inrush disaster risk of the tunnel to be evaluated can be obtained according to Equation 8, and Equation 8 is:
Figure BDA0002684626090000052
Specifically, the comprehensive connection degree corresponding to the risk levels of I, II, III and IV is calculated respectively by Equation 1, and the risk level of the tunnel water inrush disaster is obtained by Equation 8. That is to say, by comparing the comprehensive connection degree of grade I, II, III and IV water inrush disasters in tunnels, the greater the comprehensive connection degree, the more likely the risk of this level will occur. The first-level risk level with the largest comprehensive connection degree value is the is the risk level of water inrush in the tunnel, μ i, δ is the connection degree of each second-level parameter to the I, II, III and IV risk levels. The degree of connection μ i,δ of each of the second-level parameters to the I, II, III and IV risk levels is calculated by the following method:

对任意一个二级层次参数i所对应Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级的分级论域集合为:For any second-level parameter i corresponding to the I, II, III and IV risk levels, the hierarchical universe set is:

{(S(i,1),S(i,2)),(S(i,2),S(i,3)),.......,(.S(i,m),S(i,m+1))},则任意一个二级层次参数i的联系度计算方法如下:{(S (i,1) ,S (i,2) ),(S (i,2) ,S (i,3) ),.......,(.S (i,m) , S (i,m+1) )}, the calculation method of the connection degree of any second-level parameter i is as follows:

(1)在任意一个二级层次参数i的取值λ位于分级论域(S(i,k),S(i,k+1))之内的情况下,任意一个二级层次参数i的取值λ与分级论域(S(i,k),S(i,k+1))组成的集对{λ,(S(i,k),S(i,k+1))}具有同一性,任意一个二级层次参数i的联系度μi,k=1;(1) In the case that the value λ of any second-level parameter i is within the hierarchical universe (S (i,k) , S (i,k+1) ), the value of any second-level parameter i is The set pair {λ,(S (i,k) ,S (i,k+1) )} composed of the value λ and the hierarchical universe (S (i,k) ,S ( i,k+1)) has Identity, the connection degree of any second-level parameter i i,k =1;

(2)在任意一个二级层次参数i的取值λ位于分级论域(S(i,k),S(i,k+1))之外的情况下,任意一个二级层次参数i的取值λ与其他分级论域组成的集对,均视为差异性集对,则任意一个二级层次参数i的联系度的计算分以下三种情况:(2) When the value λ of any second-level parameter i is outside the hierarchical universe (S (i,k) , S (i,k+1) ), the value of any second-level parameter i is The set pairs composed of the value λ and other hierarchical universes are regarded as different set pairs, and the calculation of the connection degree of any second-level parameter i is divided into the following three cases:

①其它分级论域位于(S(i,k),S(i,k+1))之前,则任意一个二级层次参数i的联系度μi,δ通过式2计算,①Other hierarchical universes are located before (S (i,k) , S (i,k+1) ), then the connection degree μ i,δ of any second-level parameter i is calculated by formula 2,

式2为:

Figure BDA0002684626090000061
Formula 2 is:
Figure BDA0002684626090000061

其中,δ=1,2,……,k-1;Among them, δ=1, 2, ..., k-1;

②其它分级论域位于(S(i,k),S(i,k+1))之后,则任意一个二级层次参数i的联系度μi,δ通过式3计算,②Other hierarchical universes are located after (S (i,k) , S (i,k+1) ), then the connection degree μ i,δ of any second-level parameter i is calculated by formula 3,

式3为:

Figure BDA0002684626090000062
Formula 3 is:
Figure BDA0002684626090000062

其中,δ=k+1,k+2,……,m;Among them, δ=k+1, k+2, ..., m;

③任意一个二级层次参数i的取值λ等于两分级论域的分界值,即λ=S(i,k),分别就以下两种情况进行计算:③The value λ of any two-level parameter i is equal to the boundary value of the two-level universe of discourse, that is, λ=S (i,k) , and the calculation is performed for the following two cases:

a.任意一个二级层次参数i的取值λ与两相邻分级论域分别组成集对,则任意一个二级层次参数i的联系度μi,k或μi,k-1通过式4或5计算,a. The value λ of any second-level parameter i and two adjacent hierarchical universes respectively form a set pair, then the connection degree μ i,k or μ i,k-1 of any second-level parameter i is calculated by formula 4 or 5 calculations,

式4为:

Figure BDA0002684626090000063
Formula 4 is:
Figure BDA0002684626090000063

式5为:

Figure BDA0002684626090000064
Formula 5 is:
Figure BDA0002684626090000064

b.任意一个二级层次参数i的取值λ与两其他相隔分级论域分别组成集对,则任意一个二级层次参数i的联系度μi,δ通过式6和7计算,b. The value λ of any second-level parameter i and two other separated hierarchical universes respectively form a set pair, then the connection degree μ i,δ of any second-level parameter i is calculated by formulas 6 and 7,

式6为:

Figure BDA0002684626090000065
Formula 6 is:
Figure BDA0002684626090000065

其中,δ=1,2,……,k-2;Among them, δ=1, 2, ..., k-2;

式7为:

Figure BDA0002684626090000066
Formula 7 is:
Figure BDA0002684626090000066

其中,δ=k+1,k+2,……,m。Among them, δ=k+1, k+2, ..., m.

wi为各个二级层次参数对应的权重值向量,δ=1,2,……,m。所述权重向量wi可通过以下方法得到:w i is the weight value vector corresponding to each secondary level parameter, δ=1, 2, ..., m. The weight vector w i can be obtained by the following methods:

将不良地质、地层岩性、水力条件和人为因素四个参数作为评价隧道发生突涌水灾害风险的一级层次参数,其中,不良地质又分为断层、褶皱和层间裂隙三类,将断层、褶皱和层间裂隙作为不良地质对应的二级层次参数;地层岩性又分为围岩级别、岩层产状和岩层组合三类,将围岩级别、岩层产状和岩层组合作为地层岩性对应的二级层次参数;水力条件又分为大气降水、地形地貌和水头压力三类,将大气降水、地形地貌和水头压力作为水力条件对应的二级层次参数;人为因素又分为施工方法、超前预报和超前支护三类,将施工方法、超前预报和超前支护作为人为因素对应的二级层次参数;四个一级层次参数对应十二个二级层次参数,十二个二级层次参数中每个二级层次参数根据严重程度分别对应Ⅰ、Ⅱ、Ⅲ和Ⅳ级分级论域;生成一级判别矩阵和分别对应四个一级层次参数的四个二级判别矩阵,计算一级判别矩阵和二级判别矩阵的特征值和特征向量,得到十二个二级层次参数对应的权重值向量wi。具体来讲,如图1所述,将不良地质(A1)、地层岩性(A2)、水力条件(A3)、人为因素(A4)作为评价隧道发生突涌水风险的一级层次参数。其中,不良地质(A1)又分为断层(B1)、褶皱(B2)、层间裂隙(B3)三个二级层次参数;地层岩性(A2)又分为围岩级别(B4)、岩层产状(B5)、岩层组合(B6)三个二级层次参数;水力条件(A3)又分为大气降水(B7)、地形地貌(B8)、水头压力(B9)三个二级层次参数;人为因素(A4)又分为施工方法(B10)、超前预报(B11)、超前支护(B12)三个二级层次参数。将隧道发生突涌水灾害风险参数体系U、四个一级层次参数和十二个二级层次参数构建了如图1所示的评价隧道发生突涌水灾害风险层次参数体系。The four parameters of unfavorable geology, stratigraphic lithology, hydraulic conditions and human factors are used as the first-level parameters for evaluating the risk of water inrush disaster in tunnels. Among them, unfavorable geology is further divided into three categories: faults, folds and interlayer fissures. Folds and interlayer fissures are the secondary level parameters corresponding to poor geology; stratum lithology is further divided into three types: surrounding rock grade, rock formation occurrence and rock formation combination, and the surrounding rock grade, rock formation occurrence and rock formation combination are used as the corresponding formation lithology. The hydraulic conditions are further divided into three categories: atmospheric precipitation, topography and head pressure, and atmospheric precipitation, topography and head pressure are taken as the second-level parameters corresponding to hydraulic conditions; human factors are further divided into construction methods, advanced There are three types of forecasting and advanced support, with construction methods, advanced forecasting and advanced support as the second-level parameters corresponding to human factors; four first-level parameters correspond to twelve second-level parameters, and twelve second-level parameters Each second-level parameter corresponds to the I, II, III, and IV-level classification universes according to the severity; the first-level discriminant matrix and four second-level discriminant matrices corresponding to the four first-level parameters are generated, and the first-level discriminant is calculated. The eigenvalues and eigenvectors of the matrix and the second-level discriminant matrix are used to obtain the weight value vector w i corresponding to the twelve second-level level parameters. Specifically, as shown in Fig. 1, poor geology (A 1 ), formation lithology (A 2 ), hydraulic conditions (A 3 ), and human factors (A 4 ) are used as the first-level layers for evaluating the risk of water inrush in tunnels parameter. Among them, unfavorable geology (A 1 ) is further divided into three second-level parameters: faults (B 1 ), folds (B 2 ) and interlayer fissures (B 3 ); stratigraphic lithology (A 2 ) is further divided into surrounding rock levels (B 4 ), rock formation occurrence (B 5 ), and rock formation assemblages (B 6 ) three second-level parameters; hydraulic conditions (A 3 ) are further divided into atmospheric precipitation (B 7 ), topography (B 8 ), water head Pressure (B 9 ) three second-level parameters; human factors (A 4 ) are further divided into three second-level parameters of construction method (B 10 ), advance forecast (B 11 ) and advance support (B 12 ). Based on the risk parameter system U, four first-level parameters and twelve second-level parameters, the parameter system for evaluating the risk of tunnel water inrush disaster risk is constructed as shown in Figure 1.

接下来,确定各评价层次参数的分级论域Next, determine the hierarchical universe of parameters for each evaluation level

依据隧道孕灾环境特点和各层次参数对隧道涌突水灾害发生的影响程度,结合隧址区地质灾害的发育状况及相关性统计分析结果,将隧道发生涌突水风险等级划分为低风险(Ⅰ级)、中等风险(Ⅱ级)、高风险(Ⅲ级)和极高风险(Ⅳ级)四个等级,编制了如表1所示的评价隧道发生突涌水灾害风险的分级标准及其对应的分级论域。According to the characteristics of the disaster-pregnancy environment of the tunnel and the influence of the parameters of each level on the occurrence of water inrush disasters in the tunnel, combined with the development status of geological disasters in the tunnel site and the results of statistical analysis of correlation, the risk levels of water inrush in the tunnel are classified as low risk ( Grade I), medium risk (grade II), high risk (grade III) and extremely high risk (grade IV), the classification standards for evaluating the risk of water inrush disasters in tunnels and their corresponding gradation domain.

表1评价隧道发生突涌水灾害风险的分级标准及其对应的分级论域Table 1. The classification standards for evaluating the risk of water inrush disasters in tunnels and their corresponding classification domains

Figure BDA0002684626090000071
Figure BDA0002684626090000071

Figure BDA0002684626090000081
Figure BDA0002684626090000081

这里,对于断层、褶皱、岩性组合、施工方法、超前预报和超前支护等定性层次参数的分级论域,通过赋值的方式给出。例如,将断层、褶皱、岩性组合、施工方法、超前预报和超前支护分别对应Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级的分级论域赋值为(0,4)、(4,6)、(6,8)和(8,10)在本实施例中,所述Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级可分别对应隧道发生低风险、中等风险、高风险和极高风险突涌水灾害。Here, the hierarchical universe of qualitative hierarchical parameters such as faults, folds, lithologic combinations, construction methods, advanced forecasting and advanced support is given by means of assignment. For example, assign the classification universes of faults, folds, lithologic combinations, construction methods, advanced forecasting and advanced support corresponding to I, II, III and IV risk levels as (0, 4), (4, 6), (6, 8) and (8, 10) In the present embodiment, the I, II, III and IV risk levels may respectively correspond to low risk, medium risk, high risk and extremely high risk water inrush disaster in the tunnel.

所述权重向量wi的计算可包括步骤:采用1~9级标度法对四个一级层次参数进行标度得到十二个一级赋值;采用1~9级标度法对不良地质对应的三个二级层次参数进行标度得到九个第一二级赋值;采用1~9级标度法对地层岩性对应的三个二级层次参数进行标度得到九个第二二级赋值;采用1~9级标度法对水力条件对应的三个二级层次参数进行标度得到九个第三二级赋值;采用1~9级标度法对人为因素对应的三个二级层次参数进行标度得到九个第四二级赋值;将十二个一级级赋值按行和列排列得到一级判别矩阵;将九个第一二级赋值按行和列排列得到第一二级判别矩阵;将九个第二二级赋值按行和列排列得到第二二级判别矩阵;将九个第三二级赋值按行和列排列得到第三二级判别矩阵;将九个第四二级赋值按行和列排列得到第四二级判别矩阵;分别计算一级判别矩阵、第一二级判别矩阵、第二二级判别矩阵、第三二级判别矩阵和第四二级判别矩阵的特征值以及特征向量并进行一致性检验,将第一二级判别矩阵、第二二级判别矩阵、第三二级判别矩阵和第四二级判别矩阵的特征向量归一化处理得到各个二级层次参数相对各自的一级层次参数的权重值向量wi。具体来讲,确定各评价层次参数的权重包括步骤:The calculation of the weight vector w i may include the steps of: using the 1-9 scale method to scale the four first-level parameters to obtain twelve first-level assignments; using the 1-9 scale method to correspond to the bad geological The three second-level parameters are scaled to obtain nine first-level assignments; the three second-level parameters corresponding to the formation lithology are scaled by the 1-9 scale method to obtain nine second-level assignments ; Using the 1-9 scale method to scale the three second-level parameters corresponding to hydraulic conditions to obtain nine third-level assignments; using the 1-9 scale method to scale the three second-level parameters corresponding to human factors The parameters are scaled to obtain nine fourth-level assignments; the twelve first-level assignments are arranged in rows and columns to obtain a first-level discriminant matrix; the nine first-level assignments are arranged in rows and columns to obtain the first and second levels Discriminant matrix; arrange nine second-level assignments in rows and columns to obtain a second-level discrimination matrix; arrange nine third-level assignments in rows and columns to obtain a third-level discrimination matrix; arrange nine fourth-level assignments in rows and columns to obtain a third-level discrimination matrix; The second-level assignment is arranged in rows and columns to obtain the fourth-level discriminant matrix; the first-level discriminant matrix, the first-level discriminant matrix, the second-level discriminant matrix, the third-level discriminant matrix, and the fourth-level discriminant matrix are calculated respectively. The eigenvalues and eigenvectors of the The weight value vector w i of the level-level parameters relative to the respective level-level parameters. Specifically, determining the weight of each evaluation level parameter includes the following steps:

(1)确定判断矩阵(1) Determine the judgment matrix

采用1~9级标度法进行判断,采用两两成对比较,用aij表示评价层次参数Ci与Cj对目标(即隧道发生突涌水灾害)的影响程度之比。The 1-9 scale method is used to judge, and the pairwise comparison is adopted, and a ij is used to represent the ratio of the influence degree of the evaluation level parameters C i and C j on the target (that is, the sudden water gushing disaster in the tunnel).

表2 1~9级标度的定义Table 2 Definition of scales 1 to 9

赋值a<sub>ij</sub>Assign a<sub>ij</sub> 含义meaning 11 C<sub>i</sub>与C<sub>j</sub>相比,二者同等重要C<sub>i</sub> is equally important compared to C<sub>j</sub> 33 C<sub>i</sub>与C<sub>j</sub>相比,前者稍微重要C<sub>i</sub> is slightly more important than C<sub>j</sub> 55 C<sub>i</sub>与C<sub>j</sub>相比,前者明显重要C<sub>i</sub> is obviously more important than C<sub>j</sub> 77 C<sub>i</sub>比C<sub>j</sub>相比,前者更加重要C<sub>i</sub> is more important than C<sub>j</sub> 99 C<sub>i</sub>比C<sub>j</sub>相比,前者极端重要C<sub>i</sub> is extremely important compared to C<sub>j</sub> 2,4,6,82,4,6,8 处于两个相邻等级之间between two adjacent levels 倒数reciprocal 1/a<sub>ij</sub>为C<sub>j</sub>和C<sub>i</sub>相比1/a<sub>ij</sub> is C<sub>j</sub> compared to C<sub>i</sub>

其中,i、j表示层次参数构成矩阵中行和列的序号。Among them, i and j represent the serial numbers of the rows and columns in the matrix of the hierarchical parameters.

根据上述方法,得到一级判别矩阵和四个二级判别矩阵如表3~表7所示:According to the above method, the first-level discriminant matrix and four second-level discriminant matrices are obtained as shown in Tables 3 to 7:

表3一级判别矩阵Q1 Table 3 First-level discriminant matrix Q 1

U–AU–A A<sub>1</sub>A<sub>1</sub> A<sub>2</sub>A<sub>2</sub> A<sub>3</sub>A<sub>3</sub> A<sub>4</sub>A<sub>4</sub> A<sub>1</sub>A<sub>1</sub> a<sub>11</sub>a<sub>11</sub> a<sub>12</sub>a<sub>12</sub> a<sub>13</sub>a<sub>13</sub> a<sub>14</sub>a<sub>14</sub> A<sub>2</sub>A<sub>2</sub> a<sub>21</sub>a<sub>21</sub> a<sub>22</sub>a<sub>22</sub> a<sub>23</sub>a<sub>23</sub> a<sub>24</sub>a<sub>24</sub> A<sub>3</sub>A<sub>3</sub> a<sub>31</sub>a<sub>31</sub> a<sub>32</sub>a<sub>32</sub> a<sub>33</sub>a<sub>33</sub> a<sub>34</sub>a<sub>34</sub> A<sub>4</sub>A<sub>4</sub> a<sub>41</sub>a<sub>41</sub> a<sub>42</sub>a<sub>42</sub> a<sub>43</sub>a<sub>43</sub> a<sub>44</sub>a<sub>44</sub>

表4第一二级判别矩阵Q2 Table 4 The first and second level discriminant matrix Q 2

A<sub>1</sub>-BA<sub>1</sub>-B B<sub>1</sub>B<sub>1</sub> B<sub>2</sub>B<sub>2</sub> B<sub>3</sub>B<sub>3</sub> B<sub>1</sub>B<sub>1</sub> b<sub>11</sub>b<sub>11</sub> b<sub>12</sub>b<sub>12</sub> b<sub>13</sub>b<sub>13</sub> B<sub>2</sub>B<sub>2</sub> b<sub>21</sub>b<sub>21</sub> b<sub>22</sub>b<sub>22</sub> b<sub>23</sub>b<sub>23</sub> B<sub>3</sub>B<sub>3</sub> b<sub>31</sub>b<sub>31</sub> b<sub>32</sub>b<sub>32</sub> b<sub>33</sub>b<sub>33</sub>

表5第二二级判别矩阵Q3 Table 5 Second-level discriminant matrix Q 3

A<sub>2</sub>-BA<sub>2</sub>-B B<sub>4</sub>B<sub>4</sub> B<sub>5</sub>B<sub>5</sub> B<sub>6</sub>B<sub>6</sub> B<sub>4</sub>B<sub>4</sub> b<sub>44</sub>b<sub>44</sub> b<sub>45</sub>b<sub>45</sub> b<sub>46</sub>b<sub>46</sub> B<sub>5</sub>B<sub>5</sub> b<sub>54</sub>b<sub>54</sub> b<sub>55</sub>b<sub>55</sub> b<sub>56</sub>b<sub>56</sub> B<sub>6</sub>B<sub>6</sub> b<sub>64</sub>b<sub>64</sub> b<sub>65</sub>b<sub>65</sub> b<sub>66</sub>b<sub>66</sub>

表6第三二级判别矩阵Q4 Table 6 The third-level discriminant matrix Q 4

A<sub>3</sub>-BA<sub>3</sub>-B B<sub>7</sub>B<sub>7</sub> B<sub>8</sub>B<sub>8</sub> B<sub>9</sub>B<sub>9</sub> B<sub>7</sub>B<sub>7</sub> b<sub>77</sub>b<sub>77</sub> b<sub>78</sub>b<sub>78</sub> b<sub>79</sub>b<sub>79</sub> B<sub>8</sub>B<sub>8</sub> b<sub>87</sub>b<sub>87</sub> b<sub>88</sub>b<sub>88</sub> b<sub>89</sub>b<sub>89</sub> B<sub>9</sub>B<sub>9</sub> b<sub>97</sub>b<sub>97</sub> b<sub>98</sub>b<sub>98</sub> b<sub>99</sub>b<sub>99</sub>

表7第四二级判别矩阵Q5 Table 7 Fourth level discriminant matrix Q 5

A<sub>4</sub>-BA<sub>4</sub>-B B<sub>10</sub>B<sub>10</sub> B<sub>11</sub>B<sub>11</sub> B<sub>12</sub>B<sub>12</sub> B<sub>10</sub>B<sub>10</sub> b<sub>1010</sub>b<sub>1010</sub> b<sub>1011</sub>b<sub>1011</sub> b<sub>1012</sub>b<sub>1012</sub> B<sub>11</sub>B<sub>11</sub> b<sub>1110</sub>b<sub>1110</sub> b<sub>1111</sub>b<sub>1111</sub> b<sub>1112</sub>b<sub>1112</sub> B<sub>12</sub>B<sub>12</sub> b<sub>1210</sub>b<sub>1210</sub> b<sub>1211</sub>b<sub>1211</sub> b<sub>1212</sub>b<sub>1212</sub>

(2)计算特征值和特征向量(2) Calculate eigenvalues and eigenvectors

分别计算上述判断矩阵Q1~Q5的特征值和特征向量,并进行一致性检验。结果如表8所示:The eigenvalues and eigenvectors of the above judgment matrices Q 1 to Q 5 are calculated respectively, and the consistency check is carried out. The results are shown in Table 8:

表8各判断矩阵特征向量和特征值Table 8 Eigenvectors and eigenvalues of each judgment matrix

判断矩阵Judgment Matrix 特征向量Feature vector 特征值Eigenvalues Q<sub>1</sub>Q<sub>1</sub> [u<sub>11</sub>,u<sub>12</sub>,u<sub>13</sub>,u<sub>14</sub>][u<sub>11</sub>,u<sub>12</sub>,u<sub>13</sub>,u<sub>14</sub>] λ<sub>1</sub>λ<sub>1</sub> Q<sub>2</sub>Q<sub>2</sub> [u<sub>21</sub>,u<sub>22</sub>,u<sub>23</sub>][u<sub>21</sub>,u<sub>22</sub>,u<sub>23</sub>] λ<sub>2</sub>λ<sub>2</sub> Q<sub>3</sub>Q<sub>3</sub> [u<sub>31</sub>,u<sub>32</sub>,u<sub>33</sub>][u<sub>31</sub>,u<sub>32</sub>,u<sub>33</sub>] λ<sub>3</sub>λ<sub>3</sub> Q<sub>4</sub>Q<sub>4</sub> [u<sub>41</sub>,u<sub>42</sub>,u<sub>43</sub>][u<sub>41</sub>,u<sub>42</sub>,u<sub>43</sub>] λ<sub>4</sub>λ<sub>4</sub> Q<sub>5</sub>Q<sub>5</sub> [u<sub>51</sub>,u<sub>52</sub>,u<sub>53</sub>][u<sub>51</sub>,u<sub>52</sub>,u<sub>53</sub>] λ<sub>5</sub>λ<sub>5</sub>

(3)计算各层次参数权值(3) Calculate the weights of parameters at each level

将特征向量u归一化,得到的向量w,将其作为各因素相对于上层准则的相对权重值向量wi,结果见表9。The eigenvector u is normalized, and the obtained vector w is used as the relative weight value vector w i of each factor relative to the upper-level criterion. The results are shown in Table 9.

表9层次组合总排序Table 9 Total Ranking of Hierarchical Combinations

Figure BDA0002684626090000101
Figure BDA0002684626090000101

其中,层次A表示一级层次参数,层次B表示二级层次参数。表3~表9中矩阵的具体数值如下:Among them, level A represents the first-level level parameter, and level B represents the second-level level parameter. The specific values of the matrices in Tables 3 to 9 are as follows:

表3一级判别矩阵Q1 Table 3 First-level discriminant matrix Q 1

U-AU-A A<sub>1</sub>A<sub>1</sub> A<sub>2</sub>A<sub>2</sub> A<sub>3</sub>A<sub>3</sub> A<sub>4</sub>A<sub>4</sub> A<sub>1</sub>A<sub>1</sub> 11 33 1/31/3 66 A<sub>2</sub>A<sub>2</sub> 1/31/3 11 1/51/5 44 A<sub>3</sub>A<sub>3</sub> 33 55 11 77 A<sub>4</sub>A<sub>4</sub> 1/61/6 1/41/4 1/71/7 11

表4第一二级判别矩阵Q2 Table 4 The first and second level discriminant matrix Q 2

A<sub>1</sub>-BA<sub>1</sub>-B B<sub>1</sub>B<sub>1</sub> B<sub>2</sub>B<sub>2</sub> B<sub>3</sub>B<sub>3</sub> B<sub>1</sub>B<sub>1</sub> 11 44 33 B<sub>2</sub>B<sub>2</sub> 1/41/4 11 1/21/2 B<sub>3</sub>B<sub>3</sub> 1/31/3 22 11

表5第二二级判别矩阵Q3 Table 5 Second-level discriminant matrix Q 3

A<sub>2</sub>-BA<sub>2</sub>-B B<sub>4</sub>B<sub>4</sub> B<sub>5</sub>B<sub>5</sub> B<sub>6</sub>B<sub>6</sub> B<sub>4</sub>B<sub>4</sub> 11 1/41/4 1/31/3 B<sub>5</sub>B<sub>5</sub> 44 11 1/21/2 B<sub>6</sub>B<sub>6</sub> 33 22 11

表6第三二级判别矩阵Q4 Table 6 The third-level discriminant matrix Q 4

A<sub>3</sub>-BA<sub>3</sub>-B B<sub>7</sub>B<sub>7</sub> B<sub>8</sub>B<sub>8</sub> B<sub>9</sub>B<sub>9</sub> B<sub>7</sub>B<sub>7</sub> 11 1/31/3 1/51/5 B<sub>8</sub>B<sub>8</sub> 33 11 1/31/3 B<sub>9</sub>B<sub>9</sub> 55 33 11

表7第四二级判别矩阵Q5 Table 7 Fourth level discriminant matrix Q 5

A<sub>4</sub>-BA<sub>4</sub>-B B<sub>10</sub>B<sub>10</sub> B<sub>11</sub>B<sub>11</sub> B<sub>12</sub>B<sub>12</sub> B<sub>10</sub>B<sub>10</sub> 11 1/31/3 1/41/4 B<sub>11</sub>B<sub>11</sub> 33 11 11 B<sub>12</sub>B<sub>12</sub> 44 11 11

表8各判断矩阵特征向量和特征值Table 8 Eigenvectors and eigenvalues of each judgment matrix

判断矩阵Judgment Matrix 特征向量Feature vector 特征值Eigenvalues Q<sub>1</sub>Q<sub>1</sub> [0.2687,0.1248,0.5576,0.0489][0.2687,0.1248,0.5576,0.0489] 4.17934.1793 Q<sub>2</sub>Q<sub>2</sub> [0.6252,0.1365,0.2383][0.6252,0.1365,0.2383] 3.01833.0183 Q<sub>3</sub>Q<sub>3</sub> [0.1242,0.3586,0.5172][0.1242,0.3586,0.5172] 3.10783.1078 Q<sub>4</sub>Q<sub>4</sub> [0.1047,0.2584,0.6369][0.1047,0.2584,0.6369] 3.03853.0385 Q<sub>5</sub>Q<sub>5</sub> [0.126,0.4161,0.4579][0.126,0.4161,0.4579] 3.00923.0092

表9层次组合总排序Table 9 Total Ranking of Hierarchical Combinations

Figure BDA0002684626090000111
Figure BDA0002684626090000111

Figure BDA0002684626090000121
Figure BDA0002684626090000121

下面结合具体示例对本发明的示例性实施例及其效果做进一步说明和阐述。The exemplary embodiments of the present invention and their effects will be further described and explained below in conjunction with specific examples.

以某隧道出口K7+940~K8+160段为例,利用基于集对分析的评价隧道发生突涌水灾害风险的方法的具体应用,并通过与现场施工情况的对比分析,验证评价结果的正确性。Taking the section K7+940~K8+160 at the exit of a tunnel as an example, the specific application of the method for evaluating the risk of water inrush disaster in a tunnel based on set pair analysis is used, and the correctness of the evaluation results is verified through the comparative analysis with the on-site construction situation. .

(1)各层次参数的取值的确定(1) Determination of the values of parameters at each level

初步开挖该段隧道,得到该段设计围岩为V级,围岩的基本质量层次参数BQ为230,该段隧道平均埋深为230m,围岩以三叠系中统杂谷脑砂质板岩、板岩夹少量变质砂岩组成,岩体较破碎~极破碎,属软岩,受断层牵引构造的影响,为岩体破碎带,节理裂隙较为发育,多数节理间距在0.3m左右,且多见片理密集带,地下水类型以基岩裂隙水为主。施工方法采用环形开挖留核心土的方法,并采用超前锚杆以控制围岩变形,超前预报以掌子面地质素描,地质雷达和超前水平钻为主。依据施工图设计文件,得到该隧道出口K7+940~K8+160发生突涌水灾害风险等级评价因子如表10所示。Preliminary excavation of this section of the tunnel shows that the designed surrounding rock of this section is V-grade, the basic quality layer parameter BQ of the surrounding rock is 230, the average burial depth of this section of the tunnel is 230m, and the surrounding rock is composed of the middle Triassic Zagunao sand. It is composed of slate and slate with a small amount of metamorphic sandstone. The rock mass is relatively fragmented to extremely fragmented. It is a soft rock and is affected by the fault traction structure. The schistose dense zone is more common, and the groundwater type is mainly bedrock fissure water. The construction method adopts the method of annular excavation to retain the core soil, and adopts the advanced bolt to control the deformation of the surrounding rock. According to the design documents of the construction drawing, the risk level evaluation factors of water inrush disaster at the exit of the tunnel K7+940~K8+160 are obtained as shown in Table 10.

表10某隧道发生突涌水灾害风险等级评价因子Table 10 Evaluation factors for the risk level of water inrush disaster in a tunnel

Figure BDA0002684626090000122
Figure BDA0002684626090000122

Figure BDA0002684626090000131
Figure BDA0002684626090000131

其中,λ为各二级层次参数的实测值或者赋值。Among them, λ is the measured value or assignment of each second-level parameter.

(2)联系度的计算(2) Calculation of connection degree

以层次参数“断层(B1)”为例,详细说明联系度的计算过程。由表10和表1可得,层次参数B1与各风险等级对应的分级论域组成的集对为:{5,(0,4)},{5,(4,6)},{5,(6,8)},{5,(8,10)}。5位于域论(4,6)之间则μ1,2=1,依次根据公式6和7计算联系度:Taking the hierarchical parameter "fault (B 1 )" as an example, the calculation process of the connection degree is described in detail. It can be obtained from Table 10 and Table 1. The set pairs composed of the hierarchical parameter B 1 and the hierarchical universe corresponding to each risk level are: {5,(0,4)}, {5,(4,6)}, {5 ,(6,8)}, {5,(8,10)}. 5 is located between the domain theory (4, 6), then μ 1, 2 =1, and the connection degree is calculated according to formulas 6 and 7 in turn:

Figure BDA0002684626090000132
Figure BDA0002684626090000132

同理,根据其它二级层次参数与其对应的各分级论域之间的对应关系,在式2~7中选择相应的计算公式,可以计算出其它11个层次参数与各个风险等级之间的联系度,从而得到本段隧道综合状态评估的联系度矩阵。然后根据公式1,即可计算出该段隧道与各风险等级之间的综合联系度。In the same way, according to the correspondence between the other two-level parameters and their corresponding hierarchical universes, select the corresponding calculation formulas in Equations 2 to 7, and the relationship between the other 11 level parameters and each risk level can be calculated. degree, so as to obtain the connection degree matrix of the comprehensive state assessment of this section of the tunnel. Then according to formula 1, the comprehensive connection degree between this section of tunnel and each risk level can be calculated.

Figure BDA0002684626090000133
Figure BDA0002684626090000133

由以上计算结果可知,评价隧道段与高风险等级之间的综合联系度为0.633,为四个综合联系度之中的最大值。因此,判定本段隧道发生涌突水风险级别为III级即“高风险”。际开挖后掌子面(里程桩号K8+067.4)围岩主要为砂质板岩和炭质绢云板岩为主,呈薄~中厚层状,节理裂隙发育,掌子面中部发育层间破碎带,厚约0.8~1.5m,破碎带岩体呈小碎块散体结构,地下水呈股状水从破碎带内流出,稳定性差,岩体不时发生掉落,故该段落为涌突水高风险段落。It can be seen from the above calculation results that the comprehensive connection degree between the evaluation tunnel section and the high risk level is 0.633, which is the maximum value among the four comprehensive connection degrees. Therefore, the risk level of water inrush in this section of the tunnel is determined to be level III, that is, "high risk". After the excavation, the surrounding rocks of the tunnel face (mileage pile number K8+067.4) are mainly sandy slate and carbonaceous sericite slate, which are thin to medium-thick layers, with developed joints and fissures, and developed in the middle of the tunnel face. The interlayer fractured zone is about 0.8-1.5m thick. The rock mass in the fractured zone has a small fragmentary structure, and the groundwater flows out of the fractured zone in the form of strands. The stability is poor, and the rock mass falls from time to time, so this section is a surge Water inrush high risk paragraph.

综上所述,本发明的有益效果包括以下内容中的至少一项:To sum up, the beneficial effects of the present invention include at least one of the following:

(1)本发明选取4个一级层次参数、12个二级层次参数,构建了隧道突涌水灾害危险性评估体系,并采用AHP(层次分析法)法确定了各评价层次参数的权重,在此基础上,引入集对分析理论,提出了基于改进联系度计算的隧道突涌水风险集对分析方法,对工程实践具有理论指导意义;(1) The present invention selects 4 first-level level parameters and 12 second-level level parameters to construct a risk assessment system for tunnel water inrush disasters, and uses AHP (Analytical Hierarchy Process) method to determine the weight of each evaluation level parameter. On this basis, the set-pair analysis theory is introduced, and a set-pair analysis method for tunnel water inrush risk based on the calculation of improved connection degree is proposed, which has theoretical guiding significance for engineering practice.

(2)以现场施工隧道出口段为例,具体说明了该方法的具体应用过程,最后基于实际开挖结果验证了该方法的可靠性,对工程技术人员决策有一定的借鉴意义。(2) Taking the tunnel exit section of on-site construction as an example, the specific application process of the method is explained in detail, and finally the reliability of the method is verified based on the actual excavation results, which has certain reference significance for engineering and technical personnel to make decisions.

尽管上面已经结合示例性实施例及附图描述了本发明,但是本领域普通技术人员应该清楚,在不脱离权利要求的精神和范围的情况下,可以对上述实施例进行各种修改。While the present invention has been described above in conjunction with the exemplary embodiments and accompanying drawings, it will be apparent to those skilled in the art that various modifications may be made to the above-described embodiments without departing from the spirit and scope of the claims.

Claims (6)

1.一种基于集对分析的评价隧道发生突涌水灾害风险的方法,其特征在于,所述方法通过式1来计算隧道发生突涌水灾害风险的综合联系度,1. a method for evaluating the risk of sudden water gushing in a tunnel based on set-to-analysis, is characterized in that, the method calculates the comprehensive connection degree of the sudden gushing water disaster risk in tunnel by formula 1, 式1为:
Figure FDA0002684626080000011
Formula 1 is:
Figure FDA0002684626080000011
其中,μδ为隧道发生突涌水灾害的综合联系度,μi,δ为各个二级层次参数对Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级的联系度,wi为各个二级层次参数对应的权重值向量,δ=1,2,……,m。Among them, μ δ is the comprehensive connection degree of water inrush disaster in the tunnel, μ i, δ is the connection degree of each second-level parameter to the risk levels I, II, III and IV, and wi is the corresponding level of each second-level parameter. Weight value vector, δ=1, 2, ..., m.
2.根据权利要求1所述的基于集对分析的评价隧道发生突涌水灾害风险的方法,其特征在于,所述各个二级层次参数对Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级的联系度μi,δ通过以下方法计算:2. The method for evaluating the risk of water inrush disaster risk in a tunnel based on set pair analysis according to claim 1, wherein the degree of connection μ of each second-level parameter to the I, II, III and IV risk levels i,δ are calculated by: 对任意一个二级层次参数i所对应Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级的分级论域集合为:For any second-level parameter i corresponding to the I, II, III and IV risk levels, the hierarchical universe set is: {(S(i,1),S(i,2)),(S(i,2),S(i,3)),.......,(.S(i,m),S(i,m+1))},则任意一个二级层次参数i的联系度计算方法如下:{(S (i,1) ,S (i,2) ),(S (i,2) ,S (i,3) ),.......,(.S (i,m) , S (i,m+1) )}, the calculation method of the connection degree of any second-level parameter i is as follows: (1)在任意一个二级层次参数i的取值λ位于分级论域(S(i,k),S(i,k+1))之内的情况下,任意一个二级层次参数i的取值λ与分级论域(S(i,k),S(i,k+1))组成的集对{λ,(S(i,k),S(i,k+1))}具有同一性,任意一个二级层次参数i的联系度μi,k=1;(1) In the case that the value λ of any second-level parameter i is within the hierarchical universe (S (i,k) , S (i,k+1) ), the value of any second-level parameter i is The set pair {λ,(S (i,k) ,S (i,k+1) )} composed of the value λ and the hierarchical universe (S (i,k) ,S ( i,k+1)) has Identity, the connection degree of any second-level parameter i i,k =1; (2)在任意一个二级层次参数i的取值λ位于分级论域(S(i,k),S(i,k+1))之外的情况下,任意一个二级层次参数i的取值λ与其他分级论域组成的集对,均视为差异性集对,则任意一个二级层次参数i的联系度的计算分以下三种情况:(2) When the value λ of any second-level parameter i is outside the hierarchical universe (S (i,k) , S (i,k+1) ), the value of any second-level parameter i is The set pairs composed of the value λ and other hierarchical universes are regarded as different set pairs, and the calculation of the connection degree of any second-level parameter i is divided into the following three cases: ①其它分级论域位于(S(i,k),S(i,k+1))之前,则任意一个二级层次参数i的联系度μi,δ通过式2计算,①Other hierarchical universes are located before (S (i,k) , S (i,k+1) ), then the connection degree μ i,δ of any second-level parameter i is calculated by formula 2, 式2为:
Figure FDA0002684626080000012
Formula 2 is:
Figure FDA0002684626080000012
其中,δ=1,2,……,k-1;Among them, δ=1, 2, ..., k-1; ②其它分级论域位于(S(i,k),S(i,k+1))之后,则任意一个二级层次参数i的联系度μi,δ通过式3计算,②Other hierarchical universes are located after (S (i,k) , S (i,k+1) ), then the connection degree μ i,δ of any second-level parameter i is calculated by formula 3, 式3为:
Figure FDA0002684626080000013
Formula 3 is:
Figure FDA0002684626080000013
其中,δ=k+1,k+2,……,m;Among them, δ=k+1, k+2, ..., m; ③任意一个二级层次参数i的取值λ等于两分级论域的分界值,即λ=S(i,k),分别就以下两种情况进行计算:③The value λ of any two-level parameter i is equal to the boundary value of the two-level universe of discourse, that is, λ=S (i,k) , and the calculation is performed for the following two cases: a.任意一个二级层次参数i的取值λ与两相邻分级论域分别组成集对,则任意一个二级层次参数i的联系度μi,k或μi,k-1通过式4或5计算,a. The value λ of any second-level parameter i and two adjacent hierarchical universes respectively form a set pair, then the connection degree μ i,k or μ i,k-1 of any second-level parameter i is calculated by formula 4 or 5 calculations, 式4为:
Figure FDA0002684626080000021
Formula 4 is:
Figure FDA0002684626080000021
式5为:
Figure FDA0002684626080000022
Formula 5 is:
Figure FDA0002684626080000022
b.任意一个二级层次参数i的取值λ与两其他相隔分级论域分别组成集对,则任意一个二级层次参数i的联系度μi,δ通过式6和7计算,b. The value λ of any second-level parameter i and two other separated hierarchical universes respectively form a set pair, then the connection degree μ i,δ of any second-level parameter i is calculated by formulas 6 and 7, 式6为:
Figure FDA0002684626080000023
Formula 6 is:
Figure FDA0002684626080000023
其中,δ=1,2,……,k-2;Among them, δ=1, 2, ..., k-2; 式7为:
Figure FDA0002684626080000024
Formula 7 is:
Figure FDA0002684626080000024
其中,δ=k+1,k+2,……,m。Among them, δ=k+1, k+2, ..., m.
3.根据权利要求1所述的基于集对分析的评价隧道发生突涌水灾害风险的方法,其特征在于,所述权重向量wi可通过以下方法得到:3. The method for evaluating the risk of sudden water gushing in a tunnel based on set pair analysis according to claim 1, wherein the weight vector w i can be obtained by the following methods: 将不良地质、地层岩性、水力条件和人为因素四个参数作为评价隧道发生突涌水灾害风险的一级层次参数,其中,The four parameters of unfavorable geology, stratum lithology, hydraulic conditions and human factors are used as the first-level parameters for evaluating the risk of water inrush disaster in tunnels. Among them, 不良地质又分为断层、褶皱和层间裂隙三类,将断层、褶皱和层间裂隙作为不良地质对应的二级层次参数;地层岩性又分为围岩级别、岩层产状和岩层组合三类,将围岩级别、岩层产状和岩层组合作为地层岩性对应的二级层次参数;水力条件又分为大气降水、地形地貌和水头压力三类,将大气降水、地形地貌和水头压力作为水力条件对应的二级层次参数;人为因素又分为施工方法、超前预报和超前支护三类,将施工方法、超前预报和超前支护作为人为因素对应的二级层次参数;Unfavorable geology is further divided into three categories: faults, folds and interlayer fissures, and faults, folds and interlayer fissures are regarded as the secondary level parameters corresponding to unfavorable geology; stratigraphic lithology is further divided into three types: surrounding rock grade, rock layer occurrence and rock layer combination. The surrounding rock grade, rock formation occurrence and rock formation combination are used as the secondary level parameters corresponding to the stratum lithology; the hydraulic conditions are further divided into three categories: atmospheric precipitation, topography and head pressure, and atmospheric precipitation, topography and head pressure are used as the The second-level parameters corresponding to hydraulic conditions; human factors are further divided into three categories: construction method, advance forecast and advance support, and construction method, advance forecast and advance support are taken as the second-level parameters corresponding to human factors; 四个一级层次参数对应十二个二级层次参数,十二个二级层次参数中每个二级层次参数根据严重程度分别对应Ⅰ、Ⅱ、Ⅲ和Ⅳ级分级论域;Four first-level parameters correspond to twelve second-level parameters, and each second-level parameter in the twelve second-level parameters corresponds to I, II, III and IV hierarchical universes according to the severity; 生成一级判别矩阵和分别对应四个一级层次参数的四个二级判别矩阵,计算一级判别矩阵和二级判别矩阵的特征值和特征向量,得到十二个二级层次参数对应的权重值向量wiGenerate the first-level discriminant matrix and four second-level discriminant matrices corresponding to the four first-level parameters, calculate the eigenvalues and eigenvectors of the first-level discriminant matrix and the second-level discriminant matrix, and obtain the weights corresponding to the twelve second-level parameters. value vector w i . 4.根据权利要求3所述的基于集对分析的评价隧道发生突涌水灾害风险的方法,其特征在于,所述权重向量wi的计算包括步骤:4. the method for evaluating the risk of sudden water gushing disaster in tunnel based on set pair analysis according to claim 3, is characterized in that, the calculation of described weight vector wi comprises the steps: 采用1~9级标度法对四个一级层次参数进行标度得到十二个一级赋值;采用1~9级标度法对不良地质对应的三个二级层次参数进行标度得到九个第一二级赋值;采用1~9级标度法对地层岩性对应的三个二级层次参数进行标度得到九个第二二级赋值;采用1~9级标度法对水力条件对应的三个二级层次参数进行标度得到九个第三二级赋值;采用1~9级标度法对人为因素对应的三个二级层次参数进行标度得到九个第四二级赋值;The four first-level parameters are scaled by the 1-9 scale method to obtain twelve first-level assignments; the 1-9 scale method is used to scale the three second-level parameters corresponding to the poor geology, and nine first-level assignments are obtained. The first and second-level assignments are obtained; the 1-9 scale method is used to scale the three second-level parameters corresponding to the formation lithology to obtain nine second-level assignments; the 1-9 scale method is used to evaluate the hydraulic conditions The corresponding three second-level parameters are scaled to obtain nine third-level assignments; the 1-9 scale method is used to scale the three second-level parameters corresponding to human factors to obtain nine fourth-level assignments ; 将十二个一级级赋值按行和列排列得到一级判别矩阵;将九个第一二级赋值按行和列排列得到第一二级判别矩阵;将九个第二二级赋值按行和列排列得到第二二级判别矩阵;将九个第三二级赋值按行和列排列得到第三二级判别矩阵;将九个第四二级赋值按行和列排列得到第四二级判别矩阵;Arrange the twelve first-level assignments in rows and columns to obtain the first-level discrimination matrix; arrange the nine first-level assignments in rows and columns to obtain the first-level discrimination matrix; arrange the nine second-level assignments in rows Arrange the second-level discriminant matrix with the columns; arrange the nine third-level assignments in rows and columns to obtain the third-level discrimination matrix; arrange the nine fourth-level assignments in rows and columns to obtain the fourth level discriminant matrix; 分别计算一级判别矩阵、第一二级判别矩阵、第二二级判别矩阵、第三二级判别矩阵和第四二级判别矩阵的特征值以及特征向量并进行一致性检验,将第一二级判别矩阵、第二二级判别矩阵、第三二级判别矩阵和第四二级判别矩阵的特征向量归一化处理得到各个二级层次参数相对各自的一级层次参数的权重值向量wiCalculate the eigenvalues and eigenvectors of the first-level discriminant matrix, the first-level discriminant matrix, the second-level discriminant matrix, the third-level discriminant matrix, and the fourth-level discriminant matrix, respectively, and perform consistency checks. The eigenvectors of the level discriminant matrix, the second level discriminant matrix, the third level discriminant matrix and the fourth level discriminant matrix are normalized to obtain the weight value vector w i of each level two level parameter relative to the respective level one level parameter . 5.根据权利要求1所述的基于集对分析的评价隧道发生突涌水灾害风险的方法,其特征在于,所述Ⅰ、Ⅱ、Ⅲ和Ⅳ级风险等级分别对应隧道发生低风险、中等风险、高风险和极高风险突涌水灾害。5. The method for evaluating the risk of water inrush disaster in a tunnel based on set pair analysis according to claim 1, wherein the I, II, III and IV risk levels correspond to low risk, medium risk, High and very high risk water inrush hazards. 6.根据权利要求1所述的基于集对分析的评价隧道发生突涌水灾害风险的方法,其特征在于,所述评价隧道发生突涌水灾害风险的风险等级根据式8得到,6. The method for evaluating the risk of sudden water gushing disaster in a tunnel based on set pair analysis according to claim 1, wherein the risk level of the risk of water gushing disaster in the evaluation tunnel is obtained according to formula 8, 式8为:
Figure FDA0002684626080000031
Formula 8 is:
Figure FDA0002684626080000031
CN202010972557.7A 2020-09-16 2020-09-16 Method for evaluating tunnel water inrush disaster risk based on set pair analysis Pending CN112100851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010972557.7A CN112100851A (en) 2020-09-16 2020-09-16 Method for evaluating tunnel water inrush disaster risk based on set pair analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010972557.7A CN112100851A (en) 2020-09-16 2020-09-16 Method for evaluating tunnel water inrush disaster risk based on set pair analysis

Publications (1)

Publication Number Publication Date
CN112100851A true CN112100851A (en) 2020-12-18

Family

ID=73759690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010972557.7A Pending CN112100851A (en) 2020-09-16 2020-09-16 Method for evaluating tunnel water inrush disaster risk based on set pair analysis

Country Status (1)

Country Link
CN (1) CN112100851A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112907130A (en) * 2021-03-24 2021-06-04 上海交通大学 Construction risk grade determination method, device and medium based on shield construction parameters
CN113570226A (en) * 2021-07-20 2021-10-29 中交第一公路勘察设计研究院有限公司 Evaluation method of probability grade of water inrush disaster in tunnel in fault fracture zone
CN115479540A (en) * 2022-09-14 2022-12-16 西南交通大学 A method and system for evaluating the magnitude of karst water inrush disasters based on laser scanning
CN117711160A (en) * 2024-02-05 2024-03-15 中铁四局集团有限公司 Mountain tunnel mud-bursting water risk dynamic assessment method, device and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104636612A (en) * 2015-02-03 2015-05-20 山东大学 Karst tunnel water outburst and mud outburst overall process gradual dynamic risk assessment method
US10019892B1 (en) * 2017-04-25 2018-07-10 Hongfujin Precision Electronics (Tianjin) Co., Ltd. Risk assessing and managing system and related method
CN109034582A (en) * 2018-07-16 2018-12-18 山东大学 Tunnel Passing inrush through faults based on cloud model and combination weighting are dashed forward mud risk evaluating method
CN110276116A (en) * 2019-06-13 2019-09-24 中煤科工集团西安研究院有限公司 A method and system for discriminating water inrush sources in coal mines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104636612A (en) * 2015-02-03 2015-05-20 山东大学 Karst tunnel water outburst and mud outburst overall process gradual dynamic risk assessment method
US10019892B1 (en) * 2017-04-25 2018-07-10 Hongfujin Precision Electronics (Tianjin) Co., Ltd. Risk assessing and managing system and related method
CN109034582A (en) * 2018-07-16 2018-12-18 山东大学 Tunnel Passing inrush through faults based on cloud model and combination weighting are dashed forward mud risk evaluating method
CN110276116A (en) * 2019-06-13 2019-09-24 中煤科工集团西安研究院有限公司 A method and system for discriminating water inrush sources in coal mines

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
YINGCHAO WANG等: ""Set pair analysis for risk assessment of water inrush in karst tunnels"", 《BULL ENG GEOL ENVIRON》 *
刘杰等: "基于FAHP-ISPA-PCN耦合的隧道施工动态评价模型", 《地下空间与工程学报》 *
张鹏: "山岭隧道突涌水灾害风险评估及防治措施研究", 《中国优秀硕士学位论文全文数据库》 *
李远富等: "高速铁路长大桥梁救援定点的选址决策模型", 《哈尔滨工业大学学报》 *
翟友成: ""基于不确定性理论的隧道地质灾害评价方法"", 《中国优秀博硕士学位论文全文数据库(博士)》 *
项琴等: "基于改良SPA算法的高速铁路桥梁疏散能力评价", 《世界科技研究与发展》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112907130A (en) * 2021-03-24 2021-06-04 上海交通大学 Construction risk grade determination method, device and medium based on shield construction parameters
CN113570226A (en) * 2021-07-20 2021-10-29 中交第一公路勘察设计研究院有限公司 Evaluation method of probability grade of water inrush disaster in tunnel in fault fracture zone
CN115479540A (en) * 2022-09-14 2022-12-16 西南交通大学 A method and system for evaluating the magnitude of karst water inrush disasters based on laser scanning
CN117711160A (en) * 2024-02-05 2024-03-15 中铁四局集团有限公司 Mountain tunnel mud-bursting water risk dynamic assessment method, device and storage medium

Similar Documents

Publication Publication Date Title
CN112100851A (en) Method for evaluating tunnel water inrush disaster risk based on set pair analysis
CN103268420B (en) A kind of method for evaluating hazard of high rock slope
CN110889588A (en) Method for evaluating risk level of shield tunnel construction adjacent building by using factor judgment matrix
CN112308360A (en) Rock foundation pit safety evaluation method based on entropy weight method correction AHP method
CN113570226A (en) Evaluation method of probability grade of water inrush disaster in tunnel in fault fracture zone
CN110705795A (en) Tunnel gush risk grade fuzzy prediction method based on comprehensive advanced geological prediction technology
CN113222347B (en) Method for evaluating gray system of safety risk of open-air blasting
CN110610285A (en) A risk classification evaluation method for gobs in underground metal mines
CN111445156B (en) Bias tunnel construction safety evaluation method based on variable weight fuzzy comprehensive evaluation
CN104636612A (en) Karst tunnel water outburst and mud outburst overall process gradual dynamic risk assessment method
CN109345029A (en) A Tunnel Construction Optimization Method Based on Improved Topsis Method
CN104657601A (en) Tunnel surrounding rock safety grading method
CN115689387A (en) Comprehensive evaluation method and system for collapse disaster risk of karst tunnel
CN110378551A (en) A kind of vcehicular tunnel facility military service method of evaluating performance based on big data
CN109345119A (en) A dynamic partition evaluation method for coal seam roof based on analytic hierarchy process
CN107578152B (en) An Evaluation Method for Multilateral Horizontal Well Gas Drainage Scheme
CN112836995A (en) An evaluation method for water inrush risk of fault activation based on unknown-entropy weight method
CN105046080A (en) Rock mass quality evaluation method
CN111784136A (en) A Dynamic Early Warning Method of Impact Risk Based on Analytic Hierarchy Process and Fuzzy Mathematics
CN106446376B (en) Ocean platform pile slipping evaluation method considering risk level division
Yu et al. Dynamic Risk Assessment of Karst Tunnel Collapse Based on Fuzzy‐AHP: A Case Study of the LianHuaShan Tunnel, China
CN105718720A (en) Complex gas reservoir reserve quality classification comprehensive evaluation method
CN113554311A (en) Method for evaluating engineering quality of Ordovician limestone water damage under ground directional hole grouting treatment push-coated body
CN116894393B (en) Multi-parameter information fusion roof aquifer water-rich discrimination method
CN107609728A (en) A kind of bottom plate resistance water isolating evaluation method based on AHP

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 621000 Southwest University of science and technology, 59 Qinglong Avenue, Fucheng District, Mianyang City, Sichuan Province

Applicant after: Southwest University of Science and Technology

Applicant after: Sichuan Zhentong Testing Co.,Ltd.

Applicant after: Sichuan jianliyuan Engineering Technology Consulting Co.,Ltd.

Address before: 621000 Southwest University of science and technology, 59 Qinglong Avenue, Fucheng District, Mianyang City, Sichuan Province

Applicant before: Southwest University of Science and Technology

Applicant before: SICHUAN ZHENTONG HIGHROAD PROJECT EXPERIMENTATION & DETECTION Co.,Ltd.

Applicant before: Sichuan jianliyuan Engineering Technology Consulting Co.,Ltd.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201218