CN1120992C - 2m×2n光学交叉连接方法及其器件 - Google Patents

2m×2n光学交叉连接方法及其器件 Download PDF

Info

Publication number
CN1120992C
CN1120992C CN99116685.XA CN99116685A CN1120992C CN 1120992 C CN1120992 C CN 1120992C CN 99116685 A CN99116685 A CN 99116685A CN 1120992 C CN1120992 C CN 1120992C
Authority
CN
China
Prior art keywords
optical
rightarrow
crystal
parallel
collimating optics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN99116685.XA
Other languages
English (en)
Other versions
CN1251905A (zh
Inventor
曹明翠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN99116685.XA priority Critical patent/CN1120992C/zh
Publication of CN1251905A publication Critical patent/CN1251905A/zh
Priority to EP00308815A priority patent/EP1096826A3/en
Priority to US09/686,525 priority patent/US6798938B1/en
Application granted granted Critical
Publication of CN1120992C publication Critical patent/CN1120992C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/3542Non-blocking switch, e.g. with multiple potential paths between multiple inputs and outputs, the establishment of one switching path not preventing the establishment of further switching paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29302Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means based on birefringence or polarisation, e.g. wavelength dependent birefringence, polarisation interferometers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3522Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element enabling or impairing total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3582Housing means or package or arranging details of the switching elements, e.g. for thermal isolation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3594Characterised by additional functional means, e.g. means for variably attenuating or branching or means for switching differently polarized beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/311Cascade arrangement of plural switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0024Construction using space switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0035Construction using miscellaneous components, e.g. circulator, polarisation, acousto/thermo optical
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • H04Q2011/0058Crossbar; Matrix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

2m×2n光学交叉连接方法及其器件,将2m条输入光信号变成准直平行完全线偏振光,采用寻径方式完全无阻塞地在2m×2n条光学通道传送,再寻径合并耦合恢复成2n条平行输出随机偏振光;其器件由寻径式平行光学通道部分和平行光学通道寻径合并耦合部分构成,结构简单、插入损耗低、价格低廉,开关速度可选用毫秒或微秒级光开关系统,具有单向、双向和广布的交叉连接功能,可广泛应用于光通信领域。

Description

2m×2n光学交叉连接方法及其器件
本发明属于光通讯领域,特别适合于光纤通信网。
各发达国家均在筹建高速信息光纤骨干通信网,需要大量的高速光纤交叉连接设备和光纤保护切换开关设备,但是,目前光纤交叉连接设备都是采用高精度机械式推动光纤、或推动光学棱镜的方法,在输入光纤和输出光纤之间进行切换,见美国Dicon fiber OpticsInc的产品目录和美国E-TEK Inc产品目录,还可见“OpticalComponents for WDM Lightwave Networks”.Proceedings of The IEEE,Vol.85,No 8 P1274-1307,Aug,1997。上述机械推动式的光学交叉连接设备,实现1×N或2×N稍容易,实现M×N十分复杂而困难,其切换速度约0.5-0.7秒。传统的Crossbar开关网络方法实现M×N交叉连接,其1×N扇出和M×1扇出的过程中,引入的插入损耗太大,难以承受。为适应高速信息光纤骨干通信网的需要,发展新颖的光学交叉连接设备是此领域十分紧迫的问题。
本发明的目的在于提供一种简单灵活的2m×2n光学交叉连接方法及其器件,以极大地减少输入光纤和输出光纤之间光信息的输入损耗和提高其切换速度。为实现所述目的,本发明提出了一种寻径式全光交叉连接方法及实现该方法的器件。
本发明2m×2n光学交叉连接方法的步骤为:
(1)将2m条发散光信号变成准直的平行光,
(2)再将(1)中2m个准直平行的随机偏振光信号变为完全线偏振光信号,
(3)将(2)所产生的完全线偏振光信号采用平行光寻径方式绝对无阻塞地传送,X方向的2m个输入光信号中每一个光信号在Y方向存在2n个平行光学通道,形成2m×2n条平行输出光学通道,
(4)将(3)中X方向的每2m条平行输出光学通道寻径合并耦合为一条平行光学通道,形成2n条平行输出光学通道,
(5)再将(4)中输出的2n条完全线偏振光恢复成2n条随机偏振光信号,
(6)将(5)形成的2n条随机偏振光信号平行输出耦合到2n条输出光路;
上述步骤中,m、n均为自然数。
实现所述2m×2n光学交叉连接方法的光学交叉连接器件,依序由寻径式平行光学通道部分和平行光学通道寻径合并耦合部分构成,
(1)寻径式平行光学通道部分顺序包括一维光纤列阵准直组件、平行平面晶体件和寻径式平行光学通道组件,
A.一维光纤列阵准直组件包括带2m条平行的V形槽基片,在每条V形槽内前后紧贴排放带尾纤的圆形毛细管和折射率渐变微透镜,形成2m条平行的光学通道,
B.平行平面晶体组件由四块长方形平行平面晶体和两片波片组成,排列顺序为:第一块长方形平行平面晶体、第一片波片、第二块长方形平行平面晶体、第二片波片、上下重叠的第三块和第四块长方形平行平面晶体,其中第一片波片为λ/2波片,第二片波片上半部分为λ/2波片、下半部分为平行平面玻璃基片,
C.寻径式平行光学通道组件包括n级光开关列阵和晶体棱镜组,每一级依次由一片光开关列阵和一块晶体棱镜组成。
(2)平行光学通道寻径合并耦合部分与寻径式平行光学通道部分在空间形成光路连接,顺序包括λ/2波片阵列、平行光学通道寻径合并组件、反相平行平面晶体组件和一维光纤列阵耦合组件,
A.λ/2波片阵列由尺寸相同的二片λ/2波片和二片玻璃基片交叉排列成田字形构成,
B.平行光学通道寻径合并组件包括m级晶体棱镜和光开关列阵组,每一级依次由一块晶体棱镜和一片光开关列阵组成,
C.反相平行平面组件采用前述平行平面晶体组件的元件,元件排列顺序相当于将前述平行平面晶体组件沿光路方向轴向旋转180°、径向旋转90°,
D.一维光纤列阵耦合组件包括带2n条平行的V形槽基片、在每条V形槽内前后紧贴排放折射率渐变微透镜和带尾纤的圆形毛细管,构成2n条平行的光学通道。
对于所述的光学交叉连接器件,其进一步的特征可以是:
(1)所述一维光纤列阵准直组件中,平行的V形槽基片上V形槽间距与折射率渐变微透镜外径均等于圆形毛细管外径d0,整个组件上表面固化有平板形基片作为盖板,
(2)所述平行平面晶体组件中,第一块和第二块长方形平行面晶体是尺寸相同的同类晶体,第三块和第四块长方形平行平面晶体亦是尺寸相同的同类晶体,但晶轴方向互相上下对称,
(3)所述寻径式平行光学通道组件中,每级光开关列阵具有2m×2i-1个象元,每个象元在外界控制下,可处于玻璃介质特性、λ/2波片特性两种状态之一,或处于玻璃介质特性、λ/2波片特性、λ/4波片特性三种状态之一,
(4)所述平行光学通道寻径合并组件中,每级光开关列阵具有2n×2m-i个象元,每个象元具有上述寻径式平行光学通道组件象元的性质,
(5)所述一维光纤列阵耦合组件结构可以与前述一维光纤列阵准直组件相同,上述各式中,m、n为自然数,i为各级光开关列阵所处级别。
上述光学交叉连接器件的寻径式平行光学通道组件和平行光学通道寻径合并组件中,所述光开关列阵可以是可移动式波片阵列光开关、也可以是液晶光开关列阵器件,所述晶体棱镜可以是梯形偏振棱镜,也可以是双折射晶体棱镜。
采用本发明提出的2m×2n光学交叉连接方法及其器件,具有插入损耗极低、PDL和串扰极低,设备简单灵活的优点,适合构造2m×2n各种类型的光学交叉连接设备。该方法和器件可研制成可重构式、广布式等各种类型的光纤全光交叉连接设备和光纤保护切换开关设备,可广泛应用于光通信领域。
图1为22×22光学交叉连接方法原理。
图2(A)和图2(B)为22×22光学交叉连接器件示意图。
图3为一维光纤列阵准直组件示意图。
图4为平行平面晶体组件示意图。
图5为22×22寻径式平行光学通道组件工作原理图。
图6为采用梯形偏振棱镜作为晶体棱镜的寻径式平行光学通道组件示意图。
图7表示寻径式平行光学通道部分各信号光的偏振状态。
图8(A)和图8(B)为采用双折射晶体棱镜作为晶体棱镜的寻径式平行光学通道组件示意图。
图9为λ/2波片列阵示意图。
图10为采用梯形偏振棱镜作为晶体棱镜的平行光学通道寻径合并组件示意图。
图11表示平行光学通道寻径合并组件中信号光偏振状态和控制过程。
图12(A)和图12(B)为采用双折射晶体棱镜作为晶体棱镜的平行光学通道寻径合并组件示意图。
图13为梯形偏振棱镜的设计。
图14表示梯形棱镜晶体的设计。
图15表示可移动式的波片阵列光开关器件的结构。
以下结合附图以4×4光学交叉连接为例,详细解释本发明的实施状态。
图1中,4条发散的光信号F1、F2、F3、F4经过一维光纤列阵准直组件I变成准直的平行光,再经过平行平面晶体组件II成为完全线偏振光信号,经过寻径式平行光学通道组件III后,每个信号光在Y方向存在22个平行光学通道,共形成4×4条平行输出光学通道;在平行光学通道寻径合并耦合部分,经过λ/2波片列阵A和平行光学通道寻径合并组件IV后,X方向的4条平行输出光学通道寻径合并为一条光学通道,如13+23+33+43合并,经过反相平行平面组件V和一维光纤列阵耦合组件VI恢复为原来的随机偏振光信号并耦合到输出光纤F3′输出。
图2(A)表示寻径式平行光学通道部分,I、II、III如前述,
图2(B)表示平行光学通道寻径合并耦合部分,A、IV、V、VI亦如前述。
图3表示4×1光纤列阵准直组件和光纤列阵耦合组件,将光纤剥去包层后,插入外径为d0的圆形毛细管M内,用胶固化,端面抛光,镀增透膜构成带尾纤的圆形毛细管。选用外径与毛细管完全相同的与通信光信号同一波长的准直GRIN微透镜T,前后排放在同一条V形槽内。使得来自一条光纤的信号光变成一条准直平行光束。间距为d0的M条V形槽上,平行地排放着4对带尾纤的圆形毛细管和GRIN微透镜,顶部用基片加压粘合固化,构成了4×1一维光纤列阵准直和光纤列阵耦合组件。使得来自4×1条光纤信号光变成4×1一维准直平行光束列阵,或可使4×1条准直平行光束列阵分别高效耦合到4×1光纤列阵耦合组件。
图4表示平行平面晶体组件,它是由四块长方形平行平面晶体B1、B2、B3、B4和波片W1,W2组成,4条一维准直光束列阵进入晶体B1后,分为0光和e光,0光速直通穿晶体B1,e光向上偏斜传输,在晶体B1输出表面上,相对于0光垂直向上位移Δ距离,然后e光和0光平行传输。波片W1为λ/2波片,将输入光束中,0光变成e光,e光变成0光。进入晶体B2内部,上面的0光束直通穿穿过晶体B2,而e光向下偏斜传输,在晶体B2输出表面上,相对于上面0光,垂直向下位移2Δ距离。然后,两束光平行传输。波片W2是由上下两部组成的,上半片为λ/2波片,下半片为与波片厚度相等的平面平行玻璃基片。因此,将上半部的0光变成为e光。而下半部的e光仍然为e光,全部变为e光平行传输。晶体B3和B4是上下厚度完全相同的两块同类晶体。但晶轴方向互相上下对称,两晶体下上表面完全切合。上半部的e光垂直进入晶体B3内部,向下偏斜到接近上部晶体的下表面切合平面,从输出表面垂直射出。而下半部e光垂直进入下半部晶体B4内部,向上偏斜到接近下半部晶体的上表面切合平面,从输出表面垂直射出,因此,上下两两e光束,完全靠近为准一束e光平行传输。也就是说,该晶体组件使得来自4条光纤的随机偏振的4条一维准直平行光束列阵,变成了完全线偏振的4条一维准一束e光准直平行光束列阵。
4×4寻径式平行光学通道组件工作原理图见图5。四条准直平行输入信号光1,2,3,4排列在X方向。一组光学系统内对每一条输入信号光都提供了四条排列在Y方向上的平行光学通道,对每一条输入信号光的输出序号端口分别为1-11,12,13,14;2-21,22,23,24;3-31,32,33,34;4-41,42,43,44。每一条信号光可根据控制信号选择相应的四条光学通道中的任意一条到达输出序号端口。图6的4×4寻径式平行光学通道组件,是由两块梯形偏振棱镜P1,P2和两片光开关列阵LC1,LC2组成。来自4条光纤列阵的准直平行的随机偏振光束,经过变随机偏振光为完全线偏振光组件后,变成了一维4×1准直平行的完全线偏振e信号光束,1,2,3,4,排列在X方向上。
图6中i(i=1,2,3,4)表示任意一条排列在X方向上的信号光束。它们寻径到各自的输出信号序号端口的过程描述如下。来自随机偏振光变为完全线偏振光组件的e信号光束,1,2,3,4,其偏振方向与梯形偏振棱镜内的P光完全重合。晶体内的0光偏振方向与梯形偏振棱镜内的s光完全重合。光开关列阵LC1是4×1象元,可表示为 光开关列阵LC2是4×2象元,可表示为 M 12 ( 2 ) M 22 ( 2 ) M 32 ( 2 ) M 42 ( 2 ) M 11 ( 2 ) M 21 ( 2 ) M 31 ( 2 ) M 41 ( 2 ) . 光开关列阵中每一个象元都具有在外界控制系统的信号控制下,可处于玻璃介质、λ/2波片特性的两种状态,或具有可处于玻璃介质、λ/2波片,λ/4波片特性的三处状态功能。梯形偏振棱镜P1可使输入平行信号光i可能在Y方向上两条平行光学通道i1,i2传输。信号光i经过开关LC1象元
Figure C9911668500091
若象元 为玻璃介质特性时,e光仍然为e光,则信号光i沿i1光学通道传输。若光开关LC1象元 为λ/2波片特性时,e变成0光,则信号光i沿着i2光学通道传输。若开关LC1象元
Figure C9911668500094
为λ/4波片特性时,则信号光i分为两束光强完全相同的信号光,可同时沿i1和i2两条平行光学通道传输。梯形偏振镜P2可使每一条输入信号光i1,i2,分别可能在Y方向上两条可能的平行光学通道上传输,i1-i1,i3;i2-i2,i4;当开关LC2中象元 为玻璃介质特性时,e光仍然是e光,信号光i1沿i1光学通道传输。当光开关象元
Figure C9911668500096
为λ/2波片特性时,e光变为o光,则信号光i1沿着i3光学通道传输。若光开关象元 为λ/4波片特性,则信号光i1分为两束光强完全相同的信号光,可同时沿两条平行的光学通道i1和i3传输。同理,光开关象元 为玻璃介质特性时,o光仍为o光,则信号光i2沿i4光学通道传输。当 为λ/2波片特性时,o光变为e光,则信号光沿i2光学通道传输,光开关象元 为λ/4波片特性时,则信号光i2分为两束光强完全相同的信号光,可同时沿两条平行的光学通道i2和i4传输。由此可见,2级梯形偏振P1和P2,对任意信号光i在Y方向上提供了四条可能平行的光学通道。对4×4交叉连接系统,2级光开关列阵和梯形偏振棱镜组,对系统中任意一条信号光i提供了寻径式或广布式的四条可能的平行光学通道。
4×4光学交叉连接器件中,寻径式平行光学通道部分各信号光的偏振状态见图7。图中(a)表示来自光纤信号为随机偏振光,(b)为经过晶体组件变成完全线偏振e光,(c)为光开关LC1象元,(d)为信号光经过梯形偏振棱镜P1后的偏振状态,(e)为光开关LC2的象元,(f)为信号光通过梯形偏振棱镜P2后的偏振状态。根据图7光纤列阵的准直平行随机偏振信号光,经过变随机偏振光为完全线偏振光组件后,变成为4条准直平行完全线偏振e光,可表示为
Figure C99116685000911
四条信号光分别通过相应的光开关LC1中的象元 和梯形偏振棱镜P1,其寻径和广布过程可表示如下: M 11 ( 1 ) A 11 e M 21 ( 1 ) A 21 e M 31 ( 1 ) A 31 e M 41 ( 1 ) A 41 e M 11 ( 1 ) A 11 e M 21 ( 1 ) A 21 e M 31 ( 1 ) A 31 e M 41 ( 1 ) A 41 e = A 21 0 A 22 0 A 32 0 A 42 0 A 11 e A 21 e A 31 e A 41 e . . . . . ( 1 ) 4×2准直平行的完全线偏振信号光列阵 A 21 0 A 22 0 A 32 0 A 42 0 A 11 e A 21 e A 31 e A 41 e 通过光开LC2中的相应的光开关象元 M 12 ( 2 ) M 22 ( 2 ) M 32 ( 2 ) M 42 ( 2 ) M 11 ( 2 ) M 21 ( 2 ) M 31 ( 2 ) M 41 ( 2 ) 和梯形偏振棱镜P2,其寻径和广布过程可表示如下: M 12 ( 2 ) A 12 0 , M 22 ( 2 ) A 22 0 , M 32 ( 2 ) A 32 0 , M 42 ( 2 ) A 42 0 M 11 ( 2 ) A 11 e , M 21 ( 2 ) A 21 e , M 31 ( 2 ) A 31 e , M 41 ( 2 ) A 41 e M 12 ( 2 ) A 12 0 , M 22 ( 2 ) A 22 0 , M 32 ( 2 ) A 32 0 , M 42 ( 2 ) A 42 0 M 11 ( 2 ) A 11 e , M 21 ( 2 ) A 12 e , M 31 ( 2 ) A 32 e , M 41 ( 2 ) A 41 e = A 14 0 , A 24 0 , A 34 0 , A 44 0 A 13 0 , A 23 0 , A 33 0 , A 43 0 A 12 e , A 22 e , A 32 e , A 42 e A 11 e , A 21 e , A 31 e , A 41 e . . . ( 2 ) 上述4×4梯形偏棱镜平行光学通道的寻径和广布过程,适用于2m×2n梯形偏振棱镜光交叉连接系统。
4×4寻径式平行光学通道组件还可采用双折射晶体棱镜和光开关列阵组成,双折射晶体棱镜可采用梯形棱镜晶体,如图8(A)所示,或长方形平行平面晶体,如图8(B)所示。此系统仅将双折射晶体棱镜C1和C2分别替代图6中梯形偏振棱镜P1和P2
双折射晶体C1和C2的厚度和切割方向的选择,应使晶体具有如图8(A)和图8(B)所示的特性。在晶体C1中,入射光i具有两条可能有的传输路径,设当o光时,沿直通方向i1传输,当i为e光时,向上倾斜,在晶体C1的输出表面上,相对其o光向上移动的距离为d0,然后沿i2方向传输,形成两条平行光学通道传输。晶体C2的厚度为C1的两倍,两条平行光学通道分为四条平行光学通道,i1为o光时,直通晶体C2,当i为e光时,e光向上倾斜传输。在晶体C2表面上相对于其o光,向上位移2d0,然后平行沿i3方向传输。同理i2,通过晶体C2,形成平行光学通道i2和i4。
双折射晶体寻径式平行光学通道组件中,平行光学通道寻径原理和控制方法与梯形偏振棱镜寻径式平行光学通道系统完全相同,但是平行光学通道中各信号光的偏振状态是完全相反的,故4×4平行光学通道寻径和广布过程的数学方程可由下列(1a)(2b)两式描述。4×4平行光学通道寻径和广布过程,适用于2m×2n双折射晶体光交叉连接系统。 M 11 ( 1 ) A 11 e M 21 ( 1 ) A 21 e M 31 ( 1 ) A 31 e M 41 ( 1 ) A 41 e M 11 ( 1 ) A 11 e M 21 ( 1 ) A 21 e M 31 ( 1 ) A 31 e M 41 ( 1 ) A 41 e = A 21 e A 22 e A 32 e A 42 e A 11 0 A 21 0 A 31 0 A 41 0 . . . . . ( 1 a ) M 12 ( 2 ) A 12 e , M 22 ( 2 ) A 22 e , M 32 ( 2 ) A 32 e , M 42 ( 2 ) A 42 e M 11 ( 2 ) A 11 0 , M 21 ( 2 ) A 21 0 , M 31 ( 2 ) A 31 0 , M 41 ( 2 ) A 41 0 M 12 ( 2 ) A 12 e , M 22 ( 2 ) A 22 e , M 32 ( 2 ) A 32 e , M 42 ( 2 ) A 42 e M 11 ( 2 ) A 11 0 , M 21 ( 2 ) A 12 0 , M 31 ( 2 ) A 32 0 , M 41 ( 2 ) A 41 0 = A 14 e , A 24 e , A 34 e , A 44 e A 13 e , A 23 e , A 33 e , A 43 e A 12 0 , A 22 0 , A 32 0 , A 42 0 A 11 0 , A 21 0 , A 31 0 , A 41 0 . . . ( 2 b )
在前面已述,来自输入光纤的信号光i可分别沿着在y方向排列的四条平行光学通道,到各自的输出序号端口。1-11,12,13,14;2-21,22,23,24;3-31,32,33,34;4-41,42,43,44。在各自的输出序号端口上的信号光偏振状态如图7所示。它们要传输到输出光纤1′,2′,3′,4′中去,必须要将来自四条输入光纤到达相同输出序号端口上的4条信号光,同时耦合到同一条输出光纤中去,即11,21,31,41-1′;12,22,32,42-2′;13,23,33,43-3′;14,24,34,44-4′。由于光纤交叉连接系统一定是无目的地阻塞的系统,虽然每一条输入光纤的信号都有可能传输到任意一条输出光纤中去,但是,在同一段时间内,一条输出光纤仅与一条输入光纤连接。本发明专利提出一种具有相同输出序号端口的平行光学通道寻径合并到同一条平行光学通道的方法,以便达到来自任何一条输入光纤的信号光高效地耦合到任何一条输出光纤的目的。
4×4交叉连接系统中,平行光学通道寻径合并组件,如图10所示。它可以由梯形偏振棱镜P3和P4,光开关列阵LC3和LC4组成。梯形偏振棱镜放置的方位沿X方向,与图6所示的寻径式平行光学通道系统中梯形偏振棱镜成90°。故图10中平行光学通道寻径合并组件中光学通道的偏振方向,与图6所示的寻径式平行光学通道系统的偏振方向成90°。图10中的输入光学通道1i,2i,3i,4i分别表示图7(f)中四条平行光学通。1i-11,12,13,14;2i-21,22,23,24;3i-31,32,33,34;4i-41,42,43,44。寻径合并过程中各信号光的偏振状态见图11。图7(f)中4×4平行光学通道中信号光的偏振状态和图11(a)相同。但是,图11(c)-(h)中,o光偏振方向与11(a)中e光偏振方向相同,图11(c)-(h)中的e光偏振方向与11(a)中o光偏振方向相同。通过如图9中的λ/2波片列阵后,4×4平行光学通道中的信号光偏振状态如图11(c)所示,它们通过梯形偏振棱镜P3后,两两平行光学通道合并为一条平行光学通道,1i+3i-3i,2i+4i-4i,4×4平行光学通道变成为4×2平行光学通道,其信号的偏振状态,见图11(d)。 ( A 14 0 + A 34 e ) ( A 24 0 + A 44 e ) ( A 13 0 + A 33 e ) ( A 23 0 + A 43 e ) ( A 12 0 + A 32 e ) ( A 22 0 + A 42 e ) ( A 11 0 + A 31 e ) ( A 21 0 + A 41 e ) 它们两两合并于同一条平行光学通道中的信号光,同时通过光开关列阵LC3中的同一个象元, A 11 0 + A 31 e - M 31 ( 3 ) , A 21 0 + A 41 e - M 31 ( 3 ) , A 12 0 + A 32 e - M 32 ( 3 ) , A 22 0 + A 42 e - M 42 ( 3 ) , A 13 0 + A 33 e - M 33 ( 3 ) , A 23 0 + A 43 0 - M 43 ( 3 ) , A 14 0 + A 34 e - M 34 ( 3 ) , A 24 0 + A 44 e - M 44 ( 3 ) . 图10中梯形偏振P4将四条平行光学通道合并到同一条平行光学通道,即1i+2i+3i+4-4i。但是,四条平行光学通道上的各信号光的偏振状态,在LC3光开关控制下,必须满足下列条件,才能合并到同一条平行光学通道4i上传输。其数学方程描述如下 M 34 ( 3 ) ( A 14 0 + A 34 e ) , M 44 ( 3 ) ( A 24 0 + A 44 e ) M 33 ( 3 ) ( A 13 0 + A 33 e ) , M 43 ( 3 ) ( A 23 0 + A 43 e ) M 32 ( 3 ) ( A 12 0 + A 32 e ) , M 42 ( 3 ) ( A 22 0 + A 42 e ) M 31 ( 3 ) ( A 11 0 + A 31 e ) , M 41 ( 3 ) ( A 21 0 + A 41 e ) = A 14 0 + A 34 0 , A 24 e + A 44 e A 13 0 + A 33 0 , A 23 e + A 43 e A 12 0 + A 32 0 , A 22 e + A 42 e A 11 0 + A 31 0 , A 21 e + A 41 e . . . . . . ( 3 ) 满足上述偏振状态的4×2平行光学通道上的信号光,通过梯形偏振棱镜P4后变4×1平行光学通道,其信号光的偏振状态如图11中(h)所示,可表示如下: A 14 0 + A 34 0 + A 24 e + A 44 e A 13 0 + A 33 0 + A 23 e + A 43 e A 12 0 + A 32 0 + A 22 e + A 42 e A 11 0 + A 31 0 + A 21 e + A 41 e 光纤骨干通信网上的光纤交叉连接设备必须具有双向交叉连接功能。因此,必须将完全线偏振的信号光恢复为原来的随机偏振信号光,图2(B)中组件V就是如图4所示的晶体组件。但晶体和波片排列顺序成镜象对称排列。故输入到晶体组件上的信号光必须是完全线偏振e光,才能通过晶体组件恢复为原来随机偏振光。因此,处于同一条平行光学通道上的四个信号光,在相应的光开关象元控制下,其偏振状态满足以下数学关系时,才能通过晶体组件耦合到输出光纤中去。 M 44 ( 4 ) ( A 14 0 + A 24 e + A 34 0 + A 44 e ) M 43 ( 4 ) ( A 13 0 + A 23 e + A 33 0 + A 43 e ) M 42 ( 4 ) ( A 12 0 + A 22 e + A 32 0 + A 42 e ) M 41 ( 4 ) ( A 11 0 + A 21 e + A 31 0 + A 41 e ) = A 14 e + A 24 e + A 34 e + A 44 e A 13 e + A 23 e + A 33 e + A 43 e A 12 e + A 22 e + A 32 e + A 42 e A 11 e + A 21 e + A 31 e + A 41 e . . . . . . ( 4 )
以上平行光学通道寻径合并到一条平行光学通道的方法,可适应于2m×2n交叉连接系统。2×2交叉连接系统,需1组梯形偏振棱镜和光开关列阵对。4×4系统,需要2组梯形偏振棱镜和光开关列阵对。2×8系统,需1组。2m×2n系统,需要m组。光开关列阵器件与寻径平行光学通系统中光开关列阵完全相同,可采用可移动式的波片阵列光开关,也可应用液晶光开关列阵器件,(包括铁电液晶光开关列阵器件)。
平行光学通道寻径合并组件也可采用双折射晶体棱镜,双折射晶体棱镜可采用梯形棱镜晶体,如图12(A)所示,或长方形平行平面晶体,如图12(B)所示。4×4双折射晶体棱镜平行光学通道寻径合并组件是由2组双折射晶体棱镜和光开关列阵组成,此组件仅将双折射晶体棱镜C3和C4代替图10中的梯形偏振棱镜P2和P4而已。C3和C4厚度和切割方向的选择应使晶体具有如图12(A)和图12(B)所示的特性。在晶体C3中o光4i,3i直通穿过晶体,e光2i,1i垂直进入晶体后,向上倾斜传输,在晶体C3输出表面上,2i与4i完全重合于一条平行光学通道4i,1i与3i完全重合于一条平行光学通道3i。在晶体C4中o光4i直通穿过晶体,而e光4i垂直进入晶体后,向上倾斜传输,在晶体C4输出表面上,3i与4i完全重合于一条平行光学通道4i。
寻径合并和控制系统原理是完全与梯形偏振棱镜平行光学通道寻径合并组件相同,但是平行光学通道中各信号光的偏振状态是完全相反的,故双折射晶体寻径合并组件中平行光学通道寻径合并过程的数学方程可由下列(3c)和(4d)两式描述。上述4×4平行光学通道寻径合并过程,适用于2m×2n双折射晶体光交叉连接系统。 M 34 ( 3 ) ( A 14 e + A 34 0 ) , M 44 ( 3 ) ( A 24 e + A 44 0 ) M 33 ( 3 ) ( A 13 e + A 33 0 ) , M 43 ( 3 ) ( A 23 e + A 43 0 ) M 32 ( 3 ) ( A 12 e + A 32 0 ) , M 42 ( 3 ) ( A 22 e + A 42 0 ) M 31 ( 3 ) ( A 11 e + A 31 0 ) , M 41 ( 3 ) ( A 21 e + A 41 0 ) = A 14 e + A 34 e , A 24 0 + A 44 0 A 13 e + A 33 e , A 23 0 + A 43 0 A 12 e + A 32 e , A 22 0 + A 42 0 A 11 e + A 31 e , A 21 0 + A 41 0 . . . . . . ( 3 c ) M 44 ( 4 ) ( A 14 e + A 24 0 + A 34 e + A 44 0 ) M 43 ( 4 ) ( A 13 e + A 23 0 + A 33 e + A 43 0 ) M 42 ( 4 ) ( A 12 e + A 22 0 + A 32 e + A 42 0 ) M 41 ( 4 ) ( A 11 e + A 21 0 + A 31 e + A 41 0 ) = A 14 e + A 24 e + A 34 e + A 44 e A 13 e + A 23 e + A 33 e + A 43 e A 12 e + A 22 e + A 32 e + A 42 e A 11 e + A 21 e + A 31 e + A 41 e . . . . . . ( 4 d )
本发明光学交叉连接器件中光学元件的具体设计如下:
1.梯形偏振棱镜P1,P2,P3,P4的设计。
前述各图中梯形偏振镜P1,P2,P3,P4的设计。如图13所示,该棱镜是由平行四边形棱镜ABHG和直角棱镜AF′B或直角梯形棱镜EFBA组成的,见图13(a)。图13(c)为其立体组合图。ABCD为偏振膜,其带宽大于通光波长。图13(a)中,AG=HB=BF′=AF′,∠GHB=∠GAB=∠ABF′=∠BAF′=45°。输入光纤之间的间距为d0,图6中的偏振棱镜P1,和图10中的梯形偏振棱镜P4,通光平面AGKD、J′F′BC和BHLC仅有一维M×1平行光学通道通过时,则平行四边形棱镜高度AG=BH=d0。直角梯形棱镜EFBA中,AF′=F′B=EF=d0,AE=F′F=L0的高度根据系统设计需要而定。图6和图10中梯形偏振棱镜P2和P3,若通光平面AGCD,J′F′BC和BHLC有二维M×2平行光学通道通过时,则棱镜高度AG=BH=2d0,AF′=FB-EF=2d0。对于M×N(M=2,4,8,…,2m,N=2,4,8,…2n)交叉连接系统。通光平面AGKD,BHLC和J′F′BC可能有二维M×(2n-1),或M×(2m-1)平行光学通道通过,则平行四边形棱镜和直角棱镜高度AG=BH=F′B=2n-1d0或2m-1d0,直角梯形棱镜EFBA中,AF′=F′B=EF=nd0。棱镜宽度S由图1中输入光纤的数目M和光纤之间间距d0决定。一般棱镜宽度S为M×d0+S0,S0由系统整体结构设计需要而定。
2.梯形棱镜晶体C1,C2,C3和C4的设计。
梯形棱镜晶体C1,C2,C3和C4的设计如图14所示:∠DCB=∠HGF=45°,棱镜宽度S由图8(A)、图8(B)和图12(A)、图12(B)中输入光纤的数目M和光纤之间间距d0决定。棱镜宽度S为M×d0+S0,S0由系统整体结构设计需要而定,双折射晶体的高度由入射光阵列而定,对于M×N(M==2,4,8,…2m,N=2,4,8,…2n)交叉连接系统。通光平面ADHE可能有二维M×2n-1或M×2m-1平行光学通道通过,则棱镜高度AD=HE=2n-1d0或2m-1d0通光平面BCGF可能有二维M×2·2n-1或M×2·2m-1平行光学通道通过,棱镜高度BC=FG=2·2n-1d0或2·2m-1d0。图8(A)、图8(B)双折射晶体C1和图12(A)、图12(B)C4的厚度和切割方向的选择,应使晶体具有如下的特性:在晶体C1和C4中,入射光i为o光时,沿直通方向传输。当i为e光时,向上(或向下)倾斜,在晶体C1的输出表面上,相对其o光向上移动的距离为d0,然后,形成平行光学通道传输。图8(A)、图8(B)中双折射晶体C2和图12(A)、图12(B)中C3的厚度和切割方向的选择,应使晶体具有如下特性。晶体C2和C3的厚度为晶体C1和C4的两部,两条平行光学通道分为四条平行光学通道,入射光i为o光时,直能晶体C2和C3,当i为e光时,e光向上(或向下)倾斜传输。在晶体C2和C3表面上相对于其o光,向上位移2d0,然后沿平行方向传输。
3.可移动式波片阵列光开关器件的结构设计
可移动式的波片阵列光开关器件的结构,它们是由宽度略小于d0的N条玻璃基片组成,每条基片上在间距为d0不同的通光位置,贴上λ/2或λ/4波片,每条玻璃基片可在外界电信号指令的控制下,由外力的推动独立在玻璃介质和λ/2二种特性,或在一般玻璃介质,λ/2波片和λ/4波片三种特性中快速切换。图15是其中的一种,(a)为LC1和LC3可移动式的波片阵列光开关器件的结构,(b)为LC2和LC4可移动式的波片阵列光开关器件的结构,(c)为LC3和LC4可移动式的波片阵列光开关器件结构。光开关器件可为液晶光开关列阵(包括开关速度可达50μs的铁电液晶光开关列阵器件),各象元在外界电压控制下,可快速地在以上两种或三种状态下快速变化。
为说明本发明应用的全过程,最后介绍寻径式交叉连接方法中的寻径控制
1.梯形偏振棱镜寻径式交叉连接器件的寻径控制
4×4寻径式交叉连接器件中,每一条输入光纤的信号传输到任意一条输出光纤的寻径过程,由4片开关列阵器件中的光开关象元状态决定。每一个光开关象元状态由如下描述的四组方程决定, M 11 ( 1 ) A 11 e M 21 ( 1 ) A 21 e M 31 ( 1 ) A 31 e M 41 ( 1 ) A 41 E M 11 ( 1 ) A 11 e M 21 ( 1 ) A 21 e M 31 ( 1 ) A 31 e M 41 ( 1 ) A 41 E = A 21 0 A 22 0 A 32 0 A 42 0 A 11 e A 21 e A 31 e A 41 e . . . . . ( 1 ) M 12 ( 2 ) A 12 0 , M 22 ( 2 ) A 22 0 , M 32 ( 2 ) A 32 0 , M 42 ( 2 ) A 42 0 M 11 ( 2 ) A 11 e , M 21 ( 2 ) A 21 e , M 31 ( 2 ) A 31 e , M 41 ( 2 ) A 41 e M 12 ( 2 ) A 12 0 , M 22 ( 2 ) A 22 0 , M 32 ( 2 ) A 32 0 , M 42 ( 2 ) A 42 0 M 11 ( 2 ) A 11 e , M 21 ( 2 ) A 21 e , M 31 ( 2 ) A 31 e , M 41 ( 2 ) A 41 e = A 14 0 , A 24 0 , A 34 0 , A 44 0 A 13 0 , A 23 0 , A 33 0 , A 43 0 A 12 e , A 22 e , A 32 e , A 42 e A 11 e , A 21 e , A 31 e , A 41 e . . . ( 2 ) M 34 ( 3 ) ( A 14 0 + A 34 e ) , M 44 ( 3 ) ( A 24 0 + A 44 e ) M 33 ( 3 ) ( A 13 0 + A 33 e ) , M 43 ( 3 ) ( A 23 0 + A 43 e ) M 32 ( 3 ) ( A 12 0 + A 32 e ) , M 42 ( 3 ) ( A 22 0 + A 42 e ) M 31 ( 3 ) ( A 11 0 + A 31 e ) , M 41 ( 3 ) ( A 21 0 + A 41 e ) = A 14 0 + A 34 0 , A 24 e + A 44 e A 13 0 + A 33 0 , A 23 e + A 43 e A 12 0 + A 32 0 , A 22 e + A 42 e A 11 0 + A 31 0 , A 21 e + A 41 e . . . . . . ( 3 ) M 44 ( 4 ) ( A 14 0 + A 24 e + A 34 0 + A 44 e ) M 43 ( 4 ) ( A 13 0 + A 23 e + A 33 0 + A 43 e ) M 42 ( 4 ) ( A 12 0 + A 22 e + A 32 0 + A 42 e ) M 41 ( 4 ) ( A 11 0 + A 21 e + A 31 0 + A 41 e ) = A 14 e + A 24 e + A 34 e + A 44 e A 13 e + A 23 e + A 33 e + A 43 e A 12 e + A 22 e + A 32 e + A 42 e A 11 e + A 21 e + A 31 e + A 41 e . . . . . . ( 4 )
根据交叉连接器件的可重构和广布功能的需求,由以上四组方程可求出每一条输入光纤的信号传输到任意一条输出光纤的寻径过程中,每一个光开关象元在外界电压控制指令下的状态 。从第一条输入光纤的信号传输到任意一条输出光纤时,四块光开关器件中相应的光开关象元在外界电压控制下,其状态
Figure C9911668500166
为: A 1 → B 1 : M 11 ( 1 ) A 11 e → A 11 e ⊕ M 11 ( 2 ) A 11 e → A 11 e ⊕ M 31 ( 3 ) A 11 0 → A 11 0 ⊕ M 41 ( 4 ) A 11 0 → A 11 e A 1 → B 2 : M 11 ( 1 ) A 11 e → A 11 e ⊕ M 12 ( 2 ) A 12 0 → A 11 e ⊕ M 32 ( 3 ) A 12 0 → A 12 0 ⊕ M 42 ( 4 ) A 21 0 → A 12 e A 1 → B 3 : M 11 ( 1 ) A 11 e → A 11 e ⊕ M 11 ( 2 ) A 11 e → A 13 0 ⊕ M 33 ( 3 ) A 13 0 → A 13 0 ⊕ M 43 ( 4 ) A 13 0 → A 13 e A 1 → B 4 : M 11 ( 1 ) A 11 e → A 12 0 ⊕ M 12 ( 2 ) A 12 0 → A 14 0 ⊕ M 34 ( 3 ) A 14 0 → A 14 0 ⊕ M 44 ( 4 ) A 14 0 → A 14 e
从第二条输入光纤的信号传输到任意一条输出光纤时,四块光开关器件中相应的光开关象元在外界电压控制下,其状态 为: A 2 → B 1 : M 21 ( 1 ) A 21 e → A 21 e ⊕ M 21 ( 2 ) A 21 e → A 21 e ⊕ M 41 ( 3 ) A 21 0 → A 21 e ⊕ M 41 ( 4 ) A 21 e → A 21 e A 2 → B 2 : M 21 ( 1 ) A 21 e → A 22 0 ⊕ M 22 ( 2 ) A 22 0 → A 22 e ⊕ M 42 ( 3 ) A 22 0 → A 22 e ⊕ M 42 ( 4 ) A 22 e → A 22 e A 2 → B 3 : M 21 ( 1 ) A 21 e → A 21 e ⊕ M 21 ( 2 ) A 21 e → A 23 0 ⊕ M 43 ( 3 ) A 23 0 → A 23 e ⊕ M 43 ( 4 ) A 23 e → A 23 e A 2 → B 4 : M 21 ( 1 ) A 21 e → A 22 0 ⊕ M 22 ( 2 ) A 22 0 → A 24 0 ⊕ M 44 ( 3 ) A 24 0 → A 24 e ⊕ M 44 ( 4 ) A 24 e → A 24 e 从第三条输入光纤的信号传输到任意一条输出光纤时,四块光开关器件中相应的光开关象元在外界电压控制下,其状态 为: A 3 → B 1 : M 31 ( 1 ) A 31 e → A 31 e ⊕ M 31 ( 2 ) A 31 e → A 31 e ⊕ M 31 ( 3 ) A 31 e → A 21 0 ⊕ M 41 ( 4 ) A 31 0 → A 31 e A 3 → B 2 : M 31 ( 1 ) A 31 e → A 32 0 ⊕ M 32 ( 2 ) A 32 0 → A 32 e ⊕ M 32 ( 3 ) A 32 e → A 32 0 ⊕ M 42 ( 4 ) A 32 0 → A 32 e A 3 → B 3 : M 31 ( 1 ) A 31 e → A 31 e ⊕ M 31 ( 2 ) A 31 e → A 33 0 ⊕ M 33 ( 3 ) A 33 0 → A 33 0 ⊕ M 43 ( 4 ) A 33 0 → A 33 e A 3 → B 4 : M 31 ( 1 ) A 31 e → A 32 0 ⊕ M 32 ( 2 ) A 32 0 → A 34 0 ⊕ M 34 ( 3 ) A 34 e → A 34 0 ⊕ M 44 ( 4 ) A 34 0 → A 34 e
从第四条输入光纤的信号传输到任意一条输出光纤时,四块开关器件中相应的光开关象元在外界电压控制下,其状态
Figure C99116685001710
为: A 4 → B 1 : M 41 ( 1 ) A 41 e → A 41 e ⊕ M 41 ( 2 ) A 41 e → A 41 e ⊕ M 41 ( 3 ) A 41 e → A 41 e ⊕ M 41 ( 4 ) A 41 e → A 41 e A 4 → B 2 : M 41 ( 1 ) A 41 e → A 42 0 ⊕ M 42 ( 2 ) A 42 0 → A 42 e ⊕ M 42 ( 3 ) A 42 e → A 42 e ⊕ M 42 ( 4 ) A 42 e → A 42 e A 4 → B 3 : M 41 ( 1 ) A 41 e → A 41 e ⊕ M 41 ( 2 ) A 41 e → A 43 0 ⊕ M 43 ( 3 ) A 43 e → A 43 e ⊕ M 43 ( 4 ) A 43 e → A 43 e A 4 → B 4 : M 41 ( 1 ) A 41 e → A 42 0 ⊕ M 42 ( 2 ) A 42 0 → A 44 0 ⊕ M 44 ( 3 ) A 44 e → A 44 e ⊕ M 44 ( 4 ) A 44 e → A 44 e
2.双折射击晶体寻径式交叉连接器件的寻径控制
4×4双折射晶体寻径式交叉连接器件中,每一条输入光纤的信号传输到任意一条输出光纤的寻径过程,由4片开关列阵器件中的光开关象元状态决定。每一个光开关象元状态由如下描述的四组方程决定, M 11 ( 1 ) A 11 e M 21 ( 1 ) A 21 e M 31 ( 1 ) A 31 e M 41 ( 1 ) A 41 E M 11 ( 1 ) A 11 e M 21 ( 1 ) A 21 e M 31 ( 1 ) A 31 e M 41 ( 1 ) A 41 E = A 12 e A 22 e A 32 e A 42 e A 11 0 A 21 0 A 31 0 A 41 0 . . . . . ( 1 a ) M 12 ( 2 ) A 12 e , M 22 ( 2 ) A 22 e , M 32 ( 2 ) A 32 e , M 42 ( 2 ) A 42 e M 11 ( 2 ) A 11 0 , M 21 ( 2 ) A 21 0 , M 31 ( 2 ) A 31 0 , M 41 ( 2 ) A 41 0 M 12 ( 2 ) A 12 e , M 22 ( 2 ) A 22 e , M 32 ( 2 ) A 32 e , M 42 ( 2 ) A 42 e M 11 ( 2 ) A 11 0 , M 21 ( 2 ) A 21 0 , M 31 ( 2 ) A 31 0 , M 41 ( 2 ) A 41 0 = A 14 e , A 24 e , A 34 e , A 44 e A 13 e , A 23 e , A 33 e , A 43 e A 12 0 , A 22 0 , A 32 0 , A 42 0 A 11 0 , A 21 0 , A 31 0 , A 41 0 . . . ( 2 b ) M 34 ( 3 ) ( A 14 e + A 34 0 ) , M 44 ( 3 ) ( A 24 e + A 44 0 ) M 33 ( 3 ) ( A 13 e + A 33 0 ) , M 43 ( 3 ) ( A 23 e + A 43 0 ) M 32 ( 3 ) ( A 12 e + A 32 0 ) , M 42 ( 3 ) ( A 22 e + A 42 0 ) M 31 ( 3 ) ( A 11 e + A 31 0 ) , M 41 ( 3 ) ( A 21 e + A 41 0 ) = A 14 e + A 34 e , A 24 0 + A 44 0 A 13 e + A 33 e , A 23 0 + A 43 0 A 12 e + A 32 e , A 22 0 + A 42 0 A 11 e + A 31 e , A 21 0 + A 41 0 . . . . . . ( 3 c ) M 44 ( 4 ) ( A 14 e + A 24 0 + A 34 e + A 44 0 ) M 43 ( 4 ) ( A 13 e + A 23 0 + A 33 e + A 43 0 ) M 42 ( 4 ) ( A 12 e + A 22 0 + A 32 e + A 42 0 ) M 41 ( 4 ) ( A 11 e + A 21 0 + A 31 e + A 41 0 ) = A 14 e + A 24 e + A 34 e + A 44 e A 13 e + A 23 e + A 33 e + A 43 e A 12 e + A 22 e + A 32 e + A 42 e A 11 e + A 21 e + A 31 e + A 41 e . . . . . . ( 4 d )
根据交叉连接器件的可重构和广布功能的需求,由以上双折射晶体寻径式交叉连接器件中的四组方程,可求出每一条输入光纤的信号传输到任意一条输出光纤的寻径过程中,每一个光开关象元在外界电压控制指令下的状态 从第一条输入光纤的信号传输到任意一条输出光纤时,四块光开关器件中相应的光开关象元在外界电压控制下,其状态 为: A 1 → B 1 : M 11 ( 1 ) A 11 e → A 11 0 ⊕ M 11 ( 2 ) A 11 0 → A 11 0 ⊕ M 31 ( 3 ) A 11 e → A 11 e ⊕ M 41 ( 4 ) A 11 e → A 11 e A 1 → B 2 : M 11 ( 1 ) A 11 e → A 12 e ⊕ M 12 ( 2 ) A 12 e → A 12 0 ⊕ M 32 ( 3 ) A 12 e → A 12 e ⊕ M 42 ( 4 ) A 12 e → A 12 e A 1 → B 3 : M 11 ( 1 ) A 11 e → A 11 0 ⊕ M 11 ( 2 ) A 11 0 → A 13 e ⊕ M 33 ( 3 ) A 13 e → A 13 e ⊕ M 43 ( 4 ) A 13 e → A 13 e A 1 → B 4 : M 11 ( 1 ) A 11 e → A 12 e ⊕ M 12 ( 2 ) A 12 e → A 14 e ⊕ M 34 ( 3 ) A 14 e → A 14 e ⊕ M 44 ( 4 ) A 14 e → A 14 e
从第二条输入光纤的信号传输到任意一条输出光纤时,四块光开关器件中相应的光开关象元在外界电压控制下,其状态 为: A 2 → B 1 : M 21 ( 1 ) A 21 e → A 21 0 ⊕ M 21 ( 2 ) A 21 0 → A 21 0 ⊕ M 41 ( 3 ) A 21 e → A 21 0 ⊕ M 41 ( 4 ) A 21 0 → A 21 e A 2 → B 2 : M 21 ( 1 ) A 21 e → A 22 e ⊕ M 22 ( 2 ) A 22 e → A 22 0 ⊕ M 42 ( 3 ) A 22 e → A 22 0 ⊕ M 42 ( 4 ) A 22 0 → A 22 e A 2 → B 3 : M 21 ( 1 ) A 21 e → A 21 0 ⊕ M 21 ( 2 ) A 21 0 → A 23 e ⊕ M 43 ( 3 ) A 23 e → A 23 0 ⊕ M 43 ( 4 ) A 23 0 → A 23 e A 2 → B 4 : M 21 ( 1 ) A 21 e → A 22 e ⊕ M 22 ( 2 ) A 22 e → A 24 e ⊕ M 44 ( 3 ) A 24 e → A 24 0 ⊕ M 44 ( 4 ) A 24 0 → A 24 e
从第三条输入光纤的信号传输到任意一条输出光纤时,四块光开关器件中相应的光开关象元在外界电压控制下,其状态 为: A 3 → B 1 : M 31 ( 1 ) A 31 e → A 31 0 ⊕ M 31 ( 2 ) A 31 0 → A 31 0 ⊕ M 31 ( 3 ) A 31 0 → A 31 e ⊕ M 41 ( 4 ) A 31 e → A 31 e A 3 → B 2 : M 31 ( 1 ) A 31 e → A 32 e ⊕ M 32 ( 2 ) A 32 e → A 32 0 ⊕ M 32 ( 3 ) A 32 0 → A 32 0 ⊕ M 42 ( 4 ) A 32 0 → A 32 e A 3 → B 3 : M 31 ( 1 ) A 31 e → A 31 0 ⊕ M 31 ( 2 ) A 31 0 → A 33 0 ⊕ M 33 ( 3 ) A 33 0 → A 33 e ⊕ M 43 ( 4 ) A 33 e → A 33 e A 3 → B 4 : M 31 ( 1 ) A 31 e → A 32 e ⊕ M 32 ( 2 ) A 32 e → A 34 e ⊕ M 34 ( 3 ) A 34 0 → A 34 e ⊕ M 44 ( 4 ) A 34 e → A 34 e
从第四条输入光纤的信号传输到任意一条输出光纤时,四块光开关器件中相应的光开关象元在外界电压控制下,其状态 为: A 4 → B 1 : M 41 ( 1 ) A 41 e → A 41 0 ⊕ M 41 ( 2 ) A 41 0 → A 41 0 ⊕ M 41 ( 3 ) A 41 0 → A 41 0 ⊕ M 41 ( 4 ) A 41 0 → A 41 e A 4 → B 2 : M 41 ( 1 ) A 41 e → A 42 e ⊕ M 42 ( 2 ) A 42 e → A 42 0 ⊕ M 42 ( 3 ) A 42 0 → A 42 0 ⊕ M 42 ( 4 ) A 42 0 → A 42 e A 4 → B 3 : M 41 ( 1 ) A 41 e → A 41 0 ⊕ M 41 ( 2 ) A 41 0 → A 43 e ⊕ M 43 ( 3 ) A 43 0 → A 43 0 ⊕ M 43 ( 4 ) A 43 0 → A 43 e A 4 → B 4 : M 41 ( 1 ) A 41 e → A 42 e ⊕ M 42 ( 2 ) A 42 e → A 44 e ⊕ M 44 ( 3 ) A 44 0 → A 44 0 ⊕ M 44 ( 4 ) A 44 0 → A 44 e

Claims (4)

1.一种2m×2n光学交叉连接方法,其步骤为:
(1)将2m条发散光信号变成准直的平行光,
(2)再将(1)中2m个准直平行的随机偏振光信号变为完全线偏振信号,
(3)将(2)所产生的完全线偏振光信号采用平行光寻径方式绝对无阻塞地传送,X方向的2m个输入光信号中每一个光信号在Y方向存在2n个平行光学通道,形成2m×2n条平行输出光学通道,
(4)将(3)中X方向的每2m条平行输出光学通道寻径合并耦合为一条平行光学通道,形成2n条平行输出光学通道,
(5)再将(4)中输出的2n条完全线偏振光恢复成2n条随机偏振光信号,
(6)将(5)形成的2n条随机偏振光信号平行输出耦合到2n条输出光纤;
上述步骤中,m、n均为自然数。
2.实现权利要求1所述2m×2n光学交叉连接方法的光学交叉连接器件,依序由寻径式平行光学通道部分和平行光学通道寻径合并耦合部分构成,
(1)寻径式平行光学通道部分顺序包括一维光纤列阵准直组件、平行平面晶体组件和寻径式平行光学通道组件,
A.一维光纤列阵准直组件包括带2m条平行的V形槽基片,在每条V形槽内前后紧贴排放带尾纤的圆形毛细管和折射率渐变微透镜,构成了2m条平行的光学通道,
B.平行平面晶体组件由四块长方形平行平面晶体和两片波片组成,排列顺序为:第一块长方形平行平面晶体、第一片波片、第二块长方形平行平面晶体、第二片波片、上下重叠的第三块和第四块长方形平行平面晶体,其中第一片波片为λ/2波片,第二片波片上半部为λ/2波片、下半部为平行平面玻璃基片,
C、寻径式平行光学通道组件包括n级光开关列阵和晶体棱镜组,每一级依次由一片光开关列阵和一块晶体棱镜组成。
(2)平行光学通道寻径合并耦合部分与寻径式平行光学通道部分在空间形成光路连接,顺序包括λ/2波片阵列、平行光学通道寻径合并组件、反相平行平面晶体组件和一维光纤列阵耦合组件,
A.λ/2波片阵列由尺寸相同的二片λ/2波片和二片玻璃基片交叉排列成田字形构成,
B.平行光学通道寻径合并组件包括m级晶体棱镜和光开关列阵组,每一级依次由一块晶体棱镜和一片光开关列阵组成,
C.反相平行平面组件采用前述平行平面晶体组件的元件,元件排列顺序相当于将前述平行平面晶体组件沿光路方向轴向旋转平行平面晶体组件180°、径向旋转90°,
D.一维光纤列阵耦合组件包括带2n条平行的V形槽基片、在每条V形槽内前后紧贴排放折射率渐变微透镜和带尾纤的圆形毛细管,构成2n条平行的光学通道。
上述各部分m、n为自然数。
3.如权利要求2所述的光学交叉连接器件,其特征在于:
(1)所述一维光纤列阵准直组件中,平行的V形槽基片上V形槽间距与折射率渐变微透镜外径均等于圆形毛细管外径d0,整个组件上表面固化有平板形基片作为盖板,
(2)所述平行平面晶体组件中,第一块和第二块长方形平行平面晶体是尺寸相同的同类晶体,第三块和第四块长方形平行平面晶体亦是尺寸相同的同类晶体、但晶轴方向互相上下对称,
(3)所述寻径式平行光学通道组件中,每级光开关列阵具有2m×2i-1个象元,每个象元在外界控制下,可处于玻璃介质特性、λ/2波片特性两种状态之一,或处于玻璃介质特性、λ/2波片特性、λ/4波片特性三种状态之一,
(4)所述平行光学通道寻径合并组件中,每级光开关列阵具有2n×2m-I个象元,每个象元具有上述寻径式平行光学通道组件中象元的性质,
(5)所述一维光纤列阵耦合组件结构可以与前述一维光纤列阵准直组件相同,
上述各式中,m、n为自然数,i为各级光开关列阵所处级别。
4.如权利要求2或3所述的光学交叉连接器件,其特征在于所述寻径式平行光学通道组件和平行光学通道寻径合并组件中,
(1)所述光开关列阵可以是可移动式波片阵列光开关、也可以是液晶光开关列阵器件,
(2)所述晶体棱镜可以是梯形偏振棱镜,也可以是双折射晶体棱镜。
CN99116685.XA 1999-10-08 1999-10-08 2m×2n光学交叉连接方法及其器件 Expired - Fee Related CN1120992C (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN99116685.XA CN1120992C (zh) 1999-10-08 1999-10-08 2m×2n光学交叉连接方法及其器件
EP00308815A EP1096826A3 (en) 1999-10-08 2000-10-06 Optical switching method and device
US09/686,525 US6798938B1 (en) 1999-10-08 2000-10-11 Routing optical matrix switching method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN99116685.XA CN1120992C (zh) 1999-10-08 1999-10-08 2m×2n光学交叉连接方法及其器件

Publications (2)

Publication Number Publication Date
CN1251905A CN1251905A (zh) 2000-05-03
CN1120992C true CN1120992C (zh) 2003-09-10

Family

ID=5279466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99116685.XA Expired - Fee Related CN1120992C (zh) 1999-10-08 1999-10-08 2m×2n光学交叉连接方法及其器件

Country Status (3)

Country Link
US (1) US6798938B1 (zh)
EP (1) EP1096826A3 (zh)
CN (1) CN1120992C (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148435A (ja) * 2000-11-10 2002-05-22 Fdk Corp 偏光分離合成素子及びそれを用いる光デバイス
US6834137B2 (en) * 2001-12-05 2004-12-21 Lightwaves 2020, Inc. Cholesteric liquid crystal cell devices and systems
US8213795B2 (en) * 2007-05-09 2012-07-03 University Of Central Florida Research Foundation, Inc. Systems and methods of polarization time coding for optical communications
US10698291B2 (en) * 2018-05-22 2020-06-30 Quanergy Systems, Inc. Integrated phased array for two dimensional beem steering through constructive interference by light emitting structures comprising select elements on a two-dimensional lattice

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461543A (en) * 1982-03-26 1984-07-24 Sperry Corporation Electro optic switch
US4948229A (en) * 1988-03-18 1990-08-14 The United States Of America As Represented By The Secretary Of The Air Force Optical switches using ferroelectric liquid crystals
US4989941A (en) * 1988-03-18 1991-02-05 The United States Of America As Represented By The Secretary Of The Air Force Normal incidence optical switches using ferroelectric liquid crystals
US5235452A (en) * 1989-06-02 1993-08-10 Minister Of The Post Telecommunications And Space (Centre National D'etudes Des Telecommunications) Process and switching matrix apparatus for optical transmission of signals by self-heterodyning
JPH03204621A (ja) * 1990-01-08 1991-09-06 Nippon Telegr & Teleph Corp <Ntt> 光マトリックススイッチ
US5771320A (en) * 1996-04-30 1998-06-23 Wavefront Research, Inc. Optical switching and routing system
JP3204621B2 (ja) 1996-11-06 2001-09-04 タカラベルモント株式会社 医療用フットコントロールスイッチ
US6134358A (en) * 1998-08-27 2000-10-17 Chorum Technologies Inc. N x N switch array with reduced components

Also Published As

Publication number Publication date
EP1096826A2 (en) 2001-05-02
EP1096826A3 (en) 2002-12-18
US6798938B1 (en) 2004-09-28
CN1251905A (zh) 2000-05-03

Similar Documents

Publication Publication Date Title
CN1281555A (zh) 集成双向轴向梯度折射率/衍射光栅波分多路复用器
JP3273583B2 (ja) 液晶マイクロプリズムアレイ及びそれを用いた空間光ビーム接続器と光スイッチ
CN103246015B (zh) 多播光学开关
CA1298116C (en) Bidirectional optical space switch
CN1306709A (zh) N×m数字可编程的光路由开关
US11516562B2 (en) Core selective switch and optical node device
JP2003315853A (ja) 発散補正付き光スイッチング装置
Hirabayashi et al. Optical beam direction compensating system for board-to-board free space optical interconnection in high-capacity ATM switch
US6449407B1 (en) Optical switch having equalized beam spreading in all connections
CN105099598B (zh) 一种基于液晶光栅光开关
CN1120992C (zh) 2m×2n光学交叉连接方法及其器件
CN201876568U (zh) 一种阵列准直器
CN1455275A (zh) 光环行器
JP4460789B2 (ja) 交差接続スイッチ
CN1595221A (zh) 采用洗牌Benes级间连接规则的二维微光电机械光开关及其方法
CN1166968C (zh) 切换光路的装置及方法
US20220252789A1 (en) Coupling multiple optical channels using a z-block
CN201732186U (zh) 单光纤至四光纤机械式紧凑型光开关结构
EP0660151B1 (en) Optical switch having spatial light modulators
Bowers Low power 3D MEMS optical switches
US6847755B2 (en) Optical cross connection switch using voltage-controlled interferometric optical switching elements
CN1206553C (zh) 一维微机械电子n×n光空间交换器
CN1200296C (zh) 铌酸锂晶体体全息光栅的光分插复用器
CN101587240A (zh) 大角度扭转微镜面驱动器及其在光开关中的应用
CN1188719C (zh) 全光学开关系统及其方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee