CN112095083A - 一种低面形光学薄膜的制备方法 - Google Patents

一种低面形光学薄膜的制备方法 Download PDF

Info

Publication number
CN112095083A
CN112095083A CN202010948623.7A CN202010948623A CN112095083A CN 112095083 A CN112095083 A CN 112095083A CN 202010948623 A CN202010948623 A CN 202010948623A CN 112095083 A CN112095083 A CN 112095083A
Authority
CN
China
Prior art keywords
film
optical
optical film
surface shape
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010948623.7A
Other languages
English (en)
Inventor
白金林
刘华松
姜玉刚
王利栓
李子杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Jinhang Institute of Technical Physics
Original Assignee
Tianjin Jinhang Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Jinhang Institute of Technical Physics filed Critical Tianjin Jinhang Institute of Technical Physics
Priority to CN202010948623.7A priority Critical patent/CN112095083A/zh
Publication of CN112095083A publication Critical patent/CN112095083A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/3442Applying energy to the substrate during sputtering using an ion beam
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于光学薄膜技术领域,公开了一种低面形光学薄膜的制备方法,通过预先计算光学薄膜元件镀膜后面形变化情况,预测同种工艺下镀膜后薄膜元件面形变化;然后对光学薄膜待镀元件基底预加工出与变形方向相反的面形,来补偿镀膜后膜层应力造成的光学薄膜元件面形变化,可实现低面形光学薄膜的制备。结果表明,本发明方法具有单面镀膜面形可控,工艺可操作性强和成品率高等优点,对光学薄膜元件的面形精度提升具有重要的作用。

Description

一种低面形光学薄膜的制备方法
技术领域
本发明属于光学薄膜技术领域,涉及一种低面形光学薄膜的制备方法,具体涉及一种低面形Ta2O5/SiO2光学薄膜的制备方法。
背景技术
随着现代的大科学装置和航空航天光电设备的发展,对光学系统提出了愈来愈高的要求,工作谱段由单波长转向宽谱段,因此对光学薄膜元件的需求也从单波长发展到宽谱段。由于宽谱段光学性能的需求,导致膜层的数量和厚度增加,引起较高的薄膜应力,造成光学薄膜面形偏差问题,因此光学薄膜面形偏差问题是光学薄膜元件设计和制造面临的核心问题。
可调谐激光器的工作谱段几乎覆盖整个可见光谱段,要实现宽谱段的高反射薄膜制备,所需要的膜层厚度高达10-20μm。这么厚的膜层产生的薄膜应力会造成光学元件的面形偏差,将会导致宽带激光系统中传输光束发生波前畸变,严重影响光学设备的性能。为了获得宽带激光系统所需的能量密度,保持传播光束足够高的光束质量,制备低面形的光学薄膜元件迫在眉睫。
发明内容
(一)发明目的
本发明的目的是:提供一种低面形光学薄膜的制造方法,它通过预先计算光学薄膜元件镀膜后面形变化情况,预测镀膜后光学薄膜元件面形变化;然后对光学薄膜待镀元件基底预加工出与变形方向相反的面形,来补偿镀膜后膜层应力造成的光学薄膜元件面形变化,可实现低面形光学薄膜的制备。
(二)技术方案
为了解决上述技术问题,本发明提供低面形光学薄膜的制备方法,其包括如下步骤:
S1:标定单层Ta2O5和SiO2薄膜的应力σ、杨氏模量E;
S2:基于光学薄膜应力形变模型,计算光学薄膜元件镀膜后面形变化ω0
S3:采用光学基底环抛加工技术,将光学基底预加工出与变形方向相反的面形-ω0
S4:基于离子束溅射制备技术,选择Ta2O5和SiO2作为高低折射率组合,在预加工好的光学基片上制备低面形的光学薄膜。
(三)有益效果
上述技术方案所提供的低面形光学薄膜的制造方法,采用离子束溅射沉积技术,通过预测镀膜后光学薄膜的面形变化,对光学薄膜镀膜面预加工出与变形方向相反的面形,来补偿镀膜后膜层应力造成的光学薄膜元件变形,可实现低面形光学薄膜的制备;通过计算可以准确预估光学薄膜元件镀膜后的面形变化,因此在产品研制过程中,避免了对光学薄膜基片的反复抛光,提高了成品率,降低了研制成本;基于基底预加工技术控制薄膜应力的方法,无需对现行镀膜工艺参数进行调整,而且仅对基片单面镀膜,便可对介质反射膜层应力造成的基片形变进行补偿,进而实现对光学薄膜元件面形的精确控制。
附图说明
图1制备方法流程图。
图2光学薄膜材料应力标定表图示。a图和b图为Ta2O5薄膜镀膜前后面形变化图,c图和d图为SiO2薄膜镀膜前后面形变化图。
图3光学薄膜材料杨氏模量标定表。a图为Ta2O5薄膜纳米压痕标定图,b图为SiO2薄膜纳米压痕标定图。
图4基底预加工面形图和镀膜后基底面形图。
图5宽带反射镜光谱曲线图。
具体实施方式
为使本发明的目的、内容和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本实施例低面形光学薄膜的制备方法包括如下步骤:
S1:标定单层Ta2O5和SiO2薄膜的应力σ、杨氏模量E;
S2:基于光学薄膜应力形变模型,计算光学薄膜元件镀膜后面形变化ω0
S3:采用光学基底环抛加工技术,将光学基底预加工出与变形方向相反的面形-ω0
S4:基于离子束溅射制备技术,选择Ta2O5和SiO2作为高低折射率组合,在已经预加工好的光学基片上制备低面形的光学薄膜;
S5:采用分光光度计测量镀膜元件的光谱曲线,采用激光干涉仪测量镀膜元件的面形图。
步骤S1中,采用离子束溅射沉积技术分别制备单层Ta2O5和SiO2薄膜,用于标定光学薄膜材料的力学性能,其中包括光学薄膜应力和杨氏模量,光学薄膜应力标定采用激光干涉仪测量,光学薄膜杨氏模量标定采用纳米压痕仪测量;
步骤S2中,采用分光光度计测量熔融石英基底上Ta2O5和SiO2薄膜的可见光-近红外透过率曲线,通过光谱曲线拟合单层膜厚度,并带入Stoney应力计算公式标定此厚度单层膜的应力;应用薄膜应力变形模型,基于前面标定好的光学薄膜力学参数,预先计算光学薄膜面形值为ω0=0~10λ,λ=632.8nm。
步骤S3中,将光学薄膜元件待镀膜面预加工出与变形方向相反的面形,面形值为-ω0=0~10λ,λ=632.8nm。
步骤S4和S5中,采用离子束溅射沉积技术,在已经预加工好的基片上制备光学多层膜,采用分光光度计测量光学多层薄膜光谱曲线,采用激光干涉仪测量光学多层薄膜镀膜前后面形变化。
实例
下面以离子束溅射制备低面形宽带高反射薄膜为实例,具体步骤如下:
首先采用离子束溅射镀膜机分别在φ25×1单面抛光和φ25×5双面抛光的熔融石英基底上镀制约150nm左右的Ta2O5和SiO2薄膜,其应力的测量采用激光干涉仪,从测量结果图可直接获得基片镀膜前后的面形值,然后带入Stoney公式进行应力计算,测量结果为Ta2O5薄膜-0.13Gpa,SiO2薄膜-0.26Gpa,应力面形图如图2所示;其杨氏模量测量采用NanoIndenter G200型纳米压痕仪连续刚度测量模块测量光学薄膜的杨氏模量,测量结果为Ta2O5薄膜115Gpa,SiO2薄膜75Gpa,zs1熔融石英基底70Gpa,测量数据图如图3所示。
然后通过膜系设计软件进行宽带高反射膜系设计,采用Ta2O5和SiO2作为高、低折射率材料,膜系结构为{基底/[1.365H 1.365L]16[1.17H 1.17L]16[H L]16/空气,λ0@600nm},上述膜系中,膜层总厚度为9.79μm。高、低折射率材料的总物理厚度分别为4.047μm和5.743μm,高低折射率材料的总厚度比值为0.705,其功能实现在45°工作角度入射,550-750nm的工作波长下反射率R≥99.5%。
将标定后的薄膜材料力学参数和宽带反射镜膜系结构带入薄膜应力变形模型进行计算,理论计算宽带高反射薄膜镀膜后面形值,得到理论面形变化量为ω0=-1.233λ,λ=632.8nm。
将宽带反射镜基片待镀膜面预加工出与变形方向相反的面形,来补偿镀膜后膜层应力造成的光学薄膜元件变形,因此采用光学加工技术制备面形值为1.233λ左右的待镀膜基片,最终基片面形值为ω0=1.2λ,λ=632.8nm。
采用离子束溅射沉积技术镀制宽带高反射薄膜,采用激光干涉仪对镀膜后的光学薄膜元件进行测量,面形值为ω0=-0.038λ,λ=632.8nm,宽带反射镜镀膜前后面形图如图4所示;采用分光光度计对光学薄膜元件光谱进行测量,在550-750nm的工作波长下反射率R≥99.5%,宽带反射镜光谱曲线图如图5所示。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

1.一种低面形光学薄膜的制备方法,其特征在于,包括如下步骤:
S1:标定单层Ta2O5和SiO2薄膜的应力σ、杨氏模量E;
S2:基于光学薄膜应力形变模型,计算光学薄膜元件镀膜后面形变化ω0
S3:采用光学基底环抛加工技术,将光学基底预加工出与变形方向相反的面形-ω0
S4:基于离子束溅射制备技术,选择Ta2O5和SiO2作为高低折射率组合,在预加工好的光学基片上制备低面形的光学薄膜。
2.如权利要求1所述的低面形光学薄膜的制备方法,其特征在于,还包括步骤S5:采用分光光度计测量镀膜光学基片的光谱曲线,采用激光干涉仪测量镀膜光学基片的面形图。
3.如权利要求1所述的低面形光学薄膜的制备方法,其特征在于,所述步骤S1中,采用离子束溅射沉积技术分别制备单层Ta2O5和SiO2薄膜,用于标定光学薄膜材料的力学性能,包括光学薄膜应力和杨氏模量。
4.如权利要求3所述的低面形光学薄膜的制备方法,其特征在于,所述步骤S1中,光学薄膜应力标定采用激光干涉仪测量,光学薄膜杨氏模量标定采用纳米压痕仪测量。
5.如权利要求3所述的低面形光学薄膜的制备方法,其特征在于,所述步骤S2中,采用分光光度计测量熔融石英基底上Ta2O5和SiO2薄膜的可见光-近红外透过率曲线,通过光谱曲线拟合单层膜厚度,并带入Stoney应力计算公式标定此厚度单层膜的应力;应用薄膜应力变形模型,基于已标定的光学薄膜力学参数,计算光学薄膜面形值为ω0=0~10λ,λ=632.8nm。
6.如权利要求5所述的低面形光学薄膜的制备方法,其特征在于,所述步骤S3中,光学薄膜元件待镀膜面预加工出与变形方向相反的面形,面形值为-ω0=0~10λ,λ=632.8nm。
7.如权利要求6所述的低面形光学薄膜的制备方法,其特征在于,所述步骤S4和S5中,采用离子束溅射沉积技术,在预加工的基片上制备光学多层膜;采用分光光度计测量光学多层膜光谱曲线,采用激光干涉仪测量光学多层膜镀膜前后面形变化。
8.如权利要求6所述的低面形光学薄膜的制备方法,其特征在于,所述步骤S1中,采用离子束溅射镀膜机分别在φ25×1单面抛光和φ25×5双面抛光的熔融石英基底上镀制150nm的Ta2O5和SiO2薄膜,采用激光干涉仪测量应力,从测量结果图获得基片镀膜前后的面形值,带入Stoney公式进行应力计算;杨氏模量测量采用Nano Indenter G200型纳米压痕仪连续刚度测量模块测量光学薄膜的杨氏模量。
9.如权利要求8所述的低面形光学薄膜的制备方法,其特征在于,所述步骤S2中,通过膜系设计软件进行宽带高反射膜系设计,采用Ta2O5和SiO2作为高、低折射率材料,膜系结构为{基底/[1.365H 1.365L]16[1.17H 1.17L]16[H L]16/空气,λ0@600nm},上述膜系中,膜层总厚度为9.79μm;高、低折射率材料的总物理厚度分别为4.047μm和5.743μm,高低折射率材料的总厚度比值为0.705,在45°工作角度入射,550-750nm的工作波长下反射率R≥99.5%。
10.如权利要求9所述的低面形光学薄膜的制备方法,其特征在于,所述步骤S3中,将标定后的薄膜材料力学参数和宽带反射镜膜系结构带入薄膜应力变形模型进行计算,理论计算宽带高反射薄膜镀膜后面形值,得到理论面形变化量为ω0=-1.233λ,λ=632.8nm;步骤S4中,将宽带反射镜基片待镀膜面预加工出与变形方向相反的面形,补偿镀膜后膜层应力造成的光学薄膜元件变形,采用光学加工技术制备面形值为1.233λ的待镀膜基片,最终基片面形值为ω0=1.2λ,λ=632.8nm;步骤S5中,采用离子束溅射沉积技术镀制宽带高反射薄膜,采用激光干涉仪对镀膜后的光学薄膜元件进行测量,面形值为ω0=-0.038λ,λ=632.8nm。
CN202010948623.7A 2020-09-10 2020-09-10 一种低面形光学薄膜的制备方法 Pending CN112095083A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010948623.7A CN112095083A (zh) 2020-09-10 2020-09-10 一种低面形光学薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010948623.7A CN112095083A (zh) 2020-09-10 2020-09-10 一种低面形光学薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN112095083A true CN112095083A (zh) 2020-12-18

Family

ID=73750761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010948623.7A Pending CN112095083A (zh) 2020-09-10 2020-09-10 一种低面形光学薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN112095083A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115091271A (zh) * 2022-07-18 2022-09-23 北京创思工贸有限公司 基于离子束抛光的光学零件基底修形方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284722A (ja) * 2005-03-31 2006-10-19 Citizen Miyota Co Ltd 液晶表示素子、及び配向膜形成方法
CN106443848A (zh) * 2016-11-16 2017-02-22 天津津航技术物理研究所 一种宽带激光薄膜反射镜
CN109852930A (zh) * 2019-03-29 2019-06-07 中国科学院上海技术物理研究所 一种补偿中口径介质膜平面反射镜镀膜形变的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284722A (ja) * 2005-03-31 2006-10-19 Citizen Miyota Co Ltd 液晶表示素子、及び配向膜形成方法
CN106443848A (zh) * 2016-11-16 2017-02-22 天津津航技术物理研究所 一种宽带激光薄膜反射镜
CN109852930A (zh) * 2019-03-29 2019-06-07 中国科学院上海技术物理研究所 一种补偿中口径介质膜平面反射镜镀膜形变的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115091271A (zh) * 2022-07-18 2022-09-23 北京创思工贸有限公司 基于离子束抛光的光学零件基底修形方法

Similar Documents

Publication Publication Date Title
US4583822A (en) Quintic refractive index profile antireflection coatings
JPS6218881B2 (zh)
CN109852930B (zh) 一种补偿中口径介质膜平面反射镜镀膜形变的方法
CN112095083A (zh) 一种低面形光学薄膜的制备方法
CN107132603B (zh) 一种从紫外到短波红外的宽光谱低偏振灵敏度分色片
CN109991691B (zh) 一种三波段激光增透膜及其制备方法
JP4692486B2 (ja) 光学フィルタおよび光学フィルタの製造方法
US20140347735A1 (en) Etalon and method for producing etalon
US4966437A (en) Fault-tolerant anti-reflective coatings
CN112444901A (zh) 具有嵌入式有机基团的光学器件
CN112817070B (zh) 一种平面光学元件的面形修正方法
JPH08234004A (ja) 金属ミラーおよびその製造方法
CN114252939B (zh) 一种兼具截止和减反特性的金属结构超表面红外光学膜
US6262847B1 (en) Optical element, method for producing optical element, and optical system having the optical element
CN105629355A (zh) 一种介质金属膜堆的低偏振灵敏度分色膜的制作方法
CN109298503B (zh) 高精度光学波长参考标准具
Goury et al. Design and realization of multispectral bandpass filters for space applications
RU2778680C1 (ru) Оптическое зеркало
JP2000266907A (ja) 樹脂接合型光学素子
JP2002372602A (ja) 反射防止膜、およびそれを用いた光学素子
CN114815130B (zh) 基于离子束的光学薄膜元件的面形控制方法
CN116518856A (zh) 通过分光光度计测出透过率计算镀膜膜层厚度的方法
JP4924311B2 (ja) 成膜装置、およびそれを用いた成膜方法
JPH03185402A (ja) 光周波数フイルタ
Begou et al. Stress analysis in thin films: towards perfectly compensated mirrors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201218