CN112094866B - Method for preparing CD163 gene editing pig by using SpRY-Cas9 system - Google Patents

Method for preparing CD163 gene editing pig by using SpRY-Cas9 system Download PDF

Info

Publication number
CN112094866B
CN112094866B CN202011243301.9A CN202011243301A CN112094866B CN 112094866 B CN112094866 B CN 112094866B CN 202011243301 A CN202011243301 A CN 202011243301A CN 112094866 B CN112094866 B CN 112094866B
Authority
CN
China
Prior art keywords
pig
gene
spry
sequence
cas9
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011243301.9A
Other languages
Chinese (zh)
Other versions
CN112094866A (en
Inventor
沈秋平
李垲
孙照霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Shounong Future Biotechnology Co Ltd
Original Assignee
Beijing Shounong Future Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Shounong Future Biotechnology Co Ltd filed Critical Beijing Shounong Future Biotechnology Co Ltd
Priority to CN202011243301.9A priority Critical patent/CN112094866B/en
Publication of CN112094866A publication Critical patent/CN112094866A/en
Application granted granted Critical
Publication of CN112094866B publication Critical patent/CN112094866B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/108Swine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated

Abstract

The invention discloses a method for preparing a CD163 gene editing pig by using a SpRY-Cas9 system. The invention provides a method for preparing CD163 biallelic gene mutant cells, which is to carry out gene editing on CD163 genes of pig in vitro fibroblast genomes, so that GTCGAGGGAATGA at the 226 th and 238 th sites of the third exon of one chromosome of the biallelic gene CD163 is deleted, GTCGAGGGAAT at the 226 th and 236 th sites of the third exon of the other chromosome is deleted, and other nucleotide sequences are not changed, thus obtaining the CD163 biallelic gene mutant cells; the CD163 double allele knockout pig prepared by the cell has the capability of resisting the PRRSV, which shows that the method for preparing the CD163 double allele knockout pig can obtain the PRRSV virus resisting pig.

Description

Method for preparing CD163 gene editing pig by using SpRY-Cas9 system
Technical Field
The invention belongs to the technical field of biology, and relates to a method for preparing a CD163 gene editing pig by using a SpRY-Cas9 system.
Background
Porcine Reproductive and Respiratory Syndrome (PRRS) is a global, highly contagious, and highly dangerous viral disease of swine with clinically varying symptoms in pigs of all ages, but primarily resulting in late abortions, stillbirths, and mummification of pregnant sows and respiratory disease in piglets, with high mortality, significant economic losses to the swine industry worldwide, e.g., PRRS incurs a total of $ 6.64 billion per year in the united states, a 15 billion euro loss in europe, and a loss of perhaps 70 billion RMB in china.
The disease first developed in the united states in 1987, and then rapidly spread to the world in 1990-1992. The causative agent is Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), which is mainly of two types I and II. PRRSV is a single-stranded positive sense RNA virus that is a member of the order of the nested virus (Nidovirales), the family of arterividae (arterividae), the genus of Arterivirus (Arterivirus), has a genome of 15kb in length, and contains 11 open reading frames in total. It was found that the only natural host for PRRSV is a pig, which can infect differentiated blood mononuclear cells and porcine alveolar macrophages in the pig. Calvert et al found CD163 by screening a cDNA library constructed from porcine alveolar macrophages for genes susceptible to PRRSV, and CD163 was expressed only in the monocyte/macrophage lineage. Scientists then expressed CD163 in several non-susceptible PRRSV cell lines, which became susceptible to PRRSV, and the ability of PPRSV to infect these cell lines was positively correlated with the amount of CD163 expression, indicating that it is an important receptor for mediating PRRSV infection.
With the recent development of genome editing technology (especially CRISPR/Cas 9) and the discovery of the important role of CD163 gene in PRRSV infection, it is possible to improve the breed of large animals by using the gene editing technology. The first world CD163 knockout pig was prepared by Randall S. Prather group of university of Missouri and Genus, UK, by the cooperation of CRISPR/Cas9 technology in combination with either prokaryotic injection or somatic cloning technology. Subsequently in 2016, they performed challenge experiments to demonstrate that CD163 knockout pigs are resistant to type II PRRSV, with related results published in Nature biotechnology journal. The topic group of Wuzhenhuang professor at national south China agricultural university in 2017 also successfully prepares the CD163 gene knockout pig resisting the domestic HF-PRRSV by using the CRISPR/Cas9 technology in combination with the cell cloning technology. The Randall s, Prather project group produced CD163 knockout pigs and E7 exon replacement pigs in 2018 with the british plus company. In the same year, CD163 gene knockout pigs were successfully prepared by using CRISPR/Cas9 technology in combination with cell cloning technology in professor Liquai, Beijing animal husbandry and veterinary institute of Chinese academy of agricultural sciences. However, although the CD163 gene knockout can resist different types of PRRSV, since the CD163 protein has other important biological functions such as clearing hemoglobin, erythrocyte adhesion receptor, immunoregulatory factor, etc. in plasma besides mediating PRRSV infection, the CD163 gene knockout may affect other functions of pigs, and if only the SRCR5 functional domain of the protein encoded by the CD163 gene is deleted, the PRRSV virus infection is prevented, and other functional domains of the protein encoded by the CD163 gene are retained, so that the gene editing pigs can resist PRRSV, and other physiological functions of pigs can not be affected. In 2017, Bruce A. Whitelaw subject group and British Genus company cooperate to successfully prepare the 7 th exon deleted pig of the first CD163 gene in the world, the positive pig cell level resists the PRRSV viruses I and II, and the important functions of normal hemoglobin clearance of CD163 and the like are kept. The pig with the CD163 gene E7 exon accurately replaced and deleted is successfully prepared by using a CRISPR/Cas 9-mediated homologous recombination technology and a somatic cell cloning technology by Huxiaxiang professor of China agricultural university in 2019. A pig with a deletion of the E7 exon part of the CD163 gene was prepared by using CRISPR/Cas9 technology in combination with cell cloning technology by the assistant professor of Ohio university in Zhongshan of the same year.
However, this technique has mainly 2 defects at present: firstly, the off-target phenomenon exists, and the off-target effect is greatly reduced by methods such as upgraded nickase version dCas9, high-fidelity Cas9, dCas9-forkI, gRNA modification and the like. Second, the limitations of PAM make it difficult for researchers to freely design and edit candidate gene regions. For example, it is advantageous to design a gene knock-out to hope to knock out a target gene, and at the same time, to make the target gene encode a small number of AA, so as to study the residual protein in vivo. For example, the introduction of knock-out near ATG results in only a few AA for the gene of interest, security certificate declaration for commercialization, and the like.
The Benjamin P. Kleinstimer subject group successfully prepared the SpRY-Cas9 technology without PAM limitation aiming at optimizing the technical defects in 2020 and successfully verified in HEK 293T cells.
Disclosure of Invention
It is an object of the present invention to provide a method for preparing a CD163 biallelic mutant cell.
The method provided by the invention is to carry out gene editing on the CD163 gene of the porcine in vitro fibroblast genome, so that GTCGAGGGAATGA at the 226-238 th site of the third exon of one chromosome of the biallelic gene CD163 is deleted, GTCGAGGGAAT at the 226-236 th site of the third exon of the other chromosome is deleted, and other nucleotide sequences are not changed, thus obtaining the CD163 biallelic gene mutant cell;
the nucleotide sequence of the third exon (E3 exon) is sequence 2.
In the method, the gene editing is carried out by adopting a SpRY-Cas9 system;
the SpRY-Cas9 system includes Cas9 protein and sgRNA;
the target sequence of the sgRNA is 1 st-20 th of the sequence 3;
the cas9 protein is a protein coded by nucleotides from 20 th to 4204 th in the sequence 6.
In the above method, the SpRY-Cas9 system is 1) or 2) as follows:
1) consisting of the following 1) -A and 1) -B):
1) -a is said cas9 protein or mRNA thereof or a recombinant vector expressing the protein;
1) -B is the sgRNA; the nucleotide sequence of the sgRNA is sequence 3 or sequence 8 in the sequence table;
2) a vector for expressing the cas9 protein and the sgRNA.
In the method, the gene editing is to introduce the cas9 protein mRNA and the sgRNA into the in vitro pig fibroblast cell line to obtain the CD163 double-allele mutant cell.
Another objective of the invention is to provide a method for preparing a CD163 double allele mutant pig.
According to the method provided by the invention, the CD163 double allele mutant cell prepared by the first objective method is transplanted into a sow body through a somatic cell nucleus, and the produced offspring is the CD163 double allele mutant pig.
The 3 rd object of the invention is to provide a method for preparing pigs resisting the porcine reproductive and respiratory syndrome virus.
The method provided by the invention is 1) or 2):
1) transplanting the CD163 double allele mutant cell prepared by the 1 st purpose into a sow through somatic cell nucleus to produce a filial generation, namely a CD163 double allele mutant pig, namely a pig resisting the porcine reproductive and respiratory syndrome virus;
2) and (3) carrying out propagation expansion on the CD163 double-allele mutation pig to obtain the pig resisting the porcine reproductive and respiratory syndrome virus.
It is still another object of the present invention to provide a CD163 biallelic mutant gene.
The CD163 biallelic mutant gene provided by the invention is obtained by deleting GTCGAGGGAATGA at position 226-238 of the third exon of one chromosome of the biallelic gene CD163, deleting GTCGAGGGAAT at position 226-236 of the third exon of the other chromosome and keeping other nucleotide sequences unchanged;
the nucleotide sequence of the E3 exon is sequence 2.
It is still another object of the present invention to provide a biological product for preparing pigs resistant to porcine reproductive and respiratory syndrome virus.
The biological product provided by the invention is a biological product with unchanged other nucleotide sequences, wherein GTCGAGGGAATGA at the 226-238 th site of the third exon of one chromosome of the biallelic gene CD163 in a pig genome is deleted, GTCGAGGGAAT at the 226-236 th site of the third exon of the other chromosome is deleted;
the nucleotide sequence of the third exon is sequence 2.
In embodiments of the invention, the biologic is the SpRY-Cas9 system described in the methods above.
The application of the method in preparing the porcine reproductive and respiratory syndrome virus resistant pigs is also within the protection scope of the invention;
the application of the biological product in preparing the porcine reproductive and respiratory syndrome virus resistant pigs is also within the protection scope of the invention;
or, the application of the biological product in breeding pigs resisting the porcine reproductive and respiratory syndrome virus is also within the protection scope of the invention.
The pig is especially white pig.
The SpRY-Cas9 system includes a Cas9 protein and an sgRNA that includes a binding region that binds a target sequence and a binding region that binds a Cas9 protein.
The mRNA of cas9 protein is RNA transcribed from the nucleotide sequence consisting of the 20 th to 4204 th positions in SEQ ID No. 6, and the protein is encoded by the nucleotides consisting of the 20 th to 4204 th positions in SEQ ID No. 6.
The invention has the following advantages:
1) mutation of E3 exon region of CD163 Gene
Mutations to the existing Cas9 technology are all CD163 gene E7 exons, but mutations to the E7 exon result in a CD163 gene that is too long to produce a truncated protein of unknown function, which is not known to have a potential risk for either functioning of the PRRSV virus or having an effect on the host in vivo. The inventor successfully carries out frame-shift deletion mutation on the E3 exon region of the CD163 gene by using the latest SpRY-Cas9 technology for the first time to cause AA termination, so that the protein translation is terminated in advance to achieve the purpose of gene knockout, and the CD163 gene editing pig is successfully prepared.
2) Transfection with mRNA
The possibility that an exogenous SpRY-Cas9 plasmid is integrated into a receptor genome exists when SpRY-Cas9 plasmid is used for preparing a gene editing animal, so that mRNA of SpRY-Cas9 is used for transfection, the problem is avoided, the biological safety problem caused by screening of marker genes is avoided, then a screening marker-free gene editing method is used, CD163 double-allele mutation positive cell clone without exogenous DNA integration is finally obtained, 13bp deletion and 11bp deletion mutation of CD163 gene third exons on two chromosomes cause frameshift mutation, AA is caused to terminate in advance, and the purpose of CD163 gene knockout is achieved. The positive cells are subjected to somatic cloning to prepare the CD163 gene knockout pig with accurate editing. Experiments demonstrated that CD163 protein is not present in the PAM cells of this pig.
The invention firstly establishes a method for successfully preparing a CD163 knock-out pig by using a novel Cas9 technology without PAM sequence restriction to cause frame shift mutation immediately after ATG of a gene, and specifically knocking out the gene in the region near an E3 exon ATG of the CD163 gene. This method not only results in gene knock-out, but also leaves little AA in the target gene. The method greatly improves the operability and the universality of target gene editing of designers, and simultaneously can ensure that the target gene codes small protein and then degrades, so that the residual protein of the target gene does not influence the functions of animals. The invention provides important technical support for improving the freedom and the universality of gene editing and gene knockout design of pigs.
The CD163 double allele knockout pig obtained by the invention has the capability of resisting PRRSV virus, which shows that the method for preparing the CD163 double allele knockout pig can obtain the PRRSV virus resisting pig, the obtained CD163 double allele knockout pig can be used as a disease resisting pig for propagation expansion, somatic cell nucleus transplantation propagation of the ear-like somatic cell of the CD163 double allele knockout pig can be also used, and the CD163 double allele pig fibroblast mutant can be also used for the somatic cell nucleus transplantation propagation of the disease resisting pig.
Drawings
FIG. 1 is a technical scheme of the present invention.
Figure 2 is a CD163 specific SpRY-Cas9 efficiency validation.
FIG. 3 is a TA clone sequencing alignment analysis of CD163 specific SpRY-Cas9-sgRNA 1.
FIG. 4 shows the sequencing results and phenotype of CD163 double allele knock-out pigs.
FIG. 5 shows the result of Western blot detection of CD163 double allele knockout porcine PAMs.
FIG. 6 shows the detection of the relative expression of viral RNA in PAMs under different challenge doses of PRRSV.
Figure 7 is the results of virus titer detection in PAMs at different challenge doses of PRRSV.
Detailed Description
The following examples are given to facilitate a better understanding of the invention, but do not limit the invention.
The experimental procedures in the following examples are conventional unless otherwise specified.
The test materials used in the following examples were purchased from a conventional biochemical reagent store unless otherwise specified.
The quantitative tests in the following examples, all set up three replicates and the results averaged.
pCMV-SpRY-2A-EGFP vector: addgen, Cat number: #139989, the vector comprises a Cas9 protein expression unit.
The SpRY-Cas9 system includes a Cas9 protein and an sgRNA that includes a binding region that binds a target sequence and a binding region that binds a Cas9 protein.
The mRNA of cas9 protein is RNA transcribed from the nucleotide sequence consisting of the 20 th to 4204 th positions in SEQ ID No. 6, and the protein is encoded by the nucleotides consisting of the 20 th to 4204 th positions in SEQ ID No. 6.
Example 1 preparation of CD163 Diallelic mutant cell line Using the SpRY-Cas9 System
This example utilizes the SpRY-Cas9 system to prepare a CD163 biallelic mutant cell line. Considering the later industrialization and avoiding the biosafety problem, the invention does not use a screening marker gene and simultaneously uses mRNA of Cas9 protein, thus preparing a CD163 biallelic gene mutant cell line without exogenous DNA integration, and the technical route is shown in figure 1.
Substances for CD163 biallelic mutation
1. Expression vector SpRY-sgRNA
In this study, the exon 3 region of the CD163 gene was selected as the targeting site, the sequence of the CD163 gene is shown in SEQ ID NO. 1, and the sequence of exon 3 (E3 exon) is shown in SEQ ID NO. 2.
3 gRNAs were designed whose recognition sequences (target sequences of sgRNAs) were: gRNA-1: ATGTTTCTTGTCGAGGGAAT, respectively; gRNA-2: GATGGATCATGTTTCTTGTC; gRNA-3: GATCATGTTTCTTGTCGAGG are provided.
Synthesizing single-stranded oligonucleotides according to the designed sequences respectively by the following method:
gRNA-F1: CACCGATGTTTCTTGTCGAGGGAAT
gRNA-R1: AAACATTCCCTCGACAAGAAACATC
gRNA-F2: CACCGGATGGATCATGTTTCTTGTC
gRNA-R2: AAACGACAAGAAACATGATCCATCC
gRNA-F3: CACCGGATCATGTTTCTTGTCGAGG
gRNA-R3: AAACCCTCGACAAGAAACATGATCC
annealing each of the gRNAs-F and the gRNA-R to obtain a double-stranded DNA fragment gRNA1 with a sticky end, a double-stranded DNA fragment gRNA2 with a sticky end and a double-stranded DNA fragment gRNA3 with a sticky end;
the pCMV-SpRY-2A-EGFP (purchased from Addgene, which contains a Cas9 protein expression unit) vector was purifiedBbsI, carrying out enzyme digestion to recover fragments, and respectively connecting the double-stranded DNA fragment gRNA1 with the cohesive end, the double-stranded DNA fragment gRNA2 with the cohesive end and the double-stranded DNA fragment gRNA3 with the cohesive end into the recovered fragments to obtain SpRY-sgRNA1, SpRY-sgRNA2 and SpRY-sgRNA 3.
The expression vector SpRY-sgRNA1 of SpRY-Cas9 is a recombinant plasmidInserting double-stranded DNA fragment gRNA1 with cohesive end into pCMV-SpRY-2A-EGFP vectorBbsI, obtaining plasmids between enzyme cutting sites; the gRNA1 is fused with the cas9 protein binding region on the vector to co-express sgRNA1 for targeting the target sequence and binding the cas9 protein for cleavage of the target region. The plasmid contains a sgRNA1 encoding gene (the sequence is shown in sequence 3, wherein, the 1 st to 20 th nucleotides are binding regions of a target region, and the 21 st to 100 th nucleotides are binding regions of cas9 protein), and the sgRNA1 is expressed.
SpRY-Cas9 expression vector SpRY-sgRNA2 is formed by inserting double-stranded DNA fragment gRNA2 with cohesive ends into pCMV-SpRY-2A-EGFP vectorBbsI, obtaining plasmids between enzyme cutting sites; the gRNA2 co-expresses sgRNA2 with the cas9 protein binding region on the vector for targeting to a target sequence and binding to cas9 protein for cleavage of the target region. The plasmid contains a sgRNA2 encoding gene (the sequence is shown in sequence 4, wherein, the 1 st to 20 th nucleotides are binding regions of a target region, and the 21 st to 100 th nucleotides are binding regions of cas9 protein), and the sgRNA2 is expressed.
SpRY-Cas9 expression vector SpRY-sgRNA3 is formed by inserting double-stranded DNA fragment gRNA3 with cohesive ends into pCMV-SpRY-2A-EGFP vectorBbsI, obtaining plasmids between enzyme cutting sites; the gRNA3 co-expresses sgRNA3 with the cas9 protein binding region on the vector for targeting to a target sequence and binding to cas9 protein for cleavage of the target region. The plasmid contains a sgRNA3 encoding gene (the sequence is shown in sequence 5, wherein, the 1 st to 20 th nucleotides are a target region binding region, and the 21 st to 100 th nucleotides are a region binding with cas9 protein), and the sgRNA3 is expressed.
The SpRY-Cas9 system comprises Cas9 protein and sgRNA, in the embodiment, the SpRY-Cas9 system is a vector for expressing Cas9 protein and sgRNA, and specifically can be a SpRY-Cas9 expression vector SpRY-sgRNA1, a SpRY-Cas9 expression vector SpRY-sgRNA2 or a SpRY-Cas9 expression vector SpRY-sgRNA 3.
2. Cutting efficiency verification
Cas9 mediates gene knock-out in mammalian cells, mainly by base deletion or base insertion of a small fragment formed by DNA double strand break, and this small fragment genetic modification can be detected by T7E1 cleavage. The basic principle is as follows: when the acting target is subjected to double-strand break, the cell can start a DNA repair mechanism to repair the acting target, so that various types of base deletion or insertion mutant types are generated. After a target sequence is amplified by PCR, due to deletion or insertion of partial bases, DNA bubbles can be generated by gradient annealing of different molecules through PCR, T7E1 can specifically identify the bubble positions and cut, and therefore whether cas9 can mediate gene knockout at a target site or not can be identified.
1) Designing PCR amplification primers aiming at recognition and editing position positions of SpRY-Cas9
PCR amplification primers F: 5 'AACATTTCTCAAATCTGG 3' and R: 5 'TTTCATGTAGAAGTAGAAGGT 3' were designed.
2) Preparation of pig fibroblast cell line
Removing hair from ear skin tissue of large white pig, cleaning with 70% (v/v) ethanol water solution, and picking with blade with area of 1cm2The skin was transported to the laboratory as soon as possible in DMEM/F12 medium at 0 deg.C, washed several times with PBS buffer and 70% (v/v) alcohol in water and chopped to 1mm3The left and right small blocks were washed with DMEM medium for 2 times and then planted in batches in 1mL DMEM medium flasks (25 cm in specification) containing 10% (v/v) FBS2) After the tissue blocks adhere firmly, the DMEM medium containing 10% (v/v) FBS is supplemented to 6mL, the temperature is 37 ℃, and the CO content is 5 percent2Culturing in an incubator for 6-7 days, changing the culture solution every 2 days for 1 time, digesting and passaging for 2-3 times by 0.25% trypsin after the cells grow and converge, and freezing and storing by using a DMEM culture medium containing 20% (v/v) FBS and 10% (v/v) DMSO in batches to obtain the in vitro pig fibroblast line.
3) SpRY-Cas9 electrically transfected pig fibroblasts
(1) 2d before electrotransfer, 2X 105The porcine fibroblast cell line obtained in 2) above was recovered in a 6-well plate culture dish and 4ml of DMEM medium (purchased from Gibco) containing 10% (volume percent) Fetal Bovine Serum (FBS) was added. Placing at 37 ℃ and 5% CO2Culturing in an incubator.
(2) After the 6-well plate cells were full, about 1X 106Cells were lysed with 1ml of 0.25% trypsin (from Gibco)Cells were liquid digested. The cells were pelleted by centrifugation at 1000g for 5 min. The cell pellet was washed 1 time with PBS buffer (purchased from Gibco). The cells were resuspended in 100. mu.L of shock buffer (purchased from LOZA, Inc.) to obtain a cell suspension.
(3) Mu.g of the expression vectors SpRY-sgRNA1, SpRY-sgRNA2 and SpRY-sgRNA3 prepared in the above 1 were added to 100. mu.L of the cell suspension obtained in the above (2), respectively, and the mixture was transferred to an electric shock cup (purchased from LOZA).
(4) Cells were shocked with an electric field strength of 1.2KV/cm and a pulse time of 1 ms.
(5) Transferring the cells after electric shock into a cell culture dish with the thickness of 60 mm; adding 4ml DMEM culture solution containing 10% (volume percentage) fetal calf serum into CO2Culturing in an incubator, recovering the growth state of the cells, and respectively obtaining SpRY-sgRNA 1-transferred pig fibroblasts, SpRY-sgRNA 2-transferred pig fibroblasts and SpRY-sgRNA 3-transferred pig fibroblasts.
4) PCR amplification
Separately extracting genome DNA of the SpRY-sgRNA 1-transferred pig fibroblast 48h after the electrotransformation obtained in the step 3), SpRY-sgRNA 2-transferred pig fibroblast, SpRY-sgRNA 3-transferred pig fibroblast and the isolated pig fibroblast line (WT) prepared in the step 2).
Using genome DNA as a template, and using F and R designed and synthesized in the step 1) as primers to perform PCR amplification to obtain a PCR product.
5) Gradient annealing of PCR products
And (3) performing column purification and recovery on the PCR product obtained in the step 3), determining the concentration of the PCR product, and performing gradient annealing on the PCR product to obtain a gradient annealed PCR product.
The system of the gradient annealing is shown in the following table 1:
TABLE 1 gradient annealing system
System of 20 μL
PCR product
400 ng
Taq Buffer (purchased from health as century) 2.0 μL
ddH2O Make up to 20. mu.L system
The gradient annealing procedure is shown in table 2:
table 2 shows the PCR product gradient annealing procedure
Temperature of Time Ramp
95°C 10min -2°C
95°C-85°C 1 min -0.3°C
85°C-75°C 1 min -0.3°C
75°C-65°C 1 min -0.3°C
65°C-55°C 1 min -0.3°C
55°C-45°C 1 min -0.3°C
45°C-35°C 1 min -0.3°C
35°C-25°C 1 min -0.3°C
4°C Hold
6) The gradient annealed PCR product obtained in 5) above was subjected to T7E1 digestion, as shown in table 3 below:
table 3 shows the digestion system
System of 25 μL
Gradient annealed PCR products 20 μL
Buffer 2.1(NEB) 2.5 μL
T7E1(NEB) 0.5 μL
ddH2O Make up to 25 μ L system
Reaction procedure: carrying out the enzyme digestion reaction shown in the table 3 in a constant temperature incubator at 37 ℃ for 1 h to obtain an enzyme digestion product.
Carrying out polyacrylamide gel (PAGE) electrophoresis detection on the enzyme digestion product, adopting 8% polyacrylamide gel, and after electrophoresis is finished, dyeing the PAGE gel by EB; and (3) carrying out gray level analysis on the enzyme digestion band through ImageJ software to preliminarily determine the SpRY-Cas9 cleavage efficiency.
The cutting efficiency is the strength ratio of the PCR main strip and the cut strip.
The upper panel of FIG. 2 shows the editing position of the gene.
The result of the cleavage efficiency test is shown in the lower graph of fig. 2, the percentage indicates the cleavage efficiency, WT is a pig fibroblast cell line (WT), SpRY-sgRNA1, SpRY-sgRNA2, SpRY-sgRNA3 correspond to a SpRY-sgRNA 1-transformed pig fibroblast, a SpRY-sgRNA 2-transformed pig fibroblast and a SpRY-sgRNA 3-transformed pig fibroblast, respectively; the results show that in the fibroblast of pig, the three grnas have recognition and cleavage activities aiming at the SpRY-Cas9 system corresponding to the three grnas 1, 2 and 3 of the CD163 locus, and the cleavage efficiencies are 20.1%, 13% and 15% respectively through analysis of biological gray scale analysis software.
In order to further determine that the mutation edited by the SpRY-Cas9 system is in the target region, SpRY-sgRNA1 transgenic pig fibroblasts with higher activity are mutextracted, genome DNA is used as a template, F and R primers are used for amplification, and the obtained PCR product is recovered and subjected to T-A clone sequencing.
The sequencing result is compared with the exon 3 (sequence 2) sequence of the wild CD163 gene, and the expected mutation of the sgRNA1 at the target site is confirmed (figure 3), so that the sgRNA1 can be an advantageous tool for mediating the mutation of the target gene, and the target sequence corresponding to the sgRNA1 is selected as a recognition region in subsequent experiments.
Second, preparation of CD163 double-allele mutant cell line by using SpRY-Cas9
Preparation of Cas9 protein mRNA in vitro transcription SpRY-Cas9
1. Room temperature configured in vitro transcription mRNA system 4
The pCMV-SpRY-2A-EGFP vector is used as a template, and T7-Cas9-F: ttaatacgactcactatagGGAGAATGGACTATAAGGACCACGAC and T7-Cas9-R: GCGAGCTCTAGGAATTCTTAC are used as primers for amplification to obtain a PCR product, namely a Cas9 encoding gene containing a T7 promoter (sequence 6, wherein the 20 th to 4204 th sequence 6 is a Cas9 encoding gene).
In vitro transcribed mRNA systems were prepared as shown in table 4; and then, after completely mixing the in vitro transcription mRNA system, incubating for 1 h at 37 ℃, adding 1 mu L of TURBO DNase into the reaction system, and incubating for 15min at 37 ℃ to obtain a reaction product.
TABLE 4 in vitro transcribed mRNA systems
Components Volume of
PCR product 1μL(0.1-1μg)
2×NTP/CAP 10μL
10×Buffer 2μL
RNA synthetase 2μL
ddH2O Make up to 20 mu L
All of the above reagents were obtained from MEGAscript T7 Transcription Kit, Ambion, cat # SEQ ID NO: AM 1333.
2. Taking the reaction product obtained in the step 1, configuring an in vitro transcription mRNA and polyA system (table 5), mixing completely, and incubating at 37 ℃ for 1 h to obtain the reaction product.
Table 5 shows the addition of polyA
Components Volume of
Reaction product of step 1 20μL
5×E-PAP Buffer 20μL
MnCl2(25mM) 10μL
ATP(10mM) 10μL
E-PAP 4μL
ddH2O 36μL
Total of 100μL
All from Poly (A) labeling Kit, Ambion, cat # K: AM 1350.
3. In vitro transcription of mRNA purification by column chromatography
(1) And (3) adding 350 mu L of binding buffer into the reaction product obtained in the step (2), blowing, sucking and uniformly mixing, transferring the sample into a column, and centrifuging at 10000g for 1min at room temperature.
(2) Discarding the filtrate, re-packing the column, rinsing the column with 500 μ L of eluent, centrifuging at 10000g at room temperature for 1min, and repeatedly rinsing once; the filtrate was discarded and centrifuged on an empty column for 15 s.
(3) The column was placed in a new centrifuge tube, 50. mu.L of the eluate was added to the center of the column, a lid was covered and incubated at 60 ℃ for 10min, 10000g was centrifuged at room temperature for 1min, and the supernatant was collected to obtain a Cas9 mRNA solution (concentration: 2. mu.g/. mu.L, in which the nucleotide sequence of Cas9 mRNA was the sequence obtained by substituting t of SEQ ID NO: 6 from 20 to 4204 with U).
Both the reagents and the column were from clear ­ Transcription clear-Up Kit, Ambion, cat #: AM 1908.
(II) preparation of in vitro transcription sgRNA
1. Artificially synthesized sgRNA1 in vitro transcription template
The SpRY-sgRNA1 vector is used as a template, T7-sgRNA-F: ttaatacgactcactatagggcaggactactcacactccg and T7-sgRNA-R: AAAAGCACCGACTCGGTGCC are used as primers for amplification, and a PCR product is obtained, namely a sequence containing a sgRNA1 encoding gene, wherein the nucleotide sequence is sequence 7, the 1 st to 20 th positions from the 5' end are a T7 promoter, the 19 th position is a transcription initiation site, the 21 st to 40 th positions are target sequences, and the 41 th to 120 th positions are binding regions of Cas9 protein in SpRY-Cas 9.
2. Taking the sequence containing the sgRNA1 encoding gene obtained in step 1, configuring an in vitro transcription system (table 6), and incubating at 37 ℃ for 2 h.
TABLE 6 in vitro transcription System
Components Volume of
Template shown in sequence 7 8 μL(2μg)
2×ATP/CTP/UTP/GTP 2/2/2/2μL
10×Reaction Buffer 2 μL
Enzyme Mix
2 μL
Total of 20 μL
The above reagents were all from MEGASHORTScript T7 Transcription Kit, AM1354, Ambion.
3. After completion of step 2, 1. mu.L of TURBO DNase (AM 1354, Ambion) was added to the reaction and incubated at 37 ℃ for 15 min.
4. After the step 3 is completed, 2 times of volume of absolute ethyl alcohol is added to precipitate the transcription product, the transcription product is kept stand at the temperature of minus 20 ℃ for 30min, the transcription product is centrifuged at 13000 rpm for 30min, the supernatant is discarded, and the precipitate is taken.
5. And (3) fully washing the precipitate obtained in the step (4) by using 75% (v/v) ethanol water solution, removing supernatant, fully drying by using an ultra clean bench, fully dissolving the sgRNA1 by using clean-free water to obtain a sgRNA1 solution (the concentration is 5 mu g/mu L, the sequence of the sgRNA1 is a sequence 8, and the 20 th-120 th nucleotide of the sequence 7 is transcribed to obtain a sequence).
All of the above reagents were obtained from MEGASHORTCRIPT-T7 Transcription Kit, Ambion, cat #: AM 1354.
(III), SpRY-Cas9 mRNA transfection
(1) 2 days before transfection, the isolated porcine fibroblast cell line obtained in step one, 2, was trypsinized into single cells and 1X 10 cells were added6Individual pig fibroblasts were transferred to a culture flask (100 mL size) and 4mL of DMEM medium (both from Gibco) containing 10% (v/v) fetal pig serum was added at 37 deg.C and 5% CO2Culturing to logarithmic growth phase.
(2) After completion of step (1), porcine fibroblasts in logarithmic growth phase were taken, digested with 1ml of 0.25% trypsin (purchased from Gibco), and then centrifuged at 1000g for 5min, and the pellet was collected.
(3) After completion of step (2), the pellet was taken, washed 1 time with PBS buffer (from Gibco) and then resuspended with 100. mu.L of shock solution (from Loza, VPI 1002) to give a cell suspension.
(4) Taking cell suspension (containing 1X 10)6Individual cells), the SpRY-Cas9 mRNA solution obtained in the step (one) (making 4 μ g of SpRY-Cas9 mRNA in the transfection system) and the sgRNA1 solution obtained in the step (two) (making 4 μ g of sgRNA1 in the transfection system) were thoroughly mixed in the cell suspension, and then transferred into an electric shock cup for electric shock (electric field strength 1.2KV/cm, pulse time 1 ms).
(5) After the step (4) is completed, the cells after electric shock are transferred into a culture bottle (the specification is 100 mL), 4mL of DMEM culture solution containing 10% (v/v) fetal pig serum is added, the temperature is 37 ℃, and 5% CO is added2After 2 days of culture, transfected cells were obtained.
(IV) preparation of single cell clone by infinite dilution method and genotype identification
(1) And (3) culturing the transfected cells obtained in the step (three) until the fusion rate reaches 80-90%, digesting the transfected cells by using 0.1% pancreatin at 37 ℃, stopping digestion by using a DMEM medium containing 10% (v/v) FBS, and centrifuging to collect the cells.
(2) The cells were resuspended in a DMEM medium containing 20% (v/v) FBS, a portion of the cells were counted, and the cells were diluted to 100 cells/mL to obtain a cell suspension. To 20 dishes to which 9mL of 20% (v/v) FBS-containing DMEM medium had been added, 1mL of each cell suspension was added at 37 ℃ with 5% CO2And culturing under saturated humidity condition.
(3) When the cell clone in the culture dish grows to be more than 2mm in diameter, removing the culture medium, washing with DPBS, covering the clone cluster with a clone ring, dripping about 100 mu L of 0.1% pancreatin at 37 ℃ into the clone cluster, digesting for about 3min, dripping DMEM culture medium containing 20% (v/v) FBS to stop digestion, slightly blowing and then transferring the cell clone into a 48-well plate for culture expansion.
(4) When the cell fusion rate in the 48-well plate reaches 90%, half of the cells are taken for cell clone genotype identification after digestion, and the rest half are continuously cultured in the well plate.
(5) Centrifuging the cells for genotype identification at 1000g for 5min, discarding the supernatant, and adding 10-20 μ L cell lysate (50 Mm KCL, 2.5mM Mgcl) according to the cell precipitation210mM Tris-HCl, 0.45% NP40, 0.45% Tween 20 and 0.2mg/mL proteinase K).
(6) And 3 mu.L of cell lysate is taken as a template for PCR identification, and a primer pair consisting of a primer P1 and a primer P2 (which is designed and synthesized according to the porcine CD163 gene) is used for PCR amplification.
Primer P1: 5'-AACATTTCTCAAATCTGG-3', respectively;
primer P2: 5'-TTTCATGTAGAAGTAGAAGGT-3' are provided.
The reaction system was 20. mu.L, consisting of 1.0. mu.L of DNA template, 0.4. mu.L of primer P1 (10. mu.M), 0.4. mu.L of primer P2 (10. mu.M), 0.4. mu.L of dNTP, 0.3. mu.L of LA DNA polymerase, 2.0. mu.L of 10 XPCR Buffer, and 15.5. mu.L of ddH 2O.
Reaction procedure: 5min at 94 ℃; 30s at 94 ℃, 30s at 52 ℃,1min at 72 ℃ and 35 cycles; preserving at 72 deg.C for 5min and 4 deg.C.
A714 bp band was obtained.
And purifying and sequencing the PCR amplification product. And connecting the PCR product to a pMD-19t plasmid vector, transforming the competence of escherichia coli, selecting a plurality of single colonies (single cell clones) for sequencing, comparing the sequencing result with a3 rd exon (E3, sequence 2) of a wild type CD163 gene to obtain detailed mutation information, and determining whether the cell line is mutated or not and the mutation type.
The results are as follows:
of 39 single cell clones, 15 were single allele mutated, 3 were biallelic mutated: one cloning point is deleted at-6 bp/-19bp, one cloning point is deleted at-3 bp/-9 bp, and in the two cloning points, the mutation deletion type is the multiple of 3, so the frame shift mutation can not be formed, and the protein function deletion is caused; only one biallelic gene is deleted and premature amino acid termination due to the formation of frameshift mutations eventually leads to loss of protein function. The type of the biallelic gene mutation is biallelic gene-11/-13 bp deletion, the gene in the mutation form is named as CD163 biallelic mutant gene, and the cell containing the mutant gene is named as CD163 biallelic pig fibroblast mutant.
The CD163 biallelic mutant gene is the GTCGAGGGAATGA deletion at the position 226 and 238 of the third exon (sequence 2) of one chromosome of the biallelic gene of CD163, the GTCGAGGGAAT deletion at the position 226 and 236 of the third exon (sequence 2) of the other chromosome, and other nucleotide sequences are not changed.
Since the two strands of the allele of the CD163 biallelic mutant gene are deleted at the third exon-11/-13 bp, respectively, compared with the wild-type CD163 gene, the first exon before and the exon sequence after the deletion region are not changed, but due to deletion, the terminator appears in advance, so that the CD163 is terminated in advance, and the protein function is lost.
Example 2 preparation of CD163 Dual allele knockout pigs
Preparation of CD163 double allele knockout pig
1. The CD163 biallelic pig fibroblast mutant obtained in example 1 in the logarithmic growth phase was taken and digested with 0.25% trypsin for 5min to obtain single cells, which became donor cells in the subsequent operations.
2. Collecting ovaries of adult white pigs from slaughter houses, cleaning for three times in PBS (phosphate buffer solution) at 37 ℃, then extracting follicles with the diameter of 2-8mm by using a needle with the diameter of 0.7mm, recovering cumulus-oocyte-complex (COCs) with uniform shape and compact structure, washing for two times by using maturation liquid (M199+10% FBS +0.01U/mL bFSH +0.01U/mL bLH +1 mu g/mL estradiol), then putting the cumulus-oocyte-complex into a four-well plate containing the maturation liquid at 50-60/well, and cleaning for three times at 38.5 ℃ with 5% CO2After the mature culture in the incubator for 18-20h, placing the mature oocyte into a tube of 0.1% hyaluronidase, oscillating for 2-3min, and lightly blowing and beating with a glass tube to completely separate the cumulus cell from the oocyte, and selecting the oocyte with complete shape, uniform cytoplasm and discharged first polar body as a cytoplasmic receptor (enucleated oocyte).
Transferring the oocyte with the first polar body into an operation liquid consisting of M199+10% (v/v) FBS +7.5 mug/mL cytochalasin B, cutting a small opening on the upper part of the polar body by using a glass needle under a 200-fold microscope, sucking chromosomes in the first polar body and the oocyte under the first polar body by using a glass tube with the inner diameter of 20 mug, washing the first polar body and the oocyte for three times by using M199 liquid containing 20% (v/v) FBS, and then placing the first polar body and the oocyte in an incubator for later use.
3. Transferring the donor cell obtained in the step 1 into the transparent band of the enucleated oocyte obtained in the step 2, firstly placing the donor cell into Zimmerman liquid (100 mL Zimmerman liquid is composed of 0.9854g of cane sugar, 10.7mg of magnesium acetate tetrahydrate, 1.8mg of calcium acetate monohydrate, 7.4mg of dipotassium hydrogen phosphate, 3.1mg of reduced glutathione, 1.0mg of porcine serum albumin and water) for balancing for 3min, then placing the donor cell into a fusion tank to rotate the oocyte to enable the donor cell to be in contact with the enucleated oocyte prepared in the step 2 and to be vertical to an electric field, and simultaneously placing the donor cell in a direct current pulse field with the field intensity of 2.5kV/cm, under the conditions of pulse duration of 10. mu.s, pulse frequency of 2 times, and pulse interval of 1s (the fusion apparatus is a product of BTX, model number of ECM-2001), the cells were rapidly transferred to M199 solution (a product of Gibco) containing 10% (v/v) FBS, and cultured at 37 ℃ with 5% CO2 for 30min to obtain reconstituted embryos.
3. Taking the reconstructed embryo obtained in the step 2, adding CR1aa culture solution (100 mL of CR1aa culture solution is composed of 0.67g of sodium chloride, 0.023g of potassium chloride, 0.22g of sodium bicarbonate, 2mg of sodium pyruvate, 100 mul of phenol red and water) of calcium ionophore A23178 with the concentration of 5 mul, and treating for 5 min; discarding the liquid phase, adding CR1aa culture solution containing 5 μ g/mL cytochalasin B and 10 μ g/mL cycloheximide, and treating for 5h (for activating recombinant embryo); discarding the liquid phase, adding CR1aa culture solution containing 5% (v/v) FBS, culturing at 37 deg.C and 5% CO2 for 48h, observing cleavage rate, and observing blastocyst development rate (about 80%) in 7-8 days to obtain transgenic cloned blastocysts.
4. The morphologically superior transgenic cloned blastocysts cultured for 7 days in step 3 were transferred into the uterine horn of a contemporary recipient sow (3 co-transplanted recipient sows). The recipient sows were subjected to B-ultrasonic examination at 30d after transplantation to determine the conception, and the pregnancy rate was 66.7%.
5. The pregnant sows are fed according to a conventional feeding method, and after 90 days, the pregnant sows give normal delivery to obtain somatic cell cloned pigs (namely CD163 double allele knockout pigs, wherein the number of normal survival piglets is #190910 pigs).
Detection of molecular level of II, CD163 double allele knockout pig
The genomic DNA of the ear tissues of the pigs to be tested (# 190910 pigs and wild white pigs) is extracted by adopting a blood and tissue genomic kit (QIAGEN company), and is used as a template, and a primer pair consisting of a primer P1 and a primer P2 (a primer P1: 5'-AACATTTCTCAAATCTGG-3'; a primer P2: 5'-TTTCATGTAGAAGTAGAAGGT-3') is adopted for PCR amplification, so that a PCR amplification product is obtained. And purifying and sequencing the PCR amplification product.
Sequencing results show that the genotype of the wild white pig (namely, the non-transgenic pig) based on the CD163 gene is wild type (CD 163 +/+), and the genotype of the #190910 pig based on the CD163 gene is CD163 biallelic mutant genotype (CD 163-/-).
The CD163 biallelic mutant genotype is characterized in that GTCGAGGGAATGA at the position 226 and 238 of the third exon (sequence 2) of one chromosome of the biallelic gene (sequence 1) of the wild type CD163 is deleted, GTCGAGGGAAT at the position 226 and 236 of the third exon (sequence 2) of the other chromosome is deleted, and other nucleotide sequences are not changed. This type of mutation causes premature termination of transcription and translation of mRNA of the CD163 gene, and thus loss of function of the CD163 protein.
The sequencing alignment results are shown in FIG. 4.
#190910 pig survived normally and developed normally to age 2, as shown in the phenotypic plot of FIG. 4.
Analysis of CD163 protein expression in PAMs (platelet-derived markers) cells of three-CD 163 double-allele knockout pigs
1. Establishment of PAMs
The CD163 double allele knockout pig (# 190910) obtained in the previous step was selected as a material source for establishing a CD163Mut/Mut Alveolar Macrophage System (PAMs), and wild type white pigs of the same day age, sex and breed were selected as a material source for establishing a WT alveolar macrophage system.
The preparation process of primary PAMs was as follows:
(1) anaesthetizing the pig, bleeding the carotid artery to die, opening the chest cavity by an operation, clamping the trachea by a hemostatic forceps to isolate the interior of the lung from the outside air, cutting off the trachea from the near-head end, taking out the whole lung, wrapping the lung by sterilized tin foil paper, and paying attention to no contamination of bacteria;
(2) transferring the lung to a clean bench, injecting HBSS buffer solution (Gibco) into the lung via trachea, kneading the lung, pouring out the injected liquid, and irrigating for 5-8 times;
(3) subpackaging the collected lavage liquid into 50 mL centrifuge tubes, centrifuging for 10min at 300 g, and discarding the supernatant;
(4) washing the collected cell sediment once by using HBSS buffer solution, then washing once by using RPMI-1640 culture solution (Gibco), and centrifuging again to collect the cell sediment;
(5) resuspending the cells with PAMs (platelet activating proteins) freezing medium (containing 90% FBS by volume percentage and 10% DMSO by volume percentage), freezing the cells in a gradient cooling mode, and finally storing in liquid nitrogen;
(6) when PAMs are resuscitated, the procedures for cell resuscitation are basically carried out according to the procedures for cell resuscitation, and the DMEM growth culture medium is only required to be replaced by RPMI1640 growth culture medium to obtain CD163Mut/Mut PAMs (CD 163 PAMs) and WT PAMs.
2. CD163 protein expression in PAMs cells
1) And extracting total protein from the CD163Mut/Mut PAMs (CD 163 PAMs) and WT PAMs obtained in 1 above.
2) And respectively taking the total protein obtained in the step 1) and carrying out Western blot. CD163 protein was detected using CD163 Antibody (product of AbD Serotec) as a primary Antibody and goat Antibody (product of China fir Jinqiao) as a secondary Antibody.
The results are shown in FIG. 5, and the total protein of the CD163 double allele knockout pig has no expression of CD163 protein, and the PAMs cells produced by the CD163 double allele knockout pig have no CD163 protein.
The results show that the porcine PAMs produced by the disruption of the CD163 gene in the CD163 double-allele knockout pig do not contain the CD163 protein. The swine individual is suggested to have the characteristic of resisting the porcine reproductive and respiratory syndrome virus.
anti-PRRSV infection analysis of CD163 double allele knockout pigs
1. Establishment of PAMs
The same procedure as for 1 of three gave CD163Mut/Mut PAMs (CD 163 PAMs) and WT PAMs.
2. Counteracting toxic substances
The PAMs obtained in 1 above were cultured in RPMI1640 medium containing 10% FBS and 4 Xdouble antibody by volume. After the cells are attached to the wall, the shape of the cells can be observed to be circular, and pseudopodia can be observed in part of the cells;
foreign PRRSV highly pathogenic strains typeII, NVSL97-7895 (Gene-edited pigs area protected from bacterial production and respiratory syndrome virus) were selected for in vitro infection CD163Mut/Mut PAMs and WT PAMs challenge tests, the former being referred to as experimental group and the latter as control group. All conditions were the same for both groups except that the source of PAMs used was different. Four different challenge doses were selected for each of the two groups of cells, with MOI = 0.005, MOI = 0.025, MOI = 0.1, and MOI = 0.25. Each group of cells was subjected to three replicates at each challenge dose, and a negative control was also run without added virus. And simultaneously thawing the cells of the experimental group and the cells of the control group, and simultaneously performing a toxicity counteracting test after culturing for 24 hours. Supernatant virus fluid and cells were collected 36 h post infection.
3. Detection of
The cells obtained in 2 above were lysed by TRIzol (Invitrogen) and used for total RNA extraction (QIAGEN RNeasy Mini Kit). The relative expression of viral RNA in Q-PCR cells was used.
cDNA obtained by reverse transcription (Thermo) of the obtained RNA is used as a template, and the relative expression quantity of the virus RNA in the collected cells is detected by utilizing fluorescent quantitative PCR. ORF7 of PRRSV is used as a detection target sequence, an upstream primer is ORF7-F (5 'AATAACAACGGCAAGCAGCA 3'), a downstream primer is ORF7-R (5 'GCACAGTATGATGCGTCGGC 3'), and a pig GAPDH-F (5 'GTCGGTTGTGGATCTGACCT 3') and a GAPDH-R (5 'GTCCTCAGTGTAGCCCAGGA 3') are used as internal reference primers. The Q-PCR reaction system is shown in Table 7 below:
table 7 shows the Q-PCR reaction system
System of 20 μL
cDNA 1.0 μL
Forward primer (10 μM) 1.0 μL
Reverse primer (10 μM) 1.0 μL
2 × SYBR green master mix (from Roche) 10.0 μL
DEPC water 7.0 μL
The reaction procedure was as follows: 95 ℃ for 10min, 95 ℃ for 15s,60 ℃ for 1min, 40cycles, 95 ℃ for 15s,60 ℃ for 15s;
the results are shown in fig. 6, the relative expression quantity of the viral RNA between two groups of PAMs is obviously different under four challenge doses of foreign PRRSV highly pathogenic strains NVSL 97-7895.
4. Determination of viral titer by TCID50 method
a. Selecting 1 PAMs which grow vigorously after 24-48 h culture, subculturing into 96-well cell culture plate, and counting with cell counting plate before plating to make about 2 × 10 cells in each well of 96-well plate4And (4) respectively. Then culturing in a cell culture box for 12-24 h, and preparing for virus inoculation when the cells grow to 80-90% confluence;
b. 8 1.5 mL centrifuge tubes were prepared, 900. mu.L DMEM maintenance medium (containing 2% FBS and 1% diabody) was added to each tube, and 100. mu.L of virus stock (foreign PRRSV highly pathogenic strain typEII: NVSL 97-7895) was diluted 10-fold in a gradient (from 10 to 10)-1Diluting to 10-8 );
c. The culture medium in the 96-well plate was aspirated, washed once with PBS, and then inoculated. Starting with the highest dilution of virus solution, virus was inoculated from high to low, 8 wells were inoculated for each gradient of virus. Meanwhile, only adding a maintenance culture medium into cells with at least 5 holes, and not adding virus liquid to serve as negative control of no virus infection;
d. culturing the culture plate in a 37 ℃ and 5% CO2 incubator, observing the pathological state of the cells every day and recording, wherein the process generally needs 4-5 days;
e. after 4-5 days, the number of wells for each gradient of cytopathic effect was counted and TCID50 was calculated.
The results are shown in FIG. 7, the virus titers of the foreign PRRSV highly pathogenic strain NVSL97-7895 in the supernatants of the two groups of PAMs reach very significant difference (P < 0.001) under four challenge doses. The results show that the CD163 gene modified porcine PAMs have strong resistance to PRRSV virus under different challenge doses.
Therefore, the method proves that the CD163 double allele knockout pig obtained by the invention has the capability of resisting the PRRSV virus, and the method for preparing the CD163 double allele knockout pig can obtain the PRRSV virus resisting pig, the obtained CD163 double allele knockout pig can be used as a disease resisting pig for propagation, the somatic cell nucleus of the ear sample of the CD163 double allele knockout pig can be used for propagation of the disease resisting pig by somatic cell nuclear transplantation, and the CD163 double allele pig fibroblast mutant can be used for propagation of the disease resisting pig by somatic cell nuclear transplantation.
SEQUENCE LISTING
<110> Beijing first agricultural future Biotechnology Ltd
<120> method for preparing CD163 gene editing pig by using SpRY-Cas9 system
<160> 8
<170> PatentIn version 3.5
<210> 1
<211> 32457
<212> DNA
<213> Artificial sequence
<400> 1
attcttagtg gttctcttct tcaggagaac atttctaggt aataatacaa gaagatttaa 60
atggcataaa accttggaat ggacaaactc agaatggtgc tacatgaaaa ctctggatct 120
gcaggtaaaa tcttctcatt tattctatat ttacctttta atagagtgta gcaatattcc 180
gacagtcaat caatctgatt taatagtgat tggcatctgg agaagaagta acagggaaaa 240
ggcaataagc ttataagggg aacttttatc ttccatagaa tcaaaattga agacgtgact 300
agaagaagga ttagatttgg catcagtttt gtaaaattgc tgaggtgaaa ttaagtaagg 360
gatgaaaatt aactaaattg tgttgagtat gaaactagta gttgttagaa aagatagaac 420
atgaaggaat gaatattgat tgaaagttga tgacctagag gacatttaga ctaacacctc 480
tgagtgtcaa agtctaattt atgatttaca tcgatgcgtt aaactcattt aacattctta 540
cttttttccc ctcaagcatt taagctgaag tataacattt cacatgaaag cctggattat 600
aaatgcacag ttcagtgacc tatctcagag gagtgactgc catagcattt tttttgtctt 660
tttgccttca gagccacagc aacgcgggat ccgaagccgc gtctgcgacc cacaccacag 720
ctcacggcaa tgccggatct ttaacccact gagcgaggcc ggggatcgaa cccgcagtct 780
catggttcct agtaggattc gttaaccact gcgccacgac gggaactcct accatagcat 840
ttttactttt aagttactgt tggtttagag taagaaggag aaatgagagt gatggagcgt 900
ttgctatatt tggagacaag gtcctatatt ggaggttctc aaatataaat tttgtcgctt 960
tttcctccaa tgtattgttc aactactatt tagcaggcca ctgtgccagg tactggtgaa 1020
actggtgaac atgatagatg taattcattc cctcatggaa ctttccatct aacaatgtgg 1080
atcaggtagg cttggagatg agaatgccag tggttgacta tgactctgtg gctgaaggga 1140
gagctactca cttcgtagtt tcatcaatgt ctttttggtt ttccaggttt taagccctgc 1200
tcttgcaatt cttttccctt ctccaacttt cttctaattt ctcaccccta ggatgcctat 1260
aaacatgagt attttcaaag ctacttcact gaggttatat gatcctcgtg tgaatttttc 1320
ctgcctgcct tgccatttag aaggaagtgt ttcctggaat ttccattgtg gcttggtggt 1380
taaagaccct gcattgtctc tgtgaggatg tgggttcaat ctctggcctc attcagtgag 1440
tgggttaagg atctggtgtc gctgcaagct gtggctaaga tcccacattg ccatggctgt 1500
ggtgtagact ggcacctgga gctctgattt gaccacaatc ctaggaactt cagatgttgc 1560
cataaaaaga aaaaaaaagt taggaagggt tttctgtctt gttttgacct ttgttaatct 1620
caaacctttg gaaccatctc tcctccaaaa cctcctttgg gtaagactgt atgtttgccc 1680
tctctcttct tttcgcagac tttagaagat gttctgccca tttaagttcc ttcacttttg 1740
ctgtagtcgc tgttctcagt gcctgcttgg tcactagttc tcttggtgag tactttgaca 1800
aatttacttg taacctagcc cactgtgaca agaaacactg aaaagcaaat aattctcctg 1860
aagtctagat agcatctaaa aacatgcttc atggtttcaa aggatcagat attaaaaacc 1920
ccaaataggt acagaaccat gtggctctct ccccccaaac aaataaaacg ttagcatggt 1980
tttcaaaaaa ataaaataac cttcacagga aaaatggatt ttacttaaga tttgaaataa 2040
tatctaacta aaaaataggg aataatgcag aagaggagaa acctcagaat tgttgggatg 2100
aaggaatttt tagtaacact aaaaattcaa gtgccaaaat ttgtctaaaa ttgtattcag 2160
ggaagccaga tatatatcag tgaaatcgcc agttcctata ttagctaaaa taatcacaag 2220
gctgtagcag agacagttca gagagaggtg gagatgagat tttttttttt taagtataat 2280
tgatttacaa tgttgtggca atttctgttg tatagcaaga gatagaatta ttttatggtg 2340
gaagataata gaaaaatata tccatatcaa tttccatttg agtagataaa tttcaattag 2400
agttcaacta gcaattagta gttttgcata catggtgaaa tatattcatg gtattttgca 2460
tatatgtgtg aaataggtac taaattcctc ataactgttc tttttagtct caccatcagc 2520
ctctactgat cttaggattt tggagaaaca tacatagttc atccctataa aatgccataa 2580
aatctcattt ttacattaaa ccatccaaga gattatataa attgacctta taaagaatat 2640
cagccataaa ataaaggtat catagtatgg gattatttag ctttattggt tctatgtcac 2700
tgcttaattt gaaacctgtg atattgctgt ttgtttttga actcctatga aataacattc 2760
tcccattgta ccatggatgg gtccagaaac atttctcaaa tctggctttg aaaaataaat 2820
aagtaatcta aagaataata attctctact tgctctttga atcttgacca attgctgcat 2880
ttacctattg ttacaggagg aaaagacaag gagctgaggc taacgggtgg tgaaaacaag 2940
tgctctggaa gagtggaggt gaaagtgcag gaggagtggg gaactgtgtg taataatggc 3000
tgggacatgg atgtggtctc tgttgtttgt aggcagctgg gatgtccaac tgctatcaaa 3060
gccactggat gggctaattt tagtgcaggt tctggacgca tttggatgga tcatgtttct 3120
tgtcgaggga atgagtcagc tctctgggac tgcaaacatg atggatgggg aaagcataac 3180
tgtactcacc aacaggatgc tggagtaacc tgctcaggta agacatacac aaataagtca 3240
agcctataca tgaaatgctt tgtgggaaaa aatgtataga tgagttaaaa acaaaaagga 3300
accagttttc tataagtcat ctagtccatg tataaaatta cccaatccat tactaaaaga 3360
ccacttctgg tattttacac atgacaaagc ccatattaaa aaaaaaaaat tcagaagaga 3420
ttctgaatgc tataataaat gagcaagtga ctagcttcaa ttttatatta ggtcattcta 3480
ccttctactt ctacatgaaa atatcataat gtctaagtta attccttgtc ccctttccca 3540
ataaagcact gctttcatgc actggcctat gaatcatgaa ctttttgccc tttaactgat 3600
gatcaactta ccaaatcaag aaataaatat tcttagcact gatccttttt tgttgttgtt 3660
ggaggaagaa tgttttgcaa agtagaattg cttttttctg tttaacagtg ctattcattt 3720
catttacatg gtcgttttaa tttataaaac atttcataag tttcacctca tatgccctta 3780
caataactca ggaagttata tgttagacct ttctgctgac aaatcccaga gtcatgtttc 3840
tgacccagtt cagattcctt ggcttcccat ttctctttgc tcatgtcatt gacctttatg 3900
cagccctctt acctcccacc tttctattac agaccatctc ctccatagga ctggtgttag 3960
aaagtactaa tctctaccca ggcattgtgg tgcaatgtgg gcagcacagg ctggtatcta 4020
gaaaaatgct gaagtgaatt ccagctcagc tgctcgttaa tactattgtt ttaagtaagc 4080
tgttcaatcc tttgaaattc actttctgag cactcagtga tataataaat gtagagttac 4140
tggtacactg tctggtatgt aataggtgtt aaaaattaac cttagtttcc tcatgggtca 4200
ctgcttctca ttacctagac aactcatttc tctttcttcc tctttctctt tctccattct 4260
cctcctcctt cttcctcttc ttcttgtctt ttattgttat tcattttgct gagaaagtta 4320
agaaataaca actctaacct ctacatcgac cacctagagc aaagttaaaa ataataataa 4380
accttgccag actcttacta taattgttgc tgtctataga gttgactgtt taagttaaga 4440
catcagtata gtatttttaa tttttgtgtt ttttttttca tacttttaca tgaggatcct 4500
ttatataagg atgagttaaa caaacttgat ttttgaagtt tatacccctg aggctcaact 4560
gcataataat agaaagggat ccatagcctc tcaaggactt aactagtttc atgagttttc 4620
agaatctgaa tttctgagat tctccacccc aattaaagct caagcctcag aacatatatc 4680
cttctcttgg taaattctat tcttatcaca tgcgtaataa taaaaaagag agatgttgga 4740
gacagatttt tttcctcaca ttctgtctct actgttttct aggtgtttga ttctgtgtta 4800
tttaacctca gtttgcttat ctgtgaagta gggattatgg taataacata taatgcttaa 4860
tgttgtaaag actaaagaag atagcatatg taacacattt ggaacaggga atgcatattt 4920
tgattgtgag ctcttattat tattaccaat cagccataat aaaaatcttg ttaagtggag 4980
gtctttggat ttcagagctt ttaaaatcta attacttttt caaaaaagag cttcttagtg 5040
tttttttttt ttaaccacaa agtgtttcta ttttttaggt gtcccaaaat ttcattccaa 5100
atatcttttt ctcagatatt ttagtcctca tagaacacct agggatagtg tatagagaaa 5160
attttcttta ttaaaaagct gttctttgct aaaaattgta gcaggtactt ttgggagggg 5220
ggaaaacttt gattcagaaa ctgctaagac atggagtgtt ttgactaatt tttcctcaat 5280
ttttaatgtt ttttatacca tagggtactt ttgcaaacta ttatgcatac ttatatattt 5340
ttactttttt cctgtctttt aacttccaaa ttcaacttca gacaattatt catgcactaa 5400
actgttgtag taagaaagat taaaattaaa aaattaacca ttcaacaaat gactggtttg 5460
ccatttttac tactttgttg tatgaacaat ttttttttct acaaatgaat actttgagtc 5520
tgatttatcc attcctacat aaaagttttt actatatctt agtattggaa ggaaacaaaa 5580
caaaacacaa tgtaaatttt aatctataaa ttttgggggg gggtaaatat acatagatga 5640
aagtcttaac cattaattag agtcaaaaga ttaaaattct ccaatatgtg aacttaggct 5700
gcatccaaaa tgaagcatca tttttaagga cagcatcaaa agtgaccaga ggaattttac 5760
tttctttctt tttttttttt ttttgaattt tagtttctaa actcacttct gaataaatac 5820
aacttctaaa ttctcgtctt ttctctactc tagatggatc tgatttagag atgaggctgg 5880
tgaatggagg aaaccggtgc ttaggaagaa tagaagtcaa atttcaagga cggtggggaa 5940
cagtgtgtga tgataacttc aacataaatc atgcttctgt ggtttgtaaa caacttgaat 6000
gtggaagtgc tgtcagtttc tctggttcag ctaattttgg agaaggttct ggaccaatct 6060
ggtttgatga tcttgtatgc aatggaaatg agtcagctct ctggaactgc aaacatgaag 6120
gatggggaaa gcacaattgc gatcatgctg aggatgctgg agtgatttgc ttaagtaagg 6180
actgacctgg gtttgttctg ttctccatga gagggcaaaa aaaggggagt aaaagtctta 6240
aaagctcaaa ctgttaaaaa cataatgatg attgcttctt ttatcatctt attattatct 6300
aatttcaggt cgaaattcta gtacctgtgc agttttttac cttaactgaa attaagataa 6360
ataggatagg gaggaaggat gagcagtgac atttaggtcc aagtcatgag gttagaagga 6420
aatgttcaga gaatagccca ttccctcagc cctcaaagaa agaaagaaag aaaaagaaaa 6480
aaaaaaagaa agcttaacta gaaaattttg ttctctggat gttttagagg caaaccatcc 6540
cttttatcat tccttaccta caaagccctt ctctttaatc acattgaccc accctttcct 6600
aaactattag ttcaaattca cataattgaa tgcttttaaa acttggtttc ctcttataat 6660
tatatttatg ttgtaaggag gcactgtgtc ttgtctagag actttcatgt tctatgcttg 6720
attatgggac agggacatgg ctttgtctgc tccaggatgt cactctcctt ttttcacttg 6780
agctcctagt ttgaagaaga cctagtaagt cttgaactcc agggagtctt taggaaacta 6840
tccctagagc aaaactgtcc ctgaattcac ccagtgtctt tttttttttt ttcaaatgaa 6900
ggaactttag ttcaaactaa atttaaaata agggaattct aattcagaat actgggaaat 6960
ccaggagatt acaattggct tcatgtgtga ttggattcag cacttcacca atgtcatcag 7020
ggttctggtt ctttttttat ttcttgaatt ggcttttttt tttttttcct tgttgaacaa 7080
tatgactatc tatactttga accacaaaga aagtgattcc tacagaaaag acagaatgtg 7140
ttagctgaag gaagggaatg ggacttgggg tagaaaaaaa caccttccgt attccttaac 7200
ctatcaaaaa tttctaggta cccctaacta aaatcctaat tcaagcatat tggaggaact 7260
tgacaaatcc aggaataata ttatccgtta tcaaatacat gcacatcatt tacatttctc 7320
catgtctctg ctcatgcagt tcccggccct aactctacca aagtattact ctccatctcc 7380
ctcttttttt ttttaatgat ttttattttt tctgttatga ctggtttaca gtgttctgtc 7440
aattttctac tgtacagcaa agtgacccag tcacacattc atatatacat tctttttctc 7500
acattatcct ccatcaggct ccatcacaag tgactagaca tagttcccag agctatgcag 7560
caggatctca ttgctgctcc attccaaagg caacagttca catctattaa ccccagattc 7620
ccagtccacc ccactccctt cccctccctc ttggcaacca caagtctgtt ctccaagttc 7680
atgagtttat tttctgtgga aagttttatt tgtgcagtat gttagattcc agatataagt 7740
gctatcatat ggtatttgtc cttctctttc tgactgactt cacaaagtat gagagtctct 7800
agttccatcc atgttactgc aaatggcatt attaatctcc atcttttttt gttcatgtat 7860
atgttaccca gattccttga cttttctaca tcatcaagat attgttgatc acttctttgt 7920
agtgatttct gcccttctct gatgtcctgt gacactagtc tggattattc atttacctga 7980
aaccacatgt ctcttataat gtgtatccca aattaaatat gtctattgta atgtgtatcc 8040
caaattaaat atttatcttt ctaaaaaaaa aaatttctag gcccccaatc agcatgtttc 8100
ttctcagtgt gttttataca tgctgcagaa tcataataga cagcataata gacagcataa 8160
caaaaactaa aaatgccagg ggaaaaaagc aatttactga ttacaacata ttactcagaa 8220
tcaagttctg ttctttgagg aatattgatt gggggaaaat gaaaataatg atggggaggt 8280
cccttttctc tttgctttgc ttttaaacta cggaagtagt cagaaagggg tcaggaatgt 8340
aatataaacc aggtagtcct ggtaggtaac gcagccggag gcaaaagtga gtgttgagta 8400
ttgaggcaaa ctggagggca tggataccac ctagacagat gcaaatatat atttaacagg 8460
gaaaaaagaa ccaaacaatt tcaacaaaaa accaaacaat tccaacaaaa ttggtccaat 8520
aagcaaacct ctagataaat ttcagtccct ggatgttttg ttaggaactc ttcctacaat 8580
gcgtgctttc cattctgaaa agtcctatct acttgcctga tccacttctc cttccatcct 8640
aaacgatttt cagtggtagt atattactgt tgtctctgtc tctacttata tatcttcccc 8700
ttttcactca ctcctctcag gtacagctct tcagtttgcc cttattcttg tttccttgtc 8760
aatgacttgt tttgtgtccc tcttacagat ggagcagacc tgaaactgag agtggtagat 8820
ggagtcactg aatgttcagg aagattggaa gtgaaattcc aaggagaatg gggaacaatc 8880
tgtgatgatg gctgggatag tgatgatgcc gctgtggcat gtaagcaact gggatgtcca 8940
actgctgtca ctgccattgg tcgagttaac gccagtgagg gaactggaca catttggctt 9000
gacagtgttt cttgccatgg acacgagtct gctctctggc agtgtagaca ccatgaatgg 9060
ggaaagcatt attgcaatca taatgaagat gctggtgtga catgttctgg taagtgaaaa 9120
caaaacaccg gaaggacctg tgttcttcag gattaggaat ggatatgaga taggagaaaa 9180
attgtatcta atattttctt tgttgggaat tcttttacag ttgtgacaaa tctttaacat 9240
attcttcatt tgagtagttt ggagggttgt ctgactgttt tctataataa atgtcccaag 9300
tgctatgagg taccacattt caaattctaa ttctacctga agctccaaaa agacaaaatg 9360
ttataggtct tttctttata tctaatttgc ttatggtttt tagccattga caattttttt 9420
tttcttaact cttgaaacta taatcctatt tctaaccaaa ttcatgttct atactggctc 9480
ttcaaaaacc caggagatgg gaaagccaga atctccagtg tttcagcttc tgggaaggag 9540
caagttttta aatgtgggag ctaaattcca catgtatcta tggcctaagt gtatgtttat 9600
tttgcagatg gatcagatct ggaactgaga cttaaaggtg gaggcagcca ctgtgctggg 9660
acagtggagg tggaaattca gaaactggta ggaaaagtgt gtgatagaag ctggggactg 9720
aaagaagctg atgtggtttg caggcagctg ggatgtggat ctgcactcaa aacatcatat 9780
caagtttatt ccaaaaccaa ggcaacaaac acatggctgt ttgtaagcag ctgtaatgga 9840
aatgaaactt ctctttggga ctgcaagaat tggcagtggg gtggacttag ttgtgatcac 9900
tatgacgaag ccaaaattac ctgctcaggt aagaatttca atcaatgtgt taggaaattg 9960
cattctactt tcttttacat gtagctgtcc agttttccca gcaccacttg ttgaagagac 10020
tgtcttttct tcatcatata gtcctacatc ctttgtcata aattaattga ccataggtgt 10080
gtgggtttat atctgggctc tctattctgt tcctttgatc tatgtgtctg tttttatgcc 10140
agcaccatgc tgttttgatt actatagctt tgtagtatca tctgaagtca ggaaacatga 10200
ttcctccagc tttgttcttc tttctcaaga ttgttttgtc tattcagagt tttatgttcc 10260
tatgcagatt ttatttttat ttttatttta tttttatttt ttttattttc ccactgtacg 10320
gcaagggggt caggttatcc ttacatgtat acattacaat tacagttttt cccccaccct 10380
ttcttctgtt gcaacatcaa gggcagggac cgaacccgca acctcatggt tcctagtcgg 10440
attcgttaac cactgcgcca tgacgggaac tccctattat ttttattttc taatttgttc 10500
atgtggtgta tcacactgat ttatttgcag atgtgcatcc attcatgtat cccacttgat 10560
cgtggtgtgt aatcttttta gtgtattagt gaatttggtt gctagtattt tgtttgagga 10620
tttttgcata tacattcatc agcggtattg gattttaaat cttttgtatg tgtcttgttt 10680
tggtatcagg gtatcctcta gggtatcctc ctagaatgag ttcagaaggg tacatttctt 10740
tggggaatat atttggtaga attcactttt gaagctgtct ggtcctgttc ttttgtttgt 10800
cgggaagttc tttttaaatt attattatta ctgattcaat ttcattactg gtaattggac 10860
catttatatt ttcttttttt tcctggttca atcttgggag attgtatgtt ttaaaaattt 10920
gtccagttct tctaggttgt tcattttatt ggaatgtaat tgtttgttta tctttttttt 10980
tgcattttct agggccgcac ccatggcata tggaagttcc caggctaggg gtctaatcgg 11040
aactgtagcc actggcctac cccagagcca cagcaacgtg ggatctgagc cgcatcttcg 11100
acctatacca cagctcacaa caatgcggga tccttaaccc actgagcaag gccagggatt 11160
gaacctgcaa cctcatggtt cctagttgga ttagttaacc actgagccac gacgggaact 11220
ccaatggtat gtaattgttt atagtgatct cttatgagtc tttatttttc tgtagtaatc 11280
ataacttctc ttatttcatt ttgatcttat tgacttgagc cctctgtttt tttcttagtg 11340
actctagcta aaggtttatc aattttgttc atttttttca aggatctggc tcttaatttc 11400
attcaacttt tctatttatt ttagtctcta tttcatttac ttctgttcag atttttatga 11460
tttctttctt tctactaagt tcagttttgg tttgttcttt tctatttcct ttaagtgtaa 11520
ggttatgttg tttatttgag atttttgttt cttgaggaaa caggcttgca tatttgtaaa 11580
cttccctctt agaatagttt ttcttaagtt ccatagtttt ttttttttat tttgtggttt 11640
ttatttttcc attatagttc atttacagtg ttctgccaat tcctactata tagcaaagtg 11700
acccagtcat atatatatat atatatatat atatatatat atgtatatat gtatatatac 11760
acatacatat acacattatc ctccatcatg ttccatcaca agtgactgga tacagttccc 11820
tgtgctatat agcaggatct cattgcttat ccactccaaa tgtaatagtt tgcatctatt 11880
aaccccagat gtcccataga tttggaattg tgtttttgtt ttcattcgta ttcaggtttt 11940
ttttaatttc ctctttgatt tcttcagtaa tccatttgtt gcttagtaat atattgttta 12000
gcctctgcgt gtttgtggtt tgttgcaatt ttcttcttgt agttgatttc tagtctcttt 12060
gtgttgtagt tggaaaagat gtatgatatg atttcaactt tcctaaattt accaaggctt 12120
gttttgtggc ctagcatgtg atatatcctg aagaatgttc catgtgcaca tgaaaaaaat 12180
gaatattctg ctgctttcaa atggaatgct ctctctattt caattatgtc catctctaat 12240
gttttgggaa catgttcttt tgctacctca ttttgcctaa tttgctgttt tgggttctaa 12300
atatctggta ggttggttac attttccaac cttggacaaa taaccttttg ttgaaacatc 12360
ctgtgcttcc cagcagcact ctcctctctg gtcaccagag ctatatgttc caggggtgcc 12420
cccctatgct gactttgtga gaacttcttt tgcagttggc tgactactgt aggtggtctt 12480
gtaggcatgg ctggccccca gtctggttgt ttgcaagaag ctgccttgta caaaggctgc 12540
cagtcacttg ttggtgggac tgggtcatgg ggtggctggc tatagagacc agggttgtct 12600
caggggtagt gctgtctcat ttgtgggttt agccacgttt tgcagtgggt gattgtggtt 12660
ccagggttcc tagatctagt gtcagcttgt gggtactggg gtccccagct gcagggccta 12720
ggagcttcag agctagagct aacctcctgg tgggtagact gtgtcctgac aaggcaggtt 12780
gtagtgttac agtgatcctg gggctagtat ctatccactg gggggtaaga cttgtcccag 12840
ggctagcacc agctctctgg tgggtagatc taggtcctgg aggttctggc tgcagggcca 12900
gggatccagg agctggtgtt gactggttgg tggacagggc caaggcccag agtgtcccca 12960
ggctagatct acttcagtga tgggtggatc taggtcctgt atttctggct acagggctct 13020
gggatcccag agttggtatg tcagtcaact gacatacagg gctggaggca gagagtcctg 13080
aggctggtgc ctgcccactg gtgggtggag ctgggattca gggtctctga ctgaagtgcc 13140
ctggggatcc ctgggctagt gctggcccac tggtgtgtgt ttggttgggt cctggccatt 13200
ctggtagaca gggccatatt cccatattcc agggtggctg taggctcagg gaatctcaag 13260
gcaacctact gctggttaga ggagtgtgtg gggaggtgct atgtccctgt ccagtttgtt 13320
gcttggcatg aagcatccca gtactggtgc caacaggcta attagtgggt ctgggtcctg 13380
gtgctaataa gctagaggga agattcaaaa atgacatttt tttaacacca gtgtccttgt 13440
ggtaaaatga actccccaga atggctacca ccagtgtcta tgtccccatg gtgaattcta 13500
attgctcctg tctcttgaag tggctctcca agatcaacag gtgggtctga tctaagctcc 13560
tttcaaatta ctgcttctgc cctgggtccc agaacatgtg agattttgtg tgtcctttaa 13620
gagtggagtc tctatttccc actgctctct ggttctcccc aaagtaagcc ctgctggctt 13680
tcaaaacttc tgggagcttg ccttcttggt ataggactcc tgggctaggg agtctaatgt 13740
ttggcttaga ccccttactg cttgggaaga atctctgcaa ctgtaatgaa ttatcttcct 13800
atttgtgggt tgctgaggat atggtcttaa ctgttctgtg ttctacccct cctatccatc 13860
ttgttgtggt tccttcttta tatctttagt tgtagaaaag tttttcttat caacagttgc 13920
tctgtaaatt gtaacttggg tgtacaccta gtaggaggtg agctcagggt cttcctactc 13980
tgccatcttg gccatgtcct ctaaacattt tggtgtattt cactgcaacc tttttaaaaa 14040
tctcaaaagt gagctgtgat tggctagtct tgtggataat ctctagcatt tgatgctaat 14100
catatttata caaatacttt gttgaaaagt gatgcctttt taactattat taaaaaacgt 14160
attgacataa ctattgctat tatactgaaa agaaagacct tagagaaaat agcataagag 14220
caaaaccatt aaacatggag acatctagtc atagggtgga aattttatgt ggtgcatatc 14280
ccctaaccag tggctttaca ccaggcacat cctaactaag atctgctccc aagtgtcttc 14340
cctgatgctt taaattgtgt tacatggaaa ctatcctttg atgaagaaat gcaacctttt 14400
aaaatacaac attgaaactt ttgtgcttta attttgcttt tcaacatttt ttctttttaa 14460
aagaagaaat ttatttgttt ttttaaattt taatggccac ggcatatgga agttctcagg 14520
ccagggatag aattcaagcc acaggtgcga cccatgccac aactgctgca acaccagatc 14580
ctttaaccca ctgcaccagg ccagggattg aagccttgcc ttactgacaa tctgagccac 14640
ttcagtcaga taaagaaatt tcttcattaa gcagagtatt cacatggttt aaacttcaaa 14700
atattaaagt gtaaactctt tccccaccac tgtccccagc tcaccaactc tacttaccac 14760
agacaactga tgtggttagg gtatttaaat agtaaatcca agaaaatata aacaaatccg 14820
tatatatagg tttcacccca ttttattatc ctaatgttgc atatcatata aactatactg 14880
tcccttgggt attcacttag taaaatattt tgatcataat ttcctatcag tatttaaaga 14940
gctttctgaa attatttctg tataacattt cttttctcat catctattat gtgcatttat 15000
ttatatttta acttctttta ttagatgaaa ttatcttctg cttcagcttt tttttttttt 15060
taagaacaca cagttgggtt ttttaaggtt aataccacct ttgttttcta agtcattaaa 15120
tttgtttttc tattaattca cttctgattc tttgaagttt gatttctttt tagcttttaa 15180
cttcttgagt tgtatgctta attaattttg attctttcct atttattaat atacatattt 15240
gaagctatag gttttccact gagtatacca gtagctatat cgtataattg atgaactgat 15300
cctctgtgag tctgggacat aaacgtccta tgactgttat gtggtagctg tgaattgctc 15360
tttttagatt ataaagttct catcttttat agttgaacaa tttttgtcct gaatcaaatt 15420
tgttggatat taatatcaca tctattgctt tatttatttt ctattctcac ttttaacctc 15480
tgtgaataat ttcactctag gtgcctcact tttttcataa tagaattggg atttattttt 15540
aaaaggactc tgattaagta attttctttt tctgatatgg gagatatatt tgaccttaac 15600
ttagtcacat tatgcattgt tctcttgtca tgttatgtat acataacatt tattgtcatt 15660
atggtacaac taaaaacata tttcactctg tgacctttat ggggactcag catttgttta 15720
ggaatgtgga agtatatttg tatatctgat aatttccttc caaatttaaa aaggtttgta 15780
tattttcata ttaacatatt tcatattaat tagcatgaat ttcagctgca ttaaaaggaa 15840
aaccacctga gtggtaaaga aaaagttttt ttttctcttt tttttttttt tttttttaat 15900
ggccacatct gtggcatgtg aagttcccag gctaggggtc gaataggagc tacagctgcc 15960
agcttgcacc acagccacaa caatgccaga gccaagcctc atctgcgacc tataccacaa 16020
ctcatggcaa tgctggttcc ttaaccccct gagtgaggcc tggggtcaaa cccacatcct 16080
catggatact aaccggcttt gttaccgctg agccatgagg gaaactccct ttttctcatt 16140
gaaaataagt caaatagata agcagcttaa ggctgtttgg gtgattctgt ggtccagtaa 16200
ttatcaaatc ctactggaca agaatagaga atgtgcaaat gagggaacgt gttggtgaga 16260
tcaggctctg cccactgagc tatcctctgt catgggccct gtgctgttct cagagctgta 16320
cttcctaggg cattgttctc atttcaattc tgagttcagt gtggagagta tacgtgtgtg 16380
ggggctgcac gcttttcaca acccactttc tgctgatact gatttaggga tccttggatt 16440
gctttacagt tgagtcatca ttaactagtg tcacttgcct tcaaagtcag caaaataatt 16500
gtctccaaac tagtaggctt ctagtgtatt tgctttaatc caatgccatg tgaaagtaac 16560
atggtcaaag aataagttat ataccttgac ctaccctgtg accaggctct tcctcttaat 16620
ttattgacca ctgccttaag gtcatttgaa accatgggtt tgggaggaag gcaaggccta 16680
aatcccgtct ttgttggaag gctcactgtc cttgtcttta gagcatcatt tttttttaaa 16740
ctggggtaca gtttatttac agtgttgtgt caatttctgc tgtacagcat agtgacccag 16800
tcatacacat acatacattc tttttctcat actatcttca attttatttt gtgctaagtc 16860
tgccatttta tcatcacctc agtttgaagg acaggatatt tagagtttgt tttttttttc 16920
cccccaatcc tgcaatttct aaattataag actctcaatt agccgtatat aacagctgca 16980
ggcacaggat gtctccctca caaaattggt atttttcctt ccatttcttc ttgcagtttg 17040
gctatttctt gtctgagttc atctctcttt ttaagtgtta aaaagggcaa ggaggattca 17100
tgctatgtca acattatgat tttttctttt ctatacttga taagagtata cttttcccaa 17160
atgtcatcca acttttcagc atcagtttgg acatggtttt cttttcaagg tggtatttct 17220
ctaatgtcac ttgaataaca agactcgtta gttctccagg ctacaatatc ctagtctgag 17280
tatattctgc atgttaattc tattcagcca catccataat ttaggtttta ttcctggaac 17340
acctcacttt tttttttttt tttggtcttt ttatagccat aaccatggca tatggaggtt 17400
cccaggctag gggtctaatc tgagctttag ccactggccc atgccacagc cacagccatg 17460
ccacatctga gccacatctg tgaccttttc cacagctcac agaaacacca gatccctaac 17520
ccactgagtg aggccagggg tcaaacctgt aacctcatgg ttcctagtca gattcgtttc 17580
ctctgtacca cgatgggaat tcctaatacc tcacttatga taacacattc tgaattattt 17640
aggattctat tatactgcat gtaatagaaa tcccaaatag caaaatttgc aacttaaggc 17700
aggttcctgt ctttacaaaa tcatgttttc ctttgctata tgtgcacttt gctttcctct 17760
gtgaattccc ttttttgtta tatttctata gcttttggaa acacttttac ttatttgggg 17820
gggcctagat ttttaaccct ctccttgttt ttctagaaat agagtttata attttatttc 17880
ttcatttact tgatactttc aagagatttc caggaaaaaa attatggaaa tactgtctct 17940
gtgcctgcca agttcaaact aagaattgta taatctgttt taattcttaa gcatttatag 18000
atgacaaggc tttgtgtctg ataggggcca gcgaactcag taaagaggga agatgagaaa 18060
gataatggca agaatttatc cctgaagtgt agttttgaca aaccagtcac aaagaggtct 18120
aagaaatttt ggtcacaaag ttgttttgaa tcccaggcat tttatttgca atgattgcat 18180
atgttctgga aaggacatct gaacctaaga aatagttcat ttgcattgtg ttatatttta 18240
ctaaggtctg agaaataatc ttgagatgag aatgaactct acttcttcag agtctggaag 18300
gaataaatta tgaaaatgta ttaatgcttc tttaaaccat attgtatatt tatctattac 18360
taaacaaaaa gaagtagctc tatttattta tttatttatt tatttattta tgtcttttgt 18420
ctctttaggg ccacacctgt ggcatatgga ggttcccagg ctagaggtcc aattggagat 18480
gtagcagcca gcctatgcca gagccaccgc aacacgggat ctgagccacg tctgtgactt 18540
acaccacagc tcacagcaac gcctgatcct caacccactg agcgaggcca gggatcgaac 18600
ccatgtcctc atggatgcta gttgggttca ttaactgctg agccatgatg ggaactccaa 18660
attaattatt tcttatattt gttcttcata tattcatttc tatagaaaga aataaataca 18720
gattcagtta atgatggcag gtaaaagctt aacttattaa tcaaaggagt taatccaggc 18780
acaaaaattc aattcatggc tctctgttaa aatttaggta taggtttagc aggaagaaaa 18840
ggttagtaga tgcagactat tacatttaga atggatggac aatgaagtcc tactatacag 18900
cacagggaac tatatccaat ctcttgggat agaatatgat ggaagacaaa atcagaacaa 18960
gagagtatat atatatgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt 19020
gactgggtca ccctgcggca cagcagaaat tggcagaaca ttgtaaatca actatacttt 19080
aataggaaaa atacttttaa gggctaaatt tccaatattc taaccatgta cacagagtaa 19140
atgtcataag gatgccagtc tgtgtagaga ttgatgtgtt actagcagat tcatgaaata 19200
aaggctgagg atgtagtccc caagtcactt ctgagtggaa gaatttctcc tttgtcctgg 19260
actcaaatat tttaggataa aggaaaaaag aagatattta tagaagggac ttgttttcaa 19320
gtacttgaca aaatttcacc attaaagaga aatttgtggg agttcccatc gtggctcagt 19380
ggaaacaaat ccaactagga accatgaggt tgtgggtttg atccctggcc tcactcagtg 19440
ggttaaggat ccggtgttgc cgtgagctgt ggtgtaggtt gcagacacgg ttctgatcct 19500
gcgttgctgt ggctgtggct gtggtgtagg ccagcagcaa acagctctga ttagacccct 19560
agcctggaaa cctccatatg ccacaggtgc agccctaaaa agacaaaaaa agagaaaaga 19620
caaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaga 19680
accaccagag gtatttattt gtttttgcct tttttcactg actgtttttt gtttgtttgt 19740
ttgagactga tctagaagac tagagattac aagaaatatg gatttggctc actctaagaa 19800
actgctttca ttccaaggtt tgggtctatc caaaagtgga atagaatcat atgaatacta 19860
gtttatgagt atttagtgag aggaatttca agctcaaata atgattcagc aagattaaat 19920
taaggaggga attttccttg tggctgagtg ggttaaggac ccaatgttgt ctctgtgagg 19980
atgtaggttc catcctgggc tttgctcatt aggttaagga tctggcattg ctgcagctca 20040
gacccagtgc tgccctggtt gtggcttagg ccaaagctgc agctccaatt caatctctgg 20100
cctgggaacc tccatgtgct acaaggtgcg gccttaaaag gaaaaaaaaa aaaattaaat 20160
caaggactca agagtctttc attatttgtg ttgtggaagc tatatttgtt ttaaagtctt 20220
agttgtgttt agaaagcaag atgttcttca actcaaattt gggagggaac ttgtttcata 20280
catttttaat ggataagtgg caaaattttc atgctgaggt gatctatagt gttgtaatgc 20340
agaatatagt cagatcttga acattttagg aagttggtga gggccaattg tgtatctgtg 20400
ccatgctgat aagaatgtca agggatcaca agaattcgtg ttatttgaca gcagtcatct 20460
ttaaaaggca tttgagaaag tccaatttca aatgcatttc ctttctttaa aagataaatt 20520
gaagaaaata agtctttatt tcccaagtaa attgaattgc ctctcagtct gttaaaagaa 20580
actcttacct tgatgattgc gctcttaacc tggcaaagat tgtctttaaa atctgagctc 20640
catgtcttct gctttatttc tggtgtgcct ttgactccag attacagtaa atggaggact 20700
gagtataggg ctaaaaagta gagagaatgg atgcatatta tctgtggtct ccaatgtgat 20760
gaatgaagta ggcaaatact caaaggaaag agaaagcatg ctccaagaat tatgggttcc 20820
agaaggcaaa gtcccagaat tgtctccagg gaaggacagg gaggtctaga atcggctaag 20880
cccactgtag gcagaaaaac caagaggcat gaatggcttc cctttctcac ttttcactct 20940
ctggcttact cctatcatga aggaaaatat tggaatcata ttctccctca ccgaaatgct 21000
atttttcagc ccacaggaaa cccaggctgg ttggagggga cattccctgc tctggtcgtg 21060
ttgaagtaca acatggagac acgtggggca ccgtctgtga ttctgacttc tctctggagg 21120
cggccagcgt gctgtgcagg gaactacagt gcggcactgt ggtttccctc ctggggggag 21180
ctcactttgg agaaggaagt ggacagatct gggctgaaga attccagtgt gaggggcacg 21240
agtcccacct ttcactctgc ccagtagcac cccgccctga cgggacatgt agccacagca 21300
gggacgtcgg cgtagtctgc tcaagtgaga cccagggaat gtgttcactt tgttcccatg 21360
ccatgaagag ggtagggtta ggtagtcaca gacatctttt taaagccctg tctccttcca 21420
ggatacacac aaatccgctt ggtgaatggc aagaccccat gtgaaggaag agtggagctc 21480
aacattcttg ggtcctgggg gtccctctgc aactctcact gggacatgga agatgcccat 21540
gttttatgcc agcagcttaa atgtggagtt gccctttcta tcccgggagg agcacctttt 21600
gggaaaggaa gtgagcaggt ctggaggcac atgtttcact gcactgggac tgagaagcac 21660
atgggagatt gttccgtcac tgctctgggc gcatcactct gttcttcagg gcaagtggcc 21720
tctgtaatct gctcaggtaa gagaataagg gcagccagtg atgagccact catgacggtg 21780
ccttaagagt gggtgtacct aggagttccc attgtggctc agtggtaaca aactcgactg 21840
gtatccatga gggtatgggt ttgatccctg gccttgctca atgggttaag gatccagcat 21900
tgctgtgagc tgtggtatag gttgcagact ctgctcaggt cccatgttgc tgtgattgtg 21960
gtgtaggctg actgttgcag cttcaatttg acccctagcc cgggaatttc cataggccac 22020
acgtgcagca ctaaggaagg aaaaaaaaaa aaaaaaaaaa aagagtgggt gtgcctatag 22080
tgaagaacag atgtaaaagg gaagtgaaag ggattccccc attctgaggg attgtgagaa 22140
gtgtgccaga atattaactt catttgactt gttacaggga aagtaaactt gactttcacg 22200
gacctcctag ttacctggtg cttactatat gtcttctcag agtacctgat tcattcccag 22260
cctggttgac ccatccccct atctctatgg ctatgtttat ccagagcaca tctatctaac 22320
actccagctg atcttcctga cacagctgtg gcaaccctgg atcctttaac caactgtgcc 22380
aggctggaga tcaaacctaa gcctctgcag caacccaagc tgctgcagtc agatttttaa 22440
ccccctgtgc cactgtgggt atctccgata ttttgtatct tctgtgactg agtggtttgc 22500
tgtttgcagg gaaccagagt cagacactat ccccgtgcaa ttcatcatcc tcggacccat 22560
caagctctat tatttcagaa gaaaatggtg ttgcctgcat aggtgagaat cagtgaccaa 22620
cctatgaaaa tgatctcaat cctctgaaat gcattttatt catgttttat ttcctctttg 22680
cagggagtgg tcaacttcgc ctggtcgatg gaggtggtcg ttgtgctggg agagtagagg 22740
tctatcatga gggctcctgg ggcaccatct gtgatgacag ctgggacctg aatgatgccc 22800
atgtggtgtg caaacagctg agctgtggat gggccattaa tgccactggt tctgctcatt 22860
ttggggaagg aacagggccc atttggctgg atgagataaa ctgtaatgga aaagaatctc 22920
atatttggca atgccactca catggttggg ggcggcacaa ttgcaggcat aaggaggatg 22980
caggagtcat ctgctcaggt aagttctgca cataacctcg ggttacaatg atttaagaaa 23040
caactaaggt ggggcaaagg gtagtgaggc atatccatca gagcaaattc cctgaaatac 23100
ggactcagag ggaaccattg tgagattgag gttcccagag gtgtggattt aatgaattag 23160
tgttacctca tgtacaaggt agtatactac cagaaagata aaaattcaga agcgagtttg 23220
cagcaaaact catagggaga acttctttta taaataatat ggagctggat attcagtgca 23280
ccacctgatg accactttat taataaataa agagttcctg ttgtggcgca gcggaaatga 23340
atccgacaaa taatcatgag tttgcgggtt tgatccctga cctcactcag tgggttgggg 23400
atctggtgtt gccatgagct gtggtgtagg tcgcagatgc tgcttggatc ctgctttgct 23460
gtggctgtgg tataggcttg tggctacagc tccgatttga ccgctagcct gggaacctcc 23520
atatgctgcg ggggtggccc tcaaaagcaa aataaataaa taagtaaata aataagtagt 23580
ttaaaaagga caagaagaaa tatatttggt attatattct acagagacaa agataatcac 23640
catgcccgat tgatttttca aggcatataa atgagacgtc atgggagcaa aaatggtcat 23700
aatacaatgc ccttgttttg tgtacatggt aagattttag aaagcattgt gaagtaaaaa 23760
agtgtactca gttataatat attggggaaa acagtactat gagaagtaaa aaaatctaca 23820
tgccggaagt tattttttta atgtctcttt tagagtcgca catgcggcat atggaggttc 23880
ccaggctagg ggtcgaatca gagctatagc cactggctta tggcacagcc acaacaacgc 23940
tagatctgag ccacatcagc gacctatact atagctcatg gcaatgccag atccttaacc 24000
tactgagcca agccatgggt caaatccagg tcctcatgga tcctaggcaa attcatttct 24060
gctgagccac gaagggaact cctcagaagt gattttgatg ttactttctt ttcatgacaa 24120
atctggtaaa gtacatacac atagaaactg aagtgtcaga aagggaaata tttcatttta 24180
aggtaatgta tacaaaacag tggttttacc atctgagtat ctcgctaaat tttaactatc 24240
aaggacaatt gccaaaaaaa aaaaaaaaaa aaaagagaga gagagagaac agaatagggt 24300
tatgaagcta aaatcacagt aatttaggga gaaaaaaatc caaagcatgt aattgataaa 24360
aggctctgag cctttgtttg agatttagaa ttcaacttag aaataccggt ggtattttaa 24420
agcagtccat aagtataaaa tccaaggcta aaaagccaga aggtatttgt agaacaaata 24480
tattttaata agctctacca agtcatccag aagctattaa agaattactg gtcactgaca 24540
tagtgtacct gttttcaagg ccattcttac atcagaataa agggagagca ccctctgaat 24600
cttcagaaaa gatgtgaaag tgctaattct ctatttcatc ccagagttca tgtctctgag 24660
actgatcagt gaaaacagca gagagacctg tgcagggcgc ctggaagttt tttacaacgg 24720
agcttggggc agcgttggca ggaatagcat gtctccagcc acagtggggg tggtatgcag 24780
gcagctgggc tgtgcagaca gaggggacat cagccctgca tcttcagaca agacagtgtc 24840
caggcacatg tgggtggaca atgttcagtg tcctaaagga cctgacacac tatggcagtg 24900
cccatcatct ccatggaaga agagactggc cagcccctca gaggagacat ggatcacatg 24960
tgccagtgag tatccattct ttagcgccac tgttatcttc tgatctacct aagcagaagt 25020
gttataacct ttagataatc cctattctac ctggatgatg agattcattc tgtttaattt 25080
ggtgtgcagg tattcagcat cagtgatcat tttcccaaag accatcatgc tctgatggtc 25140
ttctcaaaag ttctaatcag ttgcttcctc cgtgaacagt tgaggagcag agaatatgta 25200
attcagaatt tgactattga atcatcccat ttttctttca tagtcttttg ttgcactgaa 25260
tataaggaga gaagcagtca gaaagatcaa tcctgaatta tttctccatt ctacatctgt 25320
tttaaatttc aaaaaaaaaa ttgttatagg tgatttacaa tgtctgtcaa tttctgctct 25380
acagcaaagt gacccagtta tttgcatata cattcttttt ctcatatttt taaaccggga 25440
gatttctatc cacctggcag tttgagggaa tttaacatta tgcatttatg ttaactttat 25500
tcacctgatg ttttctaagt catactgaga ttcttatgtc caggatggaa tacacctggt 25560
ttgctggaaa gacatgtgct ttcataaaga caaattttgg aaagaatata aaatttaaaa 25620
ggcccatcaa ataaagtttt aagagatttc aaaaaaaagt ttcatctctc tcttttcctc 25680
tttgacctct tgggcgtgtt catcttctca aaaatgatct tggtgtttct gacttttcag 25740
acaaaataag acttcaagaa ggaaacacta attgttctgg acgtgtggag atctggtacg 25800
gaggttcctg gggcactgtg tgtgacgact cctgggacct tgaagatgct caggtggtgt 25860
gccgacagct gggctgtggc tcagctttgg aggcaggaaa agaggccgca tttggccagg 25920
ggactgggcc catatggctc aatgaagtga agtgcaaggg gaatgaaacc tccttgtggg 25980
attgtcctgc cagatcctgg ggccacagtg actgtggaca caaggaggat gctgctgtga 26040
cgtgctcagg tgagggcaga gagtctggat tgagcttgga agctctggca gcaaagagag 26100
ggtgggcggt gacctgcatt gggtaaagat cagaaggtcc agcctaagga tctggtgggg 26160
ggagggacat gatgtttcag tctgaagaat gatgaaaacc tgtgttgtta cgcatgggcc 26220
ttcgccgagg aaagggacat aacttacatg tatcctcctg cagagggagg aagaactagg 26280
ggattctagt tttgtgtggg aaggagcagt ttacttggct caggaggcac taaaggctca 26340
gataggaaac agagatctgt tccattctta ctcccagaac tgattctctt ctcttttctc 26400
ctacagaaat tgcaaagagc cgagaatccc tacatgccac aggtatatca aaaagtttaa 26460
gaacatggga cccattgtct gcattttgtg gaatccctct tattaagaca ttctgggtca 26520
gaagttctga ggatttgaca tttacttcag ctatctgtta tcttacccaa gagagggatg 26580
gtaactagga acccaggtct tttagctaag acattatcac ctcttgtgat gtttacttgt 26640
tctcaggtcg ctcatctttt gttgcacttg caatctttgg ggtcattctg ttggcctgtc 26700
tcatcgcatt cctcatttgg actcagaagc gaagacagag gcagcggctc tcaggtctga 26760
acaaaattac ggtctctcta atgtttctat gggataagaa gcctctctgg ataataaaac 26820
aaaaaaatta cattcaagta tcagttggcc agaaagaggg aacctagaag aggtttaagc 26880
agtttctccg aaacagggaa caagaattca gagaagaaaa ggcacattgg ctgtactgat 26940
gatacctgca ctcgctatgt atgtttaatg ggggacagta gagaattgat agtttagaag 27000
gagtatgctt atatggttct ggatgaatcc tgtatccccc caaacattta ttttctctta 27060
ctatatactt attactaatt taactcttct gtcaagccgt gtgctaggtt ctgaagatgg 27120
ttcagacttg gatactcaag tgcttttgtt ttcatggaat ttccagttta gtggaagaga 27180
taaatatgta aacaaataaa ttgcaatgtt ttattataca ttcgtgtgaa taaggaacaa 27240
aggaggcaca gagaataaag taattactga aaggggaagg ggagtatcag agacttctaa 27300
gtttggaggc agattttgaa gacagaaatc aaagtactgg gtaagatgca tttcaggaaa 27360
gaagaaaaat atgtacacgt gtagagaagc ttaaaagagg gcacacttgt tgttttggag 27420
gggagtacaa gttgagttaa agagagaagt ttctgttaag gctgaagaat agggaagata 27480
cacgtagcga tgctctgtgt tgcatgataa gaagagtcgg agttattaaa gagtatgaga 27540
taggggagtg agataggcag gcaggtcctt agaaagttct gtttggaaat gggatgtcgg 27600
aggggttgaa agagaaccat atattgacaa ggagagcatt ttgaagtagt tgtgatgaaa 27660
gataaaatgg actttatagt gagaatggct gggaaaggat agattttata caaatctcca 27720
atgaattaca gaagaatgct acctgtcttt ggggaagaaa cagggttatc cgatggcatc 27780
ctgttgcgtt tgagttcgtg acatcatgag ggaaaggctt ggcagcgttt actcggtact 27840
gtgtggtaac ttatatggaa aaaaatatga gaaggaatga gtgtgtgtat aactaattta 27900
cttagctgta tgcctgaaat taatacaatt ttataagtca actctactcc aataaaacaa 27960
acaaataaat aaataatttt aactacctga acaaaaaaaa agaatggact ggagacaagt 28020
caaaagtatg gatgatgact acgttatgct tgcactgctg gggaaaagca cacataggga 28080
gggaacgttt tattatgacc cagtccctaa cctatgacct ctgttatcag ttttctcagg 28140
aggagagaat tctgtccatc aaattcaata ccgggagatg aattcttgcc tgaaagcaga 28200
tgaaacggat atgctaaatc cctcaggtcc gtgggttctt tgagggcctg tagccctggg 28260
gttcagatca gcagctgcag ttgaggttga ggcatgctac tttgcacagc agtagaaaga 28320
aatctcaact gtaataggaa gcttgggatg catatgagga agaaaggcaa gaatgaacca 28380
caaattattc ttagggaaga taaaaattgc agtcatgggg agacctctgg ctgagagggc 28440
cgtgattatt tctgacagag ggattatgga gtagaatatg atggcttgga ccttttttca 28500
ctaaaacaag tcagtcttct caaaggtagt ttagcttttc atatatcttt ctcagtttct 28560
tccattccca tttcctgcca ttttcctttc tctaactttt atttattata ttttttccta 28620
aaagtttaaa ttttctatat ctttatccct tcagaagcca tccctagtca caggactagt 28680
tttatttccc attatgtaat gcttctttct ctgtctgttg acttctattt agaaccagtg 28740
cactaaatct gcctctagga acatacctct gctaggttgc aagaaatatc ccattcccca 28800
ctcactctgt gaagactcaa tgcttctcaa tattccttac ctcctgagag ggacttgcct 28860
cacttcttta atccaaggga ctcgattttt gccaaaacta agtcaggaaa acctacataa 28920
gacataggaa agacttgctg tgcttcttaa accccactgt ttgttttcct aattgtgaac 28980
agtattttta aagttcaaag agcttctaag gcacttgagg ggagatctga tttatttccc 29040
agtaattatt ttattccttt cagaaaattc caatgaataa gatggtttta atgatgtggg 29100
actaattttt gtgtctaaat ctcttcctat ttctggatga aaaaaaggag accactctga 29160
agtacaatga aaaggaaaat gggaattata acctggtgag gtgagtaaaa agaatttatt 29220
catcattgct gaaaacaggt acattccttt tgaaagttgg gaactcctct ggtattagaa 29280
aaaaaaaaaa gaacgtatat acacatatat ttccatgtct atgtttatgt ttgtaaatcc 29340
atattcagaa tatgcaacaa ctttttataa ctatgacttc agtccatctt ttagttacat 29400
atatattcta aacaacaact attgctaaga gaagctgggt aagtaaatgt gaataaatct 29460
tctaaagata ttacaggaag ttcctgctgc ggctcagtgg gttaaggact tgatgtcttt 29520
gtgaagatga gggctcgagc cctggcctca ctcagtgagt taaggatcta gcattgctgt 29580
aagctgcagc gtaggttgca gatggggctc agatccagtg ttgctgtggc tgtggcctca 29640
gttgcagctc tgattcaacc cttaggcgag gaacttccat atgcagcaaa tgtggccatt 29700
aaaaaaaaac aaaaaacatt ataggagtca tttcataaaa gagataagac gtttctatag 29760
ttatatagtg catactctgg taaagatagt ataggatact ataggaatat agaaagcttg 29820
cctatgaaaa tttgggaaga ttgtggaaaa gacatctcaa aatatggcat agaaaagaat 29880
catatctttg aggaacagta agtttttcat tcaaaaccgt gtattgaaca tacttatggt 29940
gacaaatggt gtcttgagta ctaaaaattc agtgataaaa gatgctcttg acaaagacat 30000
ggctgttgaa tagaaggtct cactgtcaat gtgtgggaat tatggacagc ctatgtggac 30060
acagggaata gatgagactc taggctggaa ggctgcattg agcccagtaa tgaatggtcc 30120
tgtctgatat atttcatgct catattttat tttagggact attggggagg tggtgggctt 30180
tggaagatta agctgaggca agacacaatc agattgcctt ttataattta ctttcaggag 30240
gaaaatctaa ctaaagaaaa aaagtgaata aggcaagaaa cataagttat acatcaaaaa 30300
gaaaaggtag tggagttcct gttgtggctc agtggttaat gaaccctgct aggaaccatg 30360
aggttgtggg ttcgatccct ggccttgctc agtgggttaa ggatccagcg atgccatgag 30420
ttgtggtgta ggtcgcagac cgtggcttgg gtcccgcatt gctgtggcta tggtgttggc 30480
tggcagctgc agacagctct gattagaccc ctagcctggg aacctccata agccacgagt 30540
gtgaccctag aaaagacaaa aaagaaaaaa gaaagaaaga aaaggtagtg aaatgagtta 30600
gtgggtgtat tttgtttttt aaaaaacaat tttaggagga ctatacattt agaaatgata 30660
tatagcaaaa gtaaggtttt ttgtagaaat attatatatg acatatgaga aatacaaatt 30720
gagacaaagg ataaaagttg gaattcttaa aagtatataa atgtagagtg ttagtatcac 30780
acatatagac acatacacat agatctgtta taaattgata tagtacaaaa atgttaatac 30840
gggtatgcaa attgtatata caataatttg tatacacata tacacattat atataatgca 30900
taatatatat ataagccaat tgttaagaca aagacaatat ctaaaaaata attgggcaaa 30960
gctaagaaaa aatagttcat gcaaaatgaa ttttaaatga ctattagata tttttatttt 31020
tactttattt atttatttat tttattatta ttattattat tttttgtctt tttgcctttt 31080
ctagagccac ttgccatggc atatggaggt tcccaggcta ggggtcaaat cggagctgta 31140
gccaccagcc tatgccagag ccacagcaat gcaggatccg agccacgtct gcgacctaca 31200
ccacagctca cggcaacacc ggatccttaa gccaccgagc aaggctaggg atcgaaccca 31260
caacctcatg gttcctagtc ggattcgtta accactgcgc cacgacggga actccactat 31320
tagatatttt taaaatgctg aagttccggg caattcaaat tatgattaac aatgacatat 31380
tgctttatat aaatcagacc aaaaaaaatt taaaacagca ccaattttat tattggcggg 31440
aataaagaga aaaatgtaat ttcaaagatt gctgttggaa atgaggggtg tggtagcttt 31500
tggagaaagc attctggaga cttctattaa tttttttttt ttaagtgctt caaagatcct 31560
ttgatccaac aattctactc ctaaaaattt cttccataca gataaagcca tttgtctgta 31620
tataacaaat agaagagaat tcctttttgc agccttgtta gtagtgcccc caaactggaa 31680
acaaagtgaa tatcagtcag tggggtagtg gctggaaaaa ttttagtgca cccaaccaac 31740
aaagaaaaac catgcacaaa aattcaataa atatcatctc acttttgtgt tcatgttatt 31800
gaatataatt aaacataatg tttacatcta taaaattatc atatgtatac atgtaaagaa 31860
acattaaaac atttttaaca gactgtaaac ttgaggactg tgaatgactt ttgattgata 31920
atctcaaaca tatggatact attctgatgt aataaataat gattaaattt tttccctaaa 31980
gagtaatcac tactgaatcg ttgcctcaga atcatatgga ggtgctttta aaaaaggcat 32040
ttctgcactg atgttctctg gaatagaagt aattcttatg tacactgaag tttgaaaatc 32100
attgcattta agtgttctgt tcaggaaagt agtgtgcttt ttaatatttg tgagtgaatg 32160
agtaacacaa tacattatat cacattttaa tgtaattcta cacatgtgca tatgaagaga 32220
aaagtaacat ttttttctat ttatgtcttt agttcagcct ttaagatacc ttgatgaaga 32280
cctggactat tgaatgagca agaatctgcc tcttacactg aagattacaa tacagtcctc 32340
tgtctcctgg tattccaaag actgctgctg aatttctaaa gaatagattg gtgaatgtga 32400
ctactcaaag ttgtatgtaa gactttcaag ggcattaaat aaaaaagaat attgctg 32457
<210> 2
<211> 321
<212> DNA
<213> Artificial sequence
<400> 2
gaggaaaaga caaggagctg aggctaacgg gtggtgaaaa caagtgctct ggaagagtgg 60
aggtgaaagt gcaggaggag tggggaactg tgtgtaataa tggctgggac atggatgtgg 120
tctctgttgt ttgtaggcag ctgggatgtc caactgctat caaagccact ggatgggcta 180
attttagtgc aggttctgga cgcatttgga tggatcatgt ttcttgtcga gggaatgagt 240
cagctctctg ggactgcaaa catgatggat ggggaaagca taactgtact caccaacagg 300
atgctggagt aacctgctca g 321
<210> 3
<211> 100
<212> DNA
<213> Artificial sequence
<400> 3
atgtttcttg tcgagggaat gttttagagc tagaaatagc aagttaaaat aaggctagtc 60
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt 100
<210> 4
<211> 100
<212> DNA
<213> Artificial sequence
<400> 4
gatggatcat gtttcttgtc gttttagagc tagaaatagc aagttaaaat aaggctagtc 60
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt 100
<210> 5
<211> 100
<212> DNA
<213> Artificial sequence
<400> 5
gatcatgttt cttgtcgagg gttttagagc tagaaatagc aagttaaaat aaggctagtc 60
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt 100
<210> 6
<211> 4204
<212> DNA
<213> Artificial sequence
<400> 6
ttaatacgac tcactatagg ccaccatgga caagaagtac agcatcggcc tggacatcgg 60
caccaactct gtgggctggg ccgtgatcac cgacgagtac aaggtgccca gcaagaaatt 120
caaggtgctg ggcaacaccg accggcacag catcaagaag aacctgatcg gagccctgct 180
gttcgacagc ggcgaaacag ccgagagaac ccggctgaag agaaccgcca gaagaagata 240
caccagacgg aagaaccgga tctgctatct gcaagagatc ttcagcaacg agatggccaa 300
ggtggacgac agcttcttcc acagactgga agagtccttc ctggtggaag aggataagaa 360
gcacgagcgg caccccatct tcggcaacat cgtggacgag gtggcctacc acgagaagta 420
ccccaccatc taccacctga gaaagaaact ggtggacagc accgacaagg ccgacctgcg 480
gctgatctat ctggccctgg cccacatgat caagttccgg ggccacttcc tgatcgaggg 540
cgacctgaac cccgacaaca gcgacgtgga caagctgttc atccagctgg tgcagaccta 600
caaccagctg ttcgaggaaa accccatcaa cgccagcggc gtggacgcca aggccatcct 660
gtctgccaga ctgagcaaga gcagacggct ggaaaatctg atcgcccagc tgcccggcga 720
gaagaagaat ggcctgttcg gaaacctgat tgccctgagc ctgggcctga cccccaactt 780
caagagcaac ttcgacctgg ccgaggatgc caaactgcag ctgagcaagg acacctacga 840
cgacgacctg gacaacctgc tggcccagat cggcgaccag tacgccgacc tgtttctggc 900
cgccaagaac ctgtccgacg ccatcctgct gagcgacatc ctgagagtga acaccgagat 960
caccaaggcc cccctgagcg cctctatgat caagagatac gacgagcacc accaggacct 1020
gaccctgctg aaagctctcg tgcggcagca gctgcctgag aagtacaaag agattttctt 1080
cgaccagagc aagaacggct acgccggcta cattgacggc ggagccagcc aggaagagtt 1140
ctacaagttc atcaagccca tcctggaaaa gatggacggc accgaggaac tgctcgtgaa 1200
gctgaacaga gaggacctgc tgcggaagca gcggaccttc gacaacggca gcatccccca 1260
ccagatccac ctgggagagc tgcacgccat tctgcggcgg caggaagatt tttacccatt 1320
cctgaaggac aaccgggaaa agatcgagaa gatcctgacc ttccgcatcc cctactacgt 1380
gggccctctg gccaggggaa acagcagatt cgcctggatg accagaaaga gcgaggaaac 1440
catcaccccc tggaacttcg aggaagtggt ggacaagggc gcttccgccc agagcttcat 1500
cgagcggatg accaacttcg ataagaacct gcccaacgag aaggtgctgc ccaagcacag 1560
cctgctgtac gagtacttca ccgtgtataa cgagctgacc aaagtgaaat acgtgaccga 1620
gggaatgaga aagcccgcct tcctgagcgg cgagcagaaa aaggccatcg tggacctgct 1680
gttcaagacc aaccggaaag tgaccgtgaa gcagctgaaa gaggactact tcaagaaaat 1740
cgagtgcttc gactccgtgg aaatctccgg cgtggaagat cggttcaacg cctccctggg 1800
cacataccac gatctgctga aaattatcaa ggacaaggac ttcctggaca atgaggaaaa 1860
cgaggacatt ctggaagata tcgtgctgac cctgacactg tttgaggaca gagagatgat 1920
cgaggaacgg ctgaaaacct atgcccacct gttcgacgac aaagtgatga agcagctgaa 1980
gcggcggaga tacaccggct ggggcaggct gagccggaag ctgatcaacg gcatccggga 2040
caagcagtcc ggcaagacaa tcctggattt cctgaagtcc gacggcttcg ccaacagaaa 2100
cttcatgcag ctgatccacg acgacagcct gacctttaaa gaggacatcc agaaagccca 2160
ggtgtccggc cagggcgata gcctgcacga gcacattgcc aatctggccg gcagccccgc 2220
cattaagaag ggcatcctgc agacagtgaa ggtggtggac gagctcgtga aagtgatggg 2280
ccggcacaag cccgagaaca tcgtgatcga aatggccaga gagaaccaga ccacccagaa 2340
gggacagaag aacagccgcg agagaatgaa gcggatcgaa gagggcatca aagagctggg 2400
cagccagatc ctgaaagaac accccgtgga aaacacccag ctgcagaacg agaagctgta 2460
cctgtactac ctgcagaatg ggcgggatat gtacgtggac caggaactgg acatcaaccg 2520
gctgtccgac tacgatgtgg accatatcgt gcctcagagc tttctgaagg acgactccat 2580
cgacaacaag gtgctgacca gaagcgacaa gaaccggggc aagagcgaca acgtgccctc 2640
cgaagaggtc gtgaagaaga tgaagaacta ctggcggcag ctgctgaacg ccaagctgat 2700
tacccagaga aagttcgaca atctgaccaa ggccgagaga ggcggcctga gcgaactgga 2760
taaggccggc ttcatcaaga gacagctggt ggaaacccgg cagatcacaa agcacgtggc 2820
acagatcctg gactcccgga tgaacactaa gtacgacgag aatgacaagc tgatccggga 2880
agtgaaagtg atcaccctga agtccaagct ggtgtccgat ttccggaagg atttccagtt 2940
ttacaaagtg cgcgagatca acaactacca ccacgcccac gacgcctacc tgaacgccgt 3000
cgtgggaacc gccctgatca aaaagtaccc taagctggaa agcgagttcg tgtacggcga 3060
ctacaaggtg tacgacgtgc ggaagatgat cgccaagagc gagcaggaaa tcggcaaggc 3120
taccgccaag tacttcttct acagcaacat catgaacttt ttcaagaccg agattaccct 3180
ggccaacggc gagatccgga agcggcctct gatcgagaca aacggcgaaa ccggggagat 3240
cgtgtgggat aagggccggg attttgccac cgtgcggaaa gtgctgagca tgccccaagt 3300
gaatatcgtg aaaaagaccg aggtgcagac aggcggcttc agcaaagagt ctatcagacc 3360
caagaggaac agcgataagc tgatcgccag aaagaaggac tgggacccta agaagtacgg 3420
cggcttcctg tggcccaccg tggcctattc tgtgctggtg gtggccaaag tggaaaaggg 3480
caagtccaag aaactgaaga gtgtgaaaga gctgctgggg atcaccatca tggaaagaag 3540
cagcttcgag aagaatccca tcgactttct ggaagccaag ggctacaaag aagtgaaaaa 3600
ggacctgatc atcaagctgc ctaagtactc cctgttcgag ctggaaaacg gccggaagag 3660
aatgctggcc tctgccaagc agctgcagaa gggaaacgaa ctggccctgc cctccaaata 3720
tgtgaacttc ctgtacctgg ccagccacta tgagaagctg aagggctccc ccgaggataa 3780
tgagcagaaa cagctgtttg tggaacagca caagcactac ctggacgaga tcatcgagca 3840
gatcagcgag ttctccaaga gagtgatcct ggccgacgct aatctggaca aagtgctgtc 3900
cgcctacaac aagcaccggg ataagcccat cagagagcag gccgagaata tcatccacct 3960
gtttaccctg accagactgg gagcccctag agccttcaag tactttgaca ccaccatcga 4020
ccccaagcag tacagaagca ccaaagaggt gctggacgcc accctgatcc accagagcat 4080
caccggcctg tacgagacac ggatcgacct gtctcagctg ggaggcgacg gatccggcgg 4140
aggcggaagc gggaaaagaa ccgccgacgg cagcgaattc gagcccaaga agaagaggaa 4200
agtc 4204
<210> 7
<211> 120
<212> DNA
<213> Artificial sequence
<400> 7
ttaatacgac tcactatagg atgtttcttg tcgagggaat gttttagagc tagaaatagc 60
aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt 120
<210> 8
<211> 102
<212> RNA
<213> Artificial sequence
<400> 8
gauguuucuu gucgagggaa uguuuuagag cuagaaauag caaguuuaaa auaaggcuag 60
uccguuauca acuugaaaaa guggcaccga gucggugcuu uu 102

Claims (2)

1. A method for preparing CD163 double allelic gene mutation cell, which is to edit CD163 gene of pig in vitro fibroblast genome, so that GTCGAGGGAATGA at position 226 and 238 of the third exon of one chromosome of the double allelic gene CD163 is deleted, GTCGAGGGAAT at position 226 and 236 of the third exon of the other chromosome is deleted, and other nucleotide sequences of the gene are not changed, thus obtaining the CD163 double allelic gene mutation cell;
the nucleotide sequence of the third exon is sequence 2;
the gene editing is carried out by adopting a SpRY-Cas9 system;
the SpRY-Cas9 system includes Cas9 protein and sgRNA;
the target sequence of the sgRNA is 1 st-20 th of the sequence 3;
the cas9 protein is a protein coded by nucleotides from 20 th to 4204 th in the sequence 6;
the SpRY-Cas9 system consists of the Cas9 protein mRNA and the sgRNA;
the mRNA of the cas9 protein is a nucleotide sequence consisting of the 20 th to 4204 th positions in the sequence 6 and is transcribed into RNA;
the nucleotide sequence of the sgRNA is sequence 8;
and the gene editing is to introduce the cas9 protein mRNA and the sgRNA into an in vitro pig fibroblast line to obtain the CD163 double-allele mutant cell.
2. A method for preparing a CD163 double allelic mutant pig, wherein the CD163 double allelic mutant cell prepared by the method of claim 1 is transplanted into a sow through a somatic cell nucleus, and the produced offspring is the CD163 double allelic mutant pig.
CN202011243301.9A 2020-11-10 2020-11-10 Method for preparing CD163 gene editing pig by using SpRY-Cas9 system Active CN112094866B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011243301.9A CN112094866B (en) 2020-11-10 2020-11-10 Method for preparing CD163 gene editing pig by using SpRY-Cas9 system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011243301.9A CN112094866B (en) 2020-11-10 2020-11-10 Method for preparing CD163 gene editing pig by using SpRY-Cas9 system

Publications (2)

Publication Number Publication Date
CN112094866A CN112094866A (en) 2020-12-18
CN112094866B true CN112094866B (en) 2021-05-11

Family

ID=73785093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011243301.9A Active CN112094866B (en) 2020-11-10 2020-11-10 Method for preparing CD163 gene editing pig by using SpRY-Cas9 system

Country Status (1)

Country Link
CN (1) CN112094866B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774468B (en) * 2022-04-20 2022-12-20 温氏食品集团股份有限公司 Allele molecular marker and anti-blue-ear-disease pig group construction method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017023570A1 (en) * 2015-08-06 2017-02-09 The Curators Of The University Of Missouri Pathogen-resistant animals having modified cd163 genes
GB201617559D0 (en) * 2016-10-17 2016-11-30 University Court Of The University Of Edinburgh The Swine comprising modified cd163 and associated methods
CN107937345B (en) * 2017-11-16 2019-01-29 山东蓝思种业股份有限公司 A kind of fibroblastic method of pig for preparing while knocking out CD163 gene and CD13 gene

Also Published As

Publication number Publication date
CN112094866A (en) 2020-12-18

Similar Documents

Publication Publication Date Title
CN108660161B (en) Method for preparing chimeric gene-free knockout animal based on CRISPR/Cas9 technology
AU2023204606A1 (en) Genetically modified cells, tissues, and organs for treating disease
US20200045945A1 (en) Swine Comprising Modified CD163 and Associated Methods
CN111808887B (en) Method for preparing double-muscle gluteal beef cattle similar to natural mutation Belgian blue cattle
CN112094868B (en) Method for preparing CD163 gene edited pig by using single base editor SpRY-BE4
CN110892074A (en) Compositions and methods for increasing the shelf life of bananas
JP2022113700A (en) Fel d1 knockouts and associated compositions and methods based on crispr-cas genomic editing
CN110951745A (en) CD163 mutant gene and method and application thereof in inhibiting or blocking antibody production of pig
CN112094866B (en) Method for preparing CD163 gene editing pig by using SpRY-Cas9 system
CN111088280A (en) Construction method and application of targeting vector and transgenic mouse for regulating and eliminating monocyte-derived dendritic cells by diphtheria toxin
CN113151291A (en) Method for improving swine health by targeted inactivation of CD163
US20220369608A1 (en) Method for establishing diabetes disease model dog
CN111500589A (en) Pig SOX10 mutant gene causing inner ear hypoplasia and application thereof
KR20180021135A (en) Humanized heart muscle
CN111073900B (en) Method for improving development efficiency of pig cloned embryo
CN114540310B (en) Mouse embryonic stem cell and preparation method and application thereof
CN113015804B (en) Nucleic acid molecules for the treatment of crystalline retinal degeneration and uses thereof
JPH06508745A (en) Increased expression by targeting genes into endogenous retrovirus-like sequences
WO2021171688A1 (en) Gene knock-in method, method for producing gene knock-in cell, gene knock-in cell, canceration risk evaluation method, cancer cell production method, and kit for use in same
CN116064473A (en) Kit for constructing ataxia-telangiectasia model pig nuclear transfer donor cells with ATM gene mutation
CN116064661A (en) Gene editing system for constructing NF1 gene mutation type I neurofibromatosis model pig nuclear transplantation donor cell and application thereof
CN116004715A (en) Application of gene editing system in preparation of SMN1 gene mutation spinal muscular atrophy model pig nuclear transfer donor cells
CN116064683A (en) Gene editing system and application thereof in preparation of arrhythmia model pig nuclear transfer donor cells with SCN5A gene mutation
CN113444722A (en) Application of single base editing mediated splicing repair in preparation of drugs for treating spinal muscular atrophy
CN116926075A (en) Nucleic acid composition of targeted M1ap gene, preparation method and application of animal model of oligospermia

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant