CN112090446B - Pickering乳液固液复合凝胶球及其在降解水中污染物中的应用 - Google Patents

Pickering乳液固液复合凝胶球及其在降解水中污染物中的应用 Download PDF

Info

Publication number
CN112090446B
CN112090446B CN202010964751.0A CN202010964751A CN112090446B CN 112090446 B CN112090446 B CN 112090446B CN 202010964751 A CN202010964751 A CN 202010964751A CN 112090446 B CN112090446 B CN 112090446B
Authority
CN
China
Prior art keywords
pickering emulsion
liquid
composite gel
water
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010964751.0A
Other languages
English (en)
Other versions
CN112090446A (zh
Inventor
兰亚林
张宇
于萌
何冬青
孟庆博
宋溪明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202010964751.0A priority Critical patent/CN112090446B/zh
Publication of CN112090446A publication Critical patent/CN112090446A/zh
Application granted granted Critical
Publication of CN112090446B publication Critical patent/CN112090446B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J35/39
    • B01J35/51
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

本发明涉及Pickering乳液固液复合凝胶球及其在降解水中污染物中的应用。采用的技术方案是:将氧化石墨烯水溶液和疏水性离子液体混合,得水包离子液体型Pickering乳液;将海藻酸钠水溶液加入到水包离子液体型Pickering乳液中,涡混均匀后加入P25得混合液;将混合液用1mL注射器滴入到氯化钙溶液中,得Pickering乳液固液复合凝胶球。本发明所制备的Pickering乳液固液复合凝胶球突破传统固体催化剂的局限,开辟了一种新型的固液杂化方式。凝胶球作为光催化剂不仅能解决传统光催化剂回收难的问题,在显著提高乳液在催化反应中的稳定性的同时,还可以作为填充柱料,构筑连续流动的光催化体系。

Description

Pickering乳液固液复合凝胶球及其在降解水中污染物中的 应用
技术领域
本发明涉及基于Pickering乳液固液复合凝胶球萃取分离和光催化降解水中污染物的方法,具体的说,涉及一种乳液应用新方向,一种传统固体粉末光催化剂的使用新方法,建立一种新的连续流动光催化系统。
背景技术
Pickering乳液中的固体颗粒乳化剂为了降低水、油和固体之间的界面张力,倾向于均匀紧密地排列在水油界面,形成一种特殊的固液复合状态。近年来,Binks等在固体颗粒稳定乳液方面做了大量的工作,得出了固体粒子稳定乳液的制备、特性并考察了固体颗粒稳定乳液的机理。此外,杨恒权等人利用Pickering乳液的界面优势将其应用在催化有机合成领域,并通过简单的离心就可以对产物和催化剂实现回收再利用,将乳液的应用拓展到催化领域。
在催化领域中,通过光介导的氧化还原反应进行的光催化被认为是满足清洁能源技术需求的先进解决方案。然而,乳液应用在光催化领域的研究还很少。光催化系统的开发包括两个部分。首先是设计和合成在可见光照射下具有高活性的纳米级光催化剂。另一部分是设计一个光催化系统,该系统可产生较大的活性区域并促进有效传质。
在纳米催化剂方面,TiO2(P25)被认为是最有前途的材料之一。在设计光催化系统方面,Pickering乳液形式的光催化系统可以提供最大的活性表面积,用于与水相和油相中的污染物进行光反应。更重要的是,在没有任何其他底物的情况下,Pickering乳液系统严格定义了光催化剂的分布区域(在水-油界面处)。并且,模拟生命系统中通过限制反应环境(囊泡、细胞等)来控制生物化学过程,在Pickering乳液光催化系统中引入凝胶,凝胶将对Pickering乳液系统得到的分布区域进行固定和保护,并且可以减少光催化反应中的热效应。
目前,Pickering乳液固液复合凝胶球及其光催化体系还未见报道。
发明内容
为了解决以上问题,本发明的目的是,利用海藻酸钙一步凝胶化方法包裹Pickering乳液和TiO2得到一类多级固液复合凝胶球,利用制备出的Pickering乳液固液复合凝胶球萃取分离和光催化降解水中污染物。
本发明采用的技术方案是:Pickering乳液固液复合凝胶球,制备方法包括如下步骤:
1)将氧化石墨烯溶于水中,超声,形成均匀分散的氧化石墨烯水溶液;
2)将氧化石墨烯水溶液和疏水性离子液体,混合5-10分钟,得水包离子液体型Pickering乳液;
3)将海藻酸钠水溶液加入到步骤2)获得的水包离子液体型Pickering乳液中,混合均匀后,加入P25,继续混合得混合液;
4)将混合液用1mL注射器滴入到氯化钙溶液中,得Pickering乳液固液复合凝胶球。
进一步的,步骤1)中,氧化石墨烯水溶液的浓度为1g/L。
进一步的,步骤2)中,按体积比,氧化石墨烯水溶液:疏水性离子液体=3:1。
进一步的,所述疏水性离子液体为1-丁基-3-甲基咪唑六氟磷酸盐离子液体。
本发明制备的Pickering乳液固液复合凝胶球在萃取分离和光催化降解水中有机污染物中的应用。
一种基于Pickering乳液固液复合凝胶球萃取分离和光催化降解水中有机污染物的方法,方法如下:向Pickering乳液固液复合凝胶球中加入含有机污染物的废水,光照下进行光催化降解。
进一步的,所述有机污染物是芳环有机污染物和染料。
进一步的,所述芳环有机污染物为2-萘酚,所述染料是罗丹明B。
进一步的,2-萘酚的初始浓度为400-600mg/L,罗丹明B的初始浓度为40-60mg/L。
本发明的有益效果是:氧化石墨烯片表面具有-OH、-COOH等含氧亲水基团,因此可以作为两亲性颗粒表面活性剂,利用氧化石墨烯片可以制备出Pickering乳液。海藻酸钠可以和氯化钙一步凝胶化形成海藻酸钙凝胶。本发明的基于Pickering乳液固液复合凝胶球可作为一种新型的萃取和光催化材料移除水中污染物。本发明的基于Pickering乳液固液复合凝胶球,可以通过简单的捞出回收不需要额外的能源消耗,可以作为柱填充料建立一种光催化连续流动体系,具有很大的应用前景。
本发明采用Pickering固液复合凝胶球在萃取分离和光催化降解水中污染物,实现在基于Pickering乳液的多级材料的构筑。这种固液复合光催化剂将克服液体和固体光催化剂的限制,在微尺度上分层组织液体和固体,克服传统催化剂难回收,传统乳液稳定性差,建立连续流动光催化体系。
附图说明
图1a是Pickering乳液实物和显微镜照片。
图1b是Pickering乳液与海藻酸钠水溶液实物和显微镜照片。
图1c是Pickering乳液、海藻酸钠水溶液和P25混合液实物和显微镜照片。
图2a是Pickering乳液固液复合凝胶球实物图。
图2b是Pickering乳液固液复合凝胶球示意图。
图3是Pickering乳液固液复合凝胶球内部结构扫描电镜图。
图4是实施例2基于Pickering乳液固液复合凝胶球萃取分离和光催化降解水中污染物2-萘酚的实验装置图。
图5是实施例2基于Pickering乳液固液复合凝胶球萃取分离和光催化降解水中污染物2-萘酚的紫外最大吸收图。
图6是实施例2基于Pickering乳液固液复合凝胶球萃取分离和光催化降解水中污染物2-萘酚在暗处理后和样品在光照下随降解时间水相的紫外最大吸收图。
图7是实施例2基于Pickering乳液固液复合凝胶球萃取分离和光催化降解水中污染物2-萘酚在光催化降解15min、45min、75min、105min、135min时,水相的气相色谱图。
图8是实施例3基于Pickering乳液固液复合凝胶球萃取分离和光催化降解水中污染物罗丹明B的实验装置图。
具体实施方式
为了更好地理解本发明,下面通过实施例对本发明做进一步说明,应理解以下实施目的在于更好地解释本发明的内容,而不是对本发明的保护范围产生任何限制。
实施例1
一种Pickering乳液固液复合凝胶球(一)制备方法包括如下步骤:
1、采用Hummer法制备氧化石墨烯。将氧化石墨烯与水混合,超声15分钟,制备均匀分散的浓度为1g/L的氧化石墨烯水溶液,用玻璃瓶封好常温储存,备用。
2、采用疏水性离子液体1-丁基-3-甲基咪唑六氟磷离子液体作为乳液中的油相。量取3mL 1g/L的氧化石墨烯水溶液,1mL 1-丁基-3-甲基咪唑六氟磷离子液体,倒入20mL样品瓶中,3500rpm涡混5分钟,形成稳定的水包离子液体型Pickering乳液,如图1a所示。
3、将6mL 0.02g/mL海藻酸钠水溶液加入到水包离子液体型Pickering乳液当中,涡混使其混合均匀,如图1b所示。然后加入0.5g P25,继续涡混,使其混合均匀,得混合液,如图1c所示。
4、将混合液用1mL注射器滴入到5wt%的氯化钙溶液中,滴加完毕,倾倒多余的氯化钙水溶液,得Pickering乳液固液复合凝胶球。
(二)检测
Pickering乳液固液复合凝胶球,实物及其内部结构概念图如图2a和图2b,凝胶球大小在3mm左右。将凝胶球冻干,切开,经扫描电镜表征得到凝胶球内部结构,如图3所示,氧化石墨烯片由于乳液液滴的支撑呈现出3D的蜂窝状结构,观察到P25分散在氧化石墨烯片上。
实施例2
基于Pickering乳液固液复合凝胶球萃取分离和光催化降解水中有机污染物的方法
以实施例1制备的Pickering乳液固液复合凝胶球萃取分离和光催化降解水中2-萘酚,采用如图4所示的实验装置。
方法:将10mL初始浓度为500mg/L的2-萘酚水溶液,加入到Pickering固液复合凝胶球中,暗处理1h后取0.5mL水样进行紫外检测(328nm)。然后打开光源,氙灯模拟太阳光,光强100mW/cm2,光照进行光催化降解实验,光照后每隔15min取一次水样0.5mL,对其进行紫外检测。
图5为2-萘酚水溶液的紫外吸收光谱。2-萘酚在328nm处具有强吸光度。
图6为暗处理后和光照随时间的样品的紫外吸收光谱,说明凝胶球在暗态下先对2-萘酚进行了吸附作用,吸附量达到40%,吸附平衡后,光催化降解150min后,水中2-萘酚的移除率达到90%。
图7的气相色谱图中也可以观察到保留时间9.5min左右的2-萘酚底物峰逐渐消失,与紫外吸收光谱结果一致。
实施例3
基于Pickering乳液固液复合凝胶球连续流动萃取分离和光催化降解水中污染物的方法以实施例1制备的Pickering乳液固液复合凝胶球萃取分离和光催化降解水中罗丹明B(一)Pickering乳液固液复合凝胶球层析柱
如图8所示,将实施例1制备的Pickering乳液固液复合凝胶球作为色谱柱填充料,填充在柱高10cm,直径为1cm的具砂板层析柱当中,获得Pickering乳液固液复合凝胶球层析柱。
(二)连续流动萃取分离和光催化降解水中罗丹明B
方法:取10mL初始浓度为50mg/L的罗丹明B水溶液,注入Pickering乳液固液复合凝胶球层析柱中,然后打开氙灯,氙灯模拟太阳光,光强100mW/cm2,进行光照15min后,打开旋塞,可以观察到澄清的水溶液从柱子下端流出,蠕动泵从上端不断泵入罗丹明B水溶液,建立了Pickering乳液固液复合凝胶球在连续流动萃取分离和光催化降解水中污染物的方法。

Claims (6)

1.Pickering乳液固液复合凝胶球,其特征在于:制备方法包括如下步骤:
1)将氧化石墨烯溶于水中,超声,形成均匀分散的氧化石墨烯水溶液;氧化石墨烯水溶液的浓度为1 g/L;
2)将氧化石墨烯水溶液和疏水性离子液体,混合5-10分钟,得水包离子液体型Pickering乳液;按体积比,氧化石墨烯水溶液:疏水性离子液体=3:1;所述疏水性离子液体为1-丁基-3-甲基咪唑六氟磷酸盐离子液体;
3)将海藻酸钠水溶液加入到步骤2)获得的水包离子液体型Pickering乳液中,混合均匀后,加入P25,继续混合得混合液;
4)将混合液用1mL注射器滴入到氯化钙溶液中,得Pickering乳液固液复合凝胶球。
2.权利要求1所述的Pickering乳液固液复合凝胶球在萃取分离和光催化降解水中有机污染物中的应用。
3.一种基于Pickering乳液固液复合凝胶球萃取分离和光催化降解水中有机污染物的方法,其特征在于,利用权利要求1所述的Pickering乳液固液复合凝胶球,方法如下:向Pickering乳液固液复合凝胶球中加入含有机污染物的废水,光照下进行光催化降解。
4.根据权利要求3所述的方法,其特征在于,所述有机污染物是芳环有机污染物和染料。
5.根据权利要求4所述的方法,其特征在于,所述芳环有机污染物为2-萘酚,所述染料是罗丹明B。
6.根据权利要求5所述的方法,其特征在于,2-萘酚的初始浓度为400-600 mg/L,罗丹明B的初始浓度为40-60 mg/L。
CN202010964751.0A 2020-09-15 2020-09-15 Pickering乳液固液复合凝胶球及其在降解水中污染物中的应用 Active CN112090446B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010964751.0A CN112090446B (zh) 2020-09-15 2020-09-15 Pickering乳液固液复合凝胶球及其在降解水中污染物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010964751.0A CN112090446B (zh) 2020-09-15 2020-09-15 Pickering乳液固液复合凝胶球及其在降解水中污染物中的应用

Publications (2)

Publication Number Publication Date
CN112090446A CN112090446A (zh) 2020-12-18
CN112090446B true CN112090446B (zh) 2022-11-29

Family

ID=73752160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010964751.0A Active CN112090446B (zh) 2020-09-15 2020-09-15 Pickering乳液固液复合凝胶球及其在降解水中污染物中的应用

Country Status (1)

Country Link
CN (1) CN112090446B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170373A (zh) * 2013-04-01 2013-06-26 湖南大学 一种光催化复合凝胶小球及其制备方法与应用
CN108816291A (zh) * 2018-05-14 2018-11-16 福建农林大学 一种藻酸盐基复合光催化气凝胶材料及其制备方法
CN109621490A (zh) * 2018-12-18 2019-04-16 辽宁大学 Pickering乳液填充柱及基于Pickering乳液填充柱分离萃取有机物方法
CN109759132A (zh) * 2019-02-20 2019-05-17 吉林建筑大学 复合光催化凝胶球的制备方法和复合光催化凝胶球
WO2020145473A1 (ko) * 2019-01-10 2020-07-16 경희대학교산학협력단 알지네이트 하이드로겔 입자의 제조 장치, 알지네이트 하이드로겔 입자 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170373A (zh) * 2013-04-01 2013-06-26 湖南大学 一种光催化复合凝胶小球及其制备方法与应用
CN108816291A (zh) * 2018-05-14 2018-11-16 福建农林大学 一种藻酸盐基复合光催化气凝胶材料及其制备方法
CN109621490A (zh) * 2018-12-18 2019-04-16 辽宁大学 Pickering乳液填充柱及基于Pickering乳液填充柱分离萃取有机物方法
WO2020145473A1 (ko) * 2019-01-10 2020-07-16 경희대학교산학협력단 알지네이트 하이드로겔 입자의 제조 장치, 알지네이트 하이드로겔 입자 및 이의 제조 방법
CN109759132A (zh) * 2019-02-20 2019-05-17 吉林建筑大学 复合光催化凝胶球的制备方法和复合光催化凝胶球

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Alginate microspheres prepared by ionic crosslinking of pickering alginate emulsions";Xue Mi et al.;《Journal of Biomaterials Science》;20190614;第30卷(第12期);第1-27页 *

Also Published As

Publication number Publication date
CN112090446A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
Zhuang et al. Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel
He et al. Three-dimensional graphene supported catalysts for organic dyes degradation
Albadarin et al. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue
Marrakchi et al. Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16
Liang et al. Enhanced selective adsorption of NSAIDs by covalent organic frameworks via functional group tuning
CN103212393B (zh) 纳米TiO2/蒙脱土复合光催化水处理材料及其制备方法
Tu et al. Co-catalytic effect of sewage sludge-derived char as the support of Fenton-like catalyst
CN104327243B (zh) 聚氨酯泡沫负载二氧化钛与蒙脱土复合材料及其制备方法
Qu et al. Interfacial engineering in Pickering emulsion photocatalytic microreactors: From mechanisms to prospects
Yu et al. Fabrication porous adsorbents templated from modified sepiolite-stabilized aqueous foams for high-efficient removal of cationic dyes
Zaboon et al. Removal of monoethylene glycol from wastewater by using Zr-metal organic frameworks
Moeini et al. Removal of atrazine from water using titanium dioxide encapsulated in salicylaldehydeNH2MIL-101 (Cr): Adsorption or oxidation mechanism
CN105964256A (zh) 一种核壳型四氧化三铁/氧化石墨烯复合型纳米催化剂的制备方法
CN105363495B (zh) 一种两亲性纳米TiO2粉末催化剂及其制备方法和使用方法
CN112090446B (zh) Pickering乳液固液复合凝胶球及其在降解水中污染物中的应用
Cheng et al. Photocatalytic degradation of bisphenol A using an integrated system of a new gas-liquid-solid circulating fluidized bed reactor and micrometer Gd-doped TiO2 particles
Wang et al. Highly effective removal of methylene blue from wastewater by modified hydroxyl groups materials: Adsorption performance and mechanisms
CN103771638B (zh) 一种以超声雾化强化污水处理效果的光催化方法
Yu et al. Combined experimental and molecular simulation investigation of dodecylamine adsorption onto MIL-100 (Fe) for wastewater treatment
Zhang et al. On-site H2O2 production with amphiphilic g-C3N4 as photocatalyst in a combined photocatalysis–extraction–separation process
Liang et al. Enhanced removal and adsorption characters of aniline by the inorganically modified mesoporous silica nano-spheres
CN101352677B (zh) 海泡石负载纳米氧化锌光催化材料及其制备方法
Wang et al. Effect of pH on caffeine removal from aqueous media by graphene/graphene oxide adsorption
CN102527396A (zh) 高效共掺杂复合光催化剂的制备及应用方法
Yan et al. A study of synergetic carrier emulsion liquid membrane for the extraction of amoxicillin from aqueous phase using response surface methodology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant