CN112073763B - Display equipment - Google Patents

Display equipment Download PDF

Info

Publication number
CN112073763B
CN112073763B CN201910723241.1A CN201910723241A CN112073763B CN 112073763 B CN112073763 B CN 112073763B CN 201910723241 A CN201910723241 A CN 201910723241A CN 112073763 B CN112073763 B CN 112073763B
Authority
CN
China
Prior art keywords
window
display device
display
controller
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910723241.1A
Other languages
Chinese (zh)
Other versions
CN112073763A (en
Inventor
王之奎
黄飞
王卫明
孙聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisense Visual Technology Co Ltd
Original Assignee
Hisense Visual Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisense Visual Technology Co Ltd filed Critical Hisense Visual Technology Co Ltd
Priority to PCT/CN2020/081122 priority Critical patent/WO2020248650A1/en
Priority to PCT/CN2020/092203 priority patent/WO2020248810A1/en
Publication of CN112073763A publication Critical patent/CN112073763A/en
Application granted granted Critical
Publication of CN112073763B publication Critical patent/CN112073763B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/4104Peripherals receiving signals from specially adapted client devices
    • H04N21/4122Peripherals receiving signals from specially adapted client devices additional display device, e.g. video projector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/431Generation of visual interfaces for content selection or interaction; Content or additional data rendering
    • H04N21/4312Generation of visual interfaces for content selection or interaction; Content or additional data rendering involving specific graphical features, e.g. screen layout, special fonts or colors, blinking icons, highlights or animations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/443OS processes, e.g. booting an STB, implementing a Java virtual machine in an STB or power management in an STB
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/478Supplemental services, e.g. displaying phone caller identification, shopping application
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/478Supplemental services, e.g. displaying phone caller identification, shopping application
    • H04N21/4781Games
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/478Supplemental services, e.g. displaying phone caller identification, shopping application
    • H04N21/4788Supplemental services, e.g. displaying phone caller identification, shopping application communicating with other users, e.g. chatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • H04N7/141Systems for two-way working between two video terminals, e.g. videophone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • H04N7/141Systems for two-way working between two video terminals, e.g. videophone
    • H04N7/142Constructional details of the terminal equipment, e.g. arrangements of the camera and the display

Abstract

The application provides a display device for presenting video chat content while presenting video media play content. The system specifically comprises a camera, wherein the camera is configured to collect environmental image data; a display configured to display a user interface, wherein the user interface includes a first view display area for presenting video chat content and a second view display area for presenting media play content, the media play content including live media play content or on-demand media play content; a first controller in communication with the display, configured to execute a presentation user interface, and to connect to an external device through a live media play content input channel; and the second controller is communicated with the first controller and is configured to decode the environment image data acquired by the camera, transmit the decoded environment image data to the first controller for presentation and decode the on-demand media play content.

Description

Display equipment
The present application claims a display device from 2019, month 06 and 10, and applies for a Chinese patent application with application number 201910498098.0, the content of which is incorporated herein by reference.
Technical Field
Embodiments of the present application relate to display technology. And more particularly to a dual chip display device having a camera.
Background
Currently, a display device is receiving a great deal of attention from users because it can provide a user with a play screen such as audio, video, pictures, etc. With the development of big data and artificial intelligence, the functional demands of users on display devices are increasing. For example, while the user wants to play the display screen, the user presents multiple paths of video chat screens; or, when the user is in the game scene, displaying that the participant is a real picture in real time; or, in the education application program, the user learns the current picture content and performs remote audio/video interaction with parents/teachers in real time. However, current display devices, especially household devices such as smart televisions, cannot implement the above-mentioned scenario by themselves without a built-in camera.
Therefore, there is an urgent need for a display device capable of presenting a conventional television picture and simultaneously presenting multiple video calls, so as to provide a user with a good user experience.
Disclosure of Invention
The application provides a display device for presenting video chat content while presenting video media play content. The video chat system specifically comprises a camera, wherein the camera is configured to receive video chat content; a display configured to display a user interface, wherein the user interface includes a first view display area for presenting video chat content and a second view display area for presenting media play content; a first controller in communication with the display configured to perform presenting a user interface: receiving user input, and determining the type of the user input event; and detecting an instruction of switching the live media playing content to the on-demand media playing content, which is input by a user in a second view display area, wherein the first controller is switched from a first content input channel connected with external equipment to a second content input channel connected with a second controller in the display device.
Compared with the prior art, the technical scheme provided in the exemplary embodiment of the application has the following beneficial technical effects: the video chat content acquired is presented in a first view display area of a display through a camera installed in display equipment, and is presented in live broadcast or on-demand media play content in a second view display area.
Drawings
In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, a brief description will be given below of the drawings that are needed in the embodiments or the prior art descriptions, it being obvious that the drawings in the following description are some embodiments of the present application, and that other drawings may be obtained according to these drawings without inventive effort to a person skilled in the art.
A schematic diagram of an operation scenario between a display device and a control apparatus according to an embodiment is exemplarily shown in fig. 1;
a hardware configuration block diagram of the control apparatus 100 according to the embodiment is exemplarily shown in fig. 2;
a hardware configuration block diagram of the display device 200 in one embodiment is exemplarily shown in fig. 3;
a hardware architecture block diagram of the display device 200 according to fig. 3 is exemplarily shown in fig. 4;
A functional configuration diagram of the display device 200 according to the embodiment is exemplarily shown in fig. 5;
a schematic diagram of the software configuration in the display device 200 according to an embodiment is exemplarily shown in fig. 6 a;
a schematic configuration of an application in the display device 200 according to an embodiment is exemplarily shown in fig. 6 b;
a hardware configuration block diagram of the display device 200 in one embodiment is exemplarily shown in fig. 7;
a schematic diagram of a user interface in a display device 200 according to an embodiment is schematically shown in fig. 8a-8 b;
a schematic diagram of presenting video chat content while presenting live media play content in a display device 200 according to an embodiment is exemplarily shown in fig. 9;
a schematic diagram of presenting video chat content while presenting on-demand media play content in a display device 200 according to an embodiment is illustrated in fig. 10.
Description of the embodiments
For the purposes of making the objects, technical solutions and advantages of the exemplary embodiments of the present application more apparent, the technical solutions in the exemplary embodiments of the present application will be clearly and completely described below with reference to the drawings in the exemplary embodiments of the present application, and it is apparent that the described exemplary embodiments are only some embodiments of the present application, but not all embodiments.
For convenience of use, various external device interfaces are usually provided on the display device, so as to connect different peripheral devices or cables to realize corresponding functions. When the high-definition camera is connected to the interface of the display device, if the hardware system of the display device does not have the hardware interface of the high-pixel camera for receiving the source code, the data received by the camera cannot be presented on the display screen of the display device.
Also, due to the hardware structure, the hardware system of the conventional display device only supports one path of hard decoding resource, and usually only supports video decoding with a resolution of 4K at maximum, so when video chat while watching the network television is to be implemented, in order not to reduce the definition of the network video picture, it is necessary to decode the network video using the hard decoding resource (typically, GPU in the hardware system), and in this case, only the video chat picture can be processed in such a way that the video is soft decoded by a general processor (e.g. CPU) in the hardware system.
The soft decoding is adopted to process the video chat pictures, so that the data processing load of the CPU is greatly increased, and when the data processing load of the CPU is too heavy, the problems of picture blocking or unsmooth can occur. Furthermore, due to the data processing capability of the CPU, when the video chat frame is processed by adopting the soft decoding of the CPU, the multi-channel video call cannot be realized, and when the user wants to perform video chat with a plurality of other users at the same time in the same chat scene, the situation of access blocking occurs.
Based on the above-mentioned aspects, to overcome the above-mentioned drawbacks, the present application discloses a dual hardware system architecture to implement multiple video chat data (at least one local video).
The concepts related to the present application will be described with reference to the accompanying drawings. It should be noted that the following descriptions of the concepts are only for making the content of the present application easier to understand, and do not represent a limitation on the protection scope of the present application.
The term "module" as used in various embodiments of the present application may refer to any known or later developed hardware, software, firmware, artificial intelligence, fuzzy logic, or combination of hardware or/and software code that is capable of performing the functionality associated with that element.
The term "remote control" as used in the various embodiments of the present application refers to a component of an electronic device (such as a display device as disclosed herein) that can typically wirelessly control the electronic device over a relatively short range of distances. The assembly may be connected to the electronic device generally using infrared and/or Radio Frequency (RF) signals and/or bluetooth, and may also include functional modules such as WiFi, wireless USB, bluetooth, motion sensors, etc. For example: the hand-held touch remote controller replaces most of the physical built-in hard keys in a general remote control device with a touch screen user interface.
The term "gesture" as used in embodiments of the present application refers to a user behavior that is used to express an intended idea, action, purpose, and/or result by a change in hand or motion of a hand, etc.
The term "hardware system" as used in the various embodiments of the present application may refer to a physical component comprising mechanical, optical, electrical, magnetic devices such as integrated circuits (Integrated Circuit, ICs), printed circuit boards (Printed circuit board, PCBs) with computing, control, storage, input and output functions. In various embodiments of the present application, the hardware system may also be generally referred to as a motherboard (or a chip).
A schematic diagram of an operation scenario between a display device and a control apparatus according to an embodiment is exemplarily shown in fig. 1. As shown in fig. 1, a user may operate the display apparatus 200 by controlling the device 100.
The control device 100 may be a remote controller 100A, which may communicate with the display device 200 through infrared protocol communication, bluetooth protocol communication, zigBee protocol communication, or other short-range communication, and is used to control the display device 200 through wireless or other wired modes. The user may control the display device 200 by inputting user instructions through keys on a remote control, voice input, control panel input, etc. Such as: the user can input corresponding control instructions through volume up-down keys, channel control keys, up/down/left/right movement keys, voice input keys, menu keys, on-off keys, etc. on the remote controller to realize the functions of the control display device 200.
The control apparatus 100 may also be a smart device, such as a mobile terminal 100B, a tablet, a computer, a notebook, etc., which may communicate with the display device 200 through a local area network (LAN, local Area Network), a wide area network (WAN, wide Area Network), a wireless local area network ((WLAN, wireless Local Area Network) or other networks, and control the display device 200 through an application program corresponding to the display device 200.
By way of example, both the mobile terminal 100B and the display device 200 may be provided with software applications, so that connection communication between the two may be implemented through a network communication protocol, thereby achieving the purpose of one-to-one control operation and data communication. Such as: the mobile terminal 100B and the display device 200 can be made to establish a control instruction protocol, the remote control keyboard is synchronized to the mobile terminal 100B, and the functions of controlling the display device 200 are realized by controlling the user interface on the mobile terminal 100B; the audio/video content displayed on the mobile terminal 100B may also be transmitted to the display device 200, so as to implement a synchronous display function.
As shown in fig. 1, the display device 200 may also be in data communication with the server 300 through a variety of communication means. In various embodiments of the present application, display device 200 may be permitted to communicate with server 300 via a local area network, wireless local area network, or other network. The server 300 may provide various contents and interactions to the display device 200.
By way of example, the display device 200 receives software program updates by sending and receiving information, and electronic program guide (EPG, electronic Program Guide) interactions, or accesses a remotely stored digital media library. The servers 300 may be one group, may be multiple groups, and may be one or more types of servers. Other web service content such as video on demand and advertising services are provided through the server 300.
The display device 200 may be a liquid crystal display, OLED (Organic Light Emitting Diode) display, projection display device, smart television. The particular display device type, size, resolution, etc. are not limited, and those skilled in the art will appreciate that the display device 200 may be subject to some changes in performance and configuration as desired.
The display device 200 may additionally provide an intelligent network television function of a computer support function in addition to the broadcast receiving television function. Examples include web tv, smart tv, internet Protocol Tv (IPTV), etc.
As shown in fig. 1, a camera may be connected to or disposed on the display device, so as to present a picture surface captured by the camera on a display interface of the display device or other display devices, so as to implement interactive chat between users. Specifically, the picture shot by the camera can be displayed in a full screen, a half screen or any optional area on the display device.
As an optional connection mode, the camera is connected with the display back shell through the connecting plate, is fixedly arranged in the middle of the upper side of the display back shell, and can be fixedly arranged at any position of the display back shell in a mountable mode, so that an image acquisition area of the camera can be prevented from being blocked by the back shell, for example, the display orientation of the image acquisition area is the same as that of display equipment.
As another alternative connection mode, the camera is connected with the display back shell in a liftable manner through a connection plate or other conceivable connectors, and a lifting motor is installed on the connectors, so that when a user needs to use the camera or has an application program to use the camera, the camera is lifted out of the display, and when the user does not need to use the camera, the camera can be embedded behind the back shell so as to protect the camera from damage.
As an embodiment, the camera adopted in the application can be 1600 ten thousand pixels, so as to achieve the purpose of ultra-high definition display. In practical use, cameras higher or lower than 1600 ten thousand pixels may also be used.
After the camera is installed on the display device, the contents displayed in different application scenes of the display device can be fused in a plurality of different modes, so that the function which cannot be realized by the traditional display device is achieved.
For example, a user may conduct a video chat with at least one other user while watching a video program. The presentation of the video program may be a background picture over which a window of video chat is displayed. The function is visual and can be called as 'chat while watching'.
Optionally, in the scene of "watch while chat", at least one video chat is performed across terminals while live video or network video is being watched.
In another example, a user may conduct a video chat with at least one other user while entering the educational application study. For example, students may be able to achieve remote interaction with teachers while learning content in educational applications. The function is visual and can be called as 'learning while boring'.
In another example, a user may conduct a video chat with a player entering a game while playing a card game. For example, a player may enable remote interaction with other players when entering a gaming application to participate in a game. The function is visual and can be called 'play while watching'.
Optionally, the game scene is fused with the video picture, the portrait in the video picture is scratched, and the portrait is displayed in the game picture, so that the user experience is improved.
Optionally, in somatosensory games (such as ball playing, boxing, running, dancing, etc.), the body gestures and actions are obtained through the camera, limb detection and tracking, detection of key point data of the bones of the body, and then the body gestures and actions are fused with animation in the games, so that the games of scenes such as sports, dance, etc. are realized.
In another example, a user may interact with at least one other user in a karaoke application, video and voice. The function is visual and can be called 'watch and sing'. Preferably, when at least one user enters the application in the chat scene, a plurality of users can jointly complete recording of one song.
In another example, the user may open the camera locally to take pictures and video, and the function may be referred to as "looking at the mirror".
In other examples, more functions may be added or the above functions may be reduced. The function of the display device is not particularly limited in this application.
A block diagram of the configuration of the control apparatus 100 according to the exemplary embodiment is exemplarily shown in fig. 2. As shown in fig. 3, the control device 100 includes a controller 110, a communicator 130, a user input/output interface 140, a memory 190, and a power supply 180.
The control apparatus 100 is configured to control the display device 200 and to receive an input operation instruction from a user, and to convert the operation instruction into an instruction recognizable and responsive to the display device 200, and to perform an interaction between the user and the display device 200. Such as: the user responds to the channel addition and subtraction operation by operating the channel addition and subtraction key on the control apparatus 100.
In some embodiments, the control apparatus 100 may be a smart device. Such as: the control apparatus 100 may install various applications for controlling the display device 200 according to user's needs.
In some embodiments, as shown in fig. 1, a mobile terminal 100B or other intelligent electronic device may function similarly to the control apparatus 100 after installing an application that manipulates the display device 200. Such as: the user may implement the functions of the physical keys of the control apparatus 100 by installing an application, various function keys or virtual buttons of a graphical user interface available on the mobile terminal 100B or other intelligent electronic device.
The controller 110 includes a processor 112, RAM113 and ROM114, a communication interface, and a communication bus. The controller 110 is used to control the operation and operation of the control device 100, as well as the communication collaboration among the internal components and the external and internal data processing functions.
The communicator 130 performs communication of control signals and data signals with the display device 200 under the control of the controller 110. Such as: the received user input signal is transmitted to the display device 200. The communicator 130 may include at least one of a WIFI module 131, a bluetooth module 132, an NFC module 133, and the like.
A user input/output interface 140, wherein the input interface includes at least one of a microphone 141, a touch pad 142, a sensor 143, keys 144, etc. Such as: the user can implement a user instruction input function through actions such as voice, touch, gesture, press, and the like, and the input interface converts a received analog signal into a digital signal and converts the digital signal into a corresponding instruction signal, and sends the corresponding instruction signal to the display device 200.
The output interface includes an interface that transmits the received user instruction to the display device 200. In some embodiments, an infrared interface may be used, as well as a radio frequency interface. Such as: when the infrared signal interface is used, the user input instruction needs to be converted into an infrared control signal according to an infrared control protocol, and the infrared control signal is sent to the display device 200 through the infrared sending module. And the following steps: when the radio frequency signal interface is used, the user input instruction is converted into a digital signal, and then the digital signal is modulated according to a radio frequency control signal modulation protocol and then transmitted to the display device 200 through the radio frequency transmission terminal.
In some embodiments, the control device 100 includes at least one of a communicator 130 and an output interface. The control device 100 is provided with a communicator 130 such as: the modules such as WIFI, bluetooth, NFC, etc. may send the user input instruction to the display device 200 through the WIFI protocol, or the bluetooth protocol, or the NFC protocol code.
A memory 190 for storing various operation programs, data and applications for driving and controlling the control device 100 under the control of the controller 110. The memory 190 may store various control signal instructions input by a user.
A power supply 180 for providing operating power support for the various elements of the control device 100 under the control of the controller 110. May be a battery and associated control circuitry.
A hardware configuration block diagram of a hardware system in the display device 200 according to an exemplary embodiment is exemplarily shown in fig. 3.
When the dual hardware system architecture is adopted, the organization relationship of the hardware system can be shown in fig. 3. For convenience of description, one hardware system in the dual hardware system architecture is referred to as a first hardware system or a first chip, an N system, an N chip, and the other hardware system is referred to as a second hardware system or a second chip, an a system, an a chip. The N chip comprises a controller (a first controller) of the N chip and various modules connected with the controller of the N chip through various interfaces, and the A chip comprises a controller (a second controller) of the A chip and various modules connected with the controller of the A chip through various interfaces. The a chip and the N chip may each have an independent operating system installed therein, such that there are two independent but interrelated subsystems in the display device 200.
The dual hardware system architecture of the present application is further described below with reference to fig. 4. It should be noted that fig. 4 is merely an exemplary illustration of the dual hardware system architecture of the present application, and is not meant to limit the present application. In practical applications, both hardware systems may include more or fewer hardware or interfaces as desired.
A hardware architecture block diagram of the display device 200 according to fig. 3 is exemplarily shown in fig. 4. As shown in fig. 4, the hardware system of the display device 200 may include an a-chip and an N-chip, and a module connected to the a-chip or the N-chip through various interfaces.
The N-chip may include a modem 220, a communicator 230, an external device interface 250, a controller 210, a memory 290, a user input interface, a video processor 260-1, an audio processor 260-2, a display 280, an audio output interface 270, a power supply. In other embodiments the N-chip may also include more or fewer modules.
The modem 220 is configured to perform modulation and demodulation processes such as amplification, mixing, and resonance on a broadcast television signal received by a wired or wireless manner, so as to demodulate an audio/video signal carried in a frequency of a television channel selected by a user and additional information (e.g., an EPG data signal) from a plurality of wireless or wired broadcast television signals. Depending on the broadcasting system of the television signal, the signal paths of the modem 220 may be various, such as: terrestrial broadcasting, cable broadcasting, satellite broadcasting, internet broadcasting, or the like; according to different modulation types, the signal adjustment mode can be a digital modulation mode or an analog modulation mode; and the modem 220 may demodulate analog signals and/or digital signals according to the kind of received television signals.
The tuning demodulator 220 is further configured to respond to the user-selected television channel frequency and the television signal carried by the frequency according to the user selection and controlled by the controller 210.
In other exemplary embodiments, the modem 220 may also be in an external device, such as an external set-top box, or the like. In this way, the set-top box outputs the television audio/video signal after modulation and demodulation, and inputs the television audio/video signal to the display apparatus 200 through the external device interface 250.
Communicator 230 is a component for communicating with external devices or external servers according to various communication protocol types. For example: communicator 230 may include a WIFI module 231, a bluetooth communication protocol module 232, a wired ethernet communication protocol module 233, and other network communication protocol modules such as an infrared communication protocol module or a near field communication protocol module.
The display device 200 may establish a connection of control signals and data signals with an external control device or a content providing device through the communicator 230. For example, the communicator may receive a control signal of the remote controller 100A according to the control of the controller.
The external device interface 250 is a component that provides data transfer between the N-chip controller 210 and the a-chip and other external devices. The external device interface may be connected to an external device such as a set-top box, a game device, a notebook computer, etc., in a wired/wireless manner, and may receive data such as a video signal (e.g., a moving image), an audio signal (e.g., music), additional information (e.g., an EPG), etc., of the external device.
Among other things, the external device interface 250 may include: any one or more of a High Definition Multimedia Interface (HDMI) terminal 251, a Composite Video Blanking Sync (CVBS) terminal 252, an analog or digital component terminal 253, a Universal Serial Bus (USB) terminal 254, a Red Green Blue (RGB) terminal (not shown), and the like. The present application is not limited in the number and type of external device interfaces.
The controller 210, i.e., the first controller, controls the operation of the display device 200 and responds to user operations by running various software control programs (e.g., an operating system and/or various application programs) stored on the memory 290.
As shown in fig. 4, the controller 210 includes a read only memory RAM213, a random access memory ROM214, a graphics processor 216, a CPU processor 212, a communication interface 218, and a communication bus. The RAM213 and the ROM214 are connected to the graphics processor 216, the CPU processor 212, and the communication interface 218 via buses.
A ROM213 for storing instructions for various system starts. When the power of the display device 200 starts to be started when the power-on signal is received, the CPU processor 212 executes a system start instruction in the ROM, and copies the operating system stored in the memory 290 into the RAM214 to start to run the start-up operating system. When the operating system is started, the CPU processor 212 copies various applications in the memory 290 to the RAM214, and then starts running the various applications.
A graphics processor 216 for generating various graphical objects, such as: icons, operation menus, user input instruction display graphics, and the like. The device comprises an arithmetic unit, wherein the arithmetic unit is used for receiving various interaction instructions input by a user to carry out operation and displaying various objects according to display attributes. And a renderer that generates various objects based on the results of the operator, and displays the results of rendering on the display 280.
CPU processor 212 is operative to execute operating system and application program instructions stored in memory 290. And executing various application programs, data and contents according to various interactive instructions received from the outside, so as to finally display and play various audio and video contents.
In some exemplary embodiments, the CPU processor 212 may include multiple processors. One of the plurality of processors may include one main processor, and a plurality of or one sub-processor. A main processor for performing some operations of the display apparatus 200 in the pre-power-up mode and/or displaying a picture in the normal mode. A plurality of or a sub-processor for performing an operation in a standby mode or the like.
The communication interfaces may include first interface 218-1 through nth interface 218-n. These interfaces may be network interfaces that are connected to external devices via a network.
The controller 210 may control the overall operation of the display apparatus 200. For example: in response to receiving a user command to select a UI object to be displayed on the display 280, the controller 210 may perform an operation related to the object selected by the user command.
Wherein the object may be any one of selectable objects, such as a hyperlink or an icon. Operations related to the selected object, such as: operations to connect to a hyperlink page, document, image, etc., or operations to execute a program corresponding to an icon are displayed. The user command for selecting the UI object may be an input command through various input means (e.g., mouse, keyboard, touch pad, etc.) connected to the display device 200 or a voice command corresponding to a voice uttered by the user.
Memory 290 includes memory for storing various software modules for driving and controlling display device 200. Such as: various software modules stored in memory 290, including: a basic module, a detection module, a communication module, a display control module, a browser module, various service modules and the like.
The base module is a bottom software module for signal communication between the various hardware in the display device 200 and for sending processing and control signals to the upper modules. The detection module is a management module for collecting various information from various sensors or user input interfaces, and performing digital-to-analog conversion and analysis management.
For example: the voice recognition module comprises a voice analysis module and a voice instruction database module. The display control module is a module for controlling the display 280 to display image content, and can be used for playing multimedia image content, UI interface and other information. The communication module is used for controlling and data communication with external equipment. The browser module is a module for performing data communication between the browsing servers. The service module is used for providing various services and various application programs.
Meanwhile, the memory 290 is also used to store received external data and user data, images of various items in various user interfaces, visual effect maps of focus objects, and the like.
A user input interface for transmitting an input signal of a user to the controller 210 or transmitting a signal output from the controller to the user. Illustratively, the control device (e.g., mobile terminal or remote control) may send input signals such as power switch signals, channel selection signals, volume adjustment signals, etc., input by the user to the user input interface, which may then be forwarded to the controller; alternatively, the control device may receive an output signal such as audio, video, or data, which is output from the user input interface via the controller, and display the received output signal or output the received output signal in the form of audio or vibration.
In some embodiments, a user may input a user command through a Graphical User Interface (GUI) displayed on the display 280, and the user input interface receives the user input command through the Graphical User Interface (GUI). Alternatively, the user may input the user command by inputting a specific sound or gesture, and the user input interface recognizes the sound or gesture through the sensor to receive the user input command.
The video processor 260-1 is configured to receive a video signal, and perform video data processing such as decompression, decoding, scaling, noise reduction, frame rate conversion, resolution conversion, and image composition according to a standard codec protocol of an input signal, so as to obtain a video signal that is directly displayed or played on the display 280.
The video processor 260-1, by way of example, includes a demultiplexing module, a video decoding module, an image compositing module, a frame rate conversion module, a display formatting module, and the like.
The demultiplexing module is used for demultiplexing the input audio/video data stream, such as the input MPEG-2, and demultiplexes the input audio/video data stream into video signals, audio signals and the like.
And the video decoding module is used for processing the demultiplexed video signal, including decoding, scaling and the like.
And an image synthesis module, such as an image synthesizer, for performing superposition mixing processing on the graphic generator and the video image after the scaling processing according to the GUI signal input by the user or generated by the graphic generator, so as to generate an image signal for display.
A frame rate conversion module, configured to convert a frame rate of an input video, such as converting a frame rate of an input 24Hz, 25Hz, 30Hz, 60Hz video to a frame rate of 60Hz, 120Hz, or 240Hz, where the input frame rate may be related to a source video stream and the output frame rate may be related to an update rate of a display. The input is carried out in a usual format such as a frame inserting mode.
And a display formatting module for converting the signal output by the frame rate conversion module into a signal conforming to a display format such as a display, for example, format converting the signal output by the frame rate conversion module to output an RGB data signal.
A display 280 for receiving image signals from the video processor 260-1 for displaying video content and images and a menu manipulation interface. The display 280 includes a display assembly for presenting pictures and a drive assembly for driving the display of images. The video content may be displayed from a video in a broadcast signal received by the modem 220 or may be displayed from a video input from a communicator or an external device interface. And a display 220 simultaneously displaying a user manipulation interface UI generated in the display device 200 and used to control the display device 200.
And, depending on the type of display 280, a drive assembly for driving the display. Alternatively, if the display 280 is a projection display, a projection device and projection screen may be included.
The audio processor 260-2 is configured to receive the audio signal, decompress and decode according to the standard codec protocol of the input signal, and perform audio data processing such as noise reduction, digital-to-analog conversion, and amplification processing, so as to obtain an audio signal that can be played in the speaker 272.
An audio output interface 270 for receiving the audio signal output from the audio processor 260-2 under the control of the controller 210, where the audio output interface may include a speaker 272 or an external audio output terminal 274 for outputting to a generating device of an external device, such as: external sound terminals or earphone output terminals, etc.
In other exemplary embodiments, video processor 260-1 may include one or more chip components. The audio processor 260-2 may also include one or more chip components.
And, in other exemplary embodiments, the video processor 260-1 and the audio processor 260-2 may be separate chips or integrated with the controller 210 in one or more chips.
And a power supply for providing power supply support for the display device 200 with power inputted from an external power supply under the control of the controller 210. The power supply may include a built-in power circuit installed inside the display apparatus 200, or may be a power supply installed outside the display apparatus 200, such as a power interface providing an external power supply in the display apparatus 200.
Similar to the N chip, the A chip may include a controller 310, a communicator 330, a detector 340, and a memory 390, as shown in FIG. 4. A user input interface, a video processor, an audio processor, a display, an audio output interface may also be included in some embodiments. In some embodiments, there may also be a power supply that independently powers the a-chip.
The communicator 330 is a component for communicating with external devices or external servers according to various communication protocol types. For example: the communicator 330 may include a WIFI module 331, a bluetooth communication protocol module 332, a wired ethernet communication protocol module 333, and other network communication protocol modules such as an infrared communication protocol module or a near field communication protocol module.
The a-chip communicator 330 and the N-chip communicator 230 also interact with each other. For example, the WiFi module 231 of the N chip is used to connect to an external network, and generate network communication with an external server or the like. The WiFi module 331 of the a chip is used to connect to the WiFi module 231 of the N chip without making a direct connection with an external network or the like. Thus, for the user, a display device as in the above embodiment displays a WiFi account to the outside.
The detector 340 is a component of the display device a chip for collecting signals of the external environment or interacting with the outside. The detector 340 may include a light receiver 342, a sensor for capturing ambient light intensity, a display parameter change that may be adapted by capturing ambient light, etc.; the system can also comprise an image collector 341, such as a camera, a video camera and the like, which can be used for collecting external environment scenes, collecting attributes of a user or interacting gestures with the user, adaptively changing display parameters and identifying the gestures of the user so as to realize the interaction function with the user.
An external device interface 350 provides components for data transfer between the controller 310 and the N-chip or other external devices. The external device interface may be connected with external apparatuses such as a set-top box, a game device, a notebook computer, and the like in a wired/wireless manner.
The controller 310, in turn, the second controller, controls the operation of the display device 200 and responds to user operations by running various software control programs stored on the memory 390 (e.g., with an installed third party application, etc.), as well as interactions with the N-chip.
As shown in fig. 4, the controller 310 includes a read only memory ROM313, a random access memory RAM314, a graphics processor 316, a CPU processor 312, a communication interface 318, and a communication bus. The ROM313 and RAM314, and the graphics processor 316, CPU processor 312, and communication interface 318 are connected by a bus.
A ROM313 for storing instructions for various system starts. The CPU processor 312 runs the system boot instructions in ROM and copies the operating system stored in the memory 390 into the RAM314 to begin running the boot operating system. When the operating system is started, the CPU processor 312 copies various applications in the memory 390 to the RAM314, and then starts running the various applications.
The CPU processor 312 is configured to execute instructions of an operating system and applications stored in the memory 390, and to communicate with the N chip, transmit and interact with signals, data, instructions, etc., and execute various applications, data, and contents according to various interaction instructions received from the outside, so as to finally display and play various audio and video contents.
The communication interfaces may include first interface 318-1 through nth interface 318-n. These interfaces may be network interfaces connected to external devices via a network, or network interfaces connected to an N-chip via a network.
The controller 310 may control the overall operation of the display apparatus 200. For example: in response to receiving a user command to select a UI object to be displayed on the display 280, the controller 210 may perform an operation related to the object selected by the user command.
A graphics processor 316 for generating various graphical objects, such as: icons, operation menus, user input instruction display graphics, and the like. The device comprises an arithmetic unit, wherein the arithmetic unit is used for receiving various interaction instructions input by a user to carry out operation and displaying various objects according to display attributes. And a renderer that generates various objects based on the results of the operator, and displays the results of rendering on the display 280.
Both the a-chip graphics processor 316 and the N-chip graphics processor 216 are capable of generating various graphics objects. By distinction, if application 1 is installed on the a-chip and application 2 is installed on the N-chip, the a-chip graphics processor 316 generates a graphical object when the user makes a user input instruction at the interface of application 1 and within application 1. When the user is at the interface of application 2 and the instruction of the user input is made within application 2, a graphical object is generated by the graphics processor 216 of the N-chip.
A functional configuration diagram of a display device according to an exemplary embodiment is exemplarily shown in fig. 5.
As shown in fig. 5, the a-chip memory 390 and the N-chip memory 290 are used to store an operating system, application programs, contents, user data, and the like, respectively, and perform system operations for driving the display device 200 and various operations in response to a user under the control of the a-chip controller 310 and the N-chip controller 210. Memory 390 of the a-chip and memory 290 of the N-chip may include volatile and/or nonvolatile memory.
For the N chip, the memory 290 is specifically used for storing an operation program for driving the controller 210 in the display device 200, and storing various application programs built in the display device 200, various application programs downloaded by a user from an external device, various graphic user interfaces related to the application programs, various objects related to the graphic user interfaces, user data information, and various internal data supporting the application programs. The memory 290 is used to store system software such as an Operating System (OS) kernel, middleware and applications, and to store input video data and audio data, as well as other user data.
Memory 290 is specifically used to store drivers and related data for video processor 260-1 and audio processor 260-2, display 280, communicator 230, modem 220, input/output interfaces, and the like.
In some embodiments, memory 290 may store software and/or programs, the software programs used to represent an Operating System (OS) including, for example: a kernel, middleware, an Application Programming Interface (API), and/or an application program. For example, the kernel may control or manage system resources, or functions implemented by other programs (such as the middleware, APIs, or application programs), and the kernel may provide interfaces to allow the middleware and APIs, or applications to access the controller to implement control or management of system resources.
By way of example, the memory 290 includes a broadcast receiving module 2901, a channel control module 2902, a volume control module 2903, an image control module 2904, a display control module 2905, an audio control module 2906, an external instruction recognition module 2907, a communication control module 2908, a light receiving module 2909, a power control module 2910, an operating system 2911, and other applications 2912, a browser module, and the like. The controller 210 executes various software programs in the memory 290 such as: broadcast television signal receiving and demodulating functions, television channel selection control functions, volume selection control functions, image control functions, display control functions, audio control functions, external instruction recognition functions, communication control functions, optical signal receiving functions, power control functions, software control platforms supporting various functions, browser functions and other various functions.
Memory 390 includes storage for various software modules for driving and controlling display device 200. Such as: various software modules stored in memory 390, including: a basic module, a detection module, a communication module, a display control module, a browser module, various service modules and the like. Since the functions of the memory 390 and the memory 290 are similar, the relevant portions will be referred to as the memory 290, and will not be described herein.
By way of example, memory 390 includes an image control module 3904, an audio control module 2906, an external instruction recognition module 3907, a communication control module 3908, a light receiving module 3909, an operating system 3911, and other application programs 3912, a browser module, and so forth. The controller 210 executes various software programs in the memory 290 such as: image control function, display control function, audio control function, external instruction recognition function, communication control function, optical signal receiving function, power control function, software control platform supporting various functions, browser function and other various functions.
Differentially, the N-chip external instruction recognition module 2907 and the a-chip external instruction recognition module 3907 may recognize different instructions.
For example, since the image receiving device such as a camera is connected to the a chip, the external command recognition module 3907 of the a chip may include a graphic recognition module 2907-1, where a graphic database is stored in the graphic recognition module 3907-1, and when the camera receives an external graphic command, the camera performs a correspondence with the command in the graphic database to perform command control on the display device. Since the voice receiving device and the remote controller are connected with the N chip, the external command recognition module 2907 of the N chip may include a voice recognition module 2907-2, where a voice database is stored in the voice recognition module 2907-2, and when the voice receiving device receives an external voice command or when the voice receiving device receives an external voice command, the voice receiving device performs a corresponding relationship with the command in the voice database, so as to perform command control on the display device. Similarly, the control device 100 such as a remote controller is connected to the N chip, and the key instruction recognition module performs instruction interaction with the control device 100.
A block diagram of the configuration of the software system in the display device 200 according to an exemplary embodiment is schematically shown in fig. 6 a.
For an N-chip, as shown in fig. 6a, operating system 2911, which includes executing operating software for handling various basic system services and for performing hardware-related tasks, acts as a medium for completing data processing between applications and hardware components.
In some embodiments, portions of the operating system kernel may contain a series of software to manage display device hardware resources and to serve other programs or software code.
In other embodiments, portions of the operating system kernel may contain one or more device drivers, which may be a set of software code in the operating system that helps operate or control the devices or hardware associated with the display device. The driver may contain code to operate video, audio and/or other multimedia components. Examples include a display, camera, flash, wiFi, and audio drivers.
Wherein, accessibility module 2911-1 is configured to modify or access an application program to realize accessibility of the application program and operability of display content thereof.
The communication module 2911-2 is used for connecting with other peripheral devices via related communication interfaces and communication networks.
User interface module 2911-3 is configured to provide an object for displaying a user interface for access by each application program, so as to implement user operability.
Control applications 2911-4 are used to control process management, including runtime applications, and the like.
The event delivery system 2914 may be implemented within the operating system 2911 or in the application 2912. In some embodiments, one aspect is implemented within the operating system 2911, while the application 2912 is implemented to monitor various user input events, and to refer to a process program that implements one or more sets of predefined operations in response to recognition results of various events or sub-events, based on the various events.
The event monitoring module 2914-1 is configured to monitor a user input interface to input an event or a sub-event.
The event recognition module 2914-1 is configured to input definitions of various events to various user input interfaces, recognize various events or sub-events, and transmit them to a process for executing one or more corresponding sets of processes.
The event or sub-event refers to an input detected by one or more sensors in the display device 200, and an input of an external control device (such as the control apparatus 100). Such as: various sub-events are input through voice, gesture input sub-events of gesture recognition, sub-events of remote control key instruction input of a control device and the like. By way of example, one or more sub-events in the remote control may include a variety of forms including, but not limited to, one or a combination of key press up/down/left/right/, ok key, key press, etc. And operations of non-physical keys, such as movement, holding, releasing, etc.
The interface layout management module 2913 directly or indirectly receives the user input events or sub-events from the event transmission system 2914, and is used for updating the layout of the user interface, including but not limited to the positions of the controls or sub-controls in the interface, and various execution operations related to the interface layout, such as the size or position of the container, the level, and the like.
Since the functions of the operating system 3911 of the a chip and the operating system 2911 of the N chip are similar, the relevant parts only need to be referred to the operating system 2911, and the description thereof will be omitted.
As shown in fig. 6b, the application layer of the display device contains various applications that may be executed on the display device 200.
The N-chip application layer 2912 may include, but is not limited to, one or more applications such as: video on demand applications, application centers, gaming applications, etc. The application layer 3912 of the a-chip may include, but is not limited to, one or more applications such as: live television applications, media center applications, etc. It should be noted that what application programs are respectively contained on the a chip and the N chip are determined according to the operating system and other designs, and the invention does not need to specifically limit and divide the application programs contained on the a chip and the N chip.
Live television applications can provide live television through different signal sources. For example, a live television application may provide television signals using inputs from cable television, radio broadcast, satellite services, or other types of live television services. And, the live television application may display video of the live television signal on the display device 200.
Video on demand applications may provide video from different storage sources. Unlike live television applications, video-on-demand provides video displays from some storage sources. For example, video-on-demand may come from the server side of cloud storage, from a local hard disk storage containing stored video programs.
The media center application may provide various applications for playing multimedia content. For example, a media center may be a different service than live television or video on demand, and a user may access various images or audio through a media center application.
An application center may be provided to store various applications. The application may be a game, an application, or some other application associated with a computer system or other device but operable on a display device. The application center may obtain these applications from different sources, store them in local storage, and then be run on the display device 200.
As shown in fig. 7, the a chip and the N chip may be connected, communicated, and powered through a plurality of different types of interfaces. The interface types of the interface between the a chip and the N chip may include General-purpose input/output (GPIO), USB interface, HDMI interface, UART interface, and the like. One or more of these interfaces may be used between the a-chip and the N-chip for communication or power transfer. For example, as shown in fig. 7, in the dual hardware system architecture, the power may be supplied to the N chip by an external power source (power), while the power may be supplied to the a chip by the N chip instead of the external power source.
The a chip may contain interfaces for connecting other devices or components, such as MIPI (mobile industry processor interface) interface for connecting a Camera (Camera), bluetooth interface, USB interface, etc. shown in fig. 7, in addition to the interface for connecting with the N chip.
Similarly, the N chip may include, in addition to an interface for connecting with the N chip, a VBY interface for connecting with the display TCON (Timer Control Register), an i2S interface for connecting with a power Amplifier (AMP) and a Speaker (Speaker); and IR/Key interfaces, USB interfaces, wifi interfaces, bluetooth interfaces, HDMI interfaces, tuner interfaces, etc.
In one embodiment, the user may also chat with video while watching live video. For the N chip, the device for providing the live media playing content through the HDMI2.0 external device shown in fig. 7, such as a set top box, etc., so the N chip is generally used to present the live video.
The live media playing content is directly decoded by the set top box or the broadcast television, and the hardware decoding resources of the N chips are not required to be occupied, so that the data received by the cameras can be decoded by the hardware resources of the N chips when video chat is performed while watching the live television.
In one embodiment, a user may conduct video chat while watching a network video. In such a scenario, the network or third party application provides video-on-demand, the data of which requires hardware decoding resources to decode. And the data received from the camera also requires hardware decoding. Therefore, if an application scene of video chat while watching network video is to be realized, the data received by the camera and the network video resource need to be decoded on two chips respectively.
When the data received by the camera is decoded by the hardware of the N chips, the A chip can decode the video on demand by the hardware. Therefore, on the setting of the application program, the a chip is used for storing and running the third party video on demand application. As shown in fig. 7, the HDMI line between the a chip and the N chip is used to transmit video-on-demand or data of a third party application. Wherein the HDMI line is not visible to the user. In addition, the HDMI line is only an optional data transmission method, but is not limited to data transmission using the HDMI line.
Therefore, the hardware construction shown in fig. 7 can realize either a scenario of watching live tv while performing video chat or watching web tv while performing video chat, and the hardware decoding capability of the a chip and the N chip is not affected.
In addition, as shown in fig. 7, a USB cable may be connected between the a chip and the N chip, where the USB cable is used to transmit the video data received by the camera to the N chip for decoding by hardware and rendering on a display. The camera is connected with the end of the A chip, and the connection between the A chip and the camera can be through an MIPI interface or a USB interface.
In the scene of video chat while network chat, on-demand resources of the third-party video application in the A chip are transmitted to the N chip through the HDMI line and finally presented on the display. The data of the camera received by the chip A is transmitted to the chip N through the USB wire and is displayed on the display after being decoded.
Since the a chip and the N chip may be respectively provided with independent operating systems, two independent subsystems but associated with each other exist in the display device 200. For example, android and various types of APP can be independently installed on the A chip and the N chip, so that each chip can achieve a certain function, and the A chip and the N chip can cooperatively achieve a certain function.
The display device selects one of the plurality of HDMI data to be displayed. That is, when a user views live media play content in an HDMI2.0 channel, other media play content cannot be viewed through another HDMI channel. However, since the video chat content is not connected through the HDMI channel, the video chat content can be displayed at the same time regardless of what type of media content is currently being played.
A schematic diagram of a user interface in a display device 200 according to an exemplary embodiment is schematically shown in fig. 8 a. As shown in fig. 8a, the user interface comprises a plurality of view display areas, illustratively a first view display area 201 and a second view display area 202, wherein the second view display area comprises a layout of one or more different items. And a selector in the user interface indicating that an item is selected, the position of the selector being movable by user input to change selection of a different item.
It should be noted that, the multiple view display areas may present a display screen of the application program. For example, the first view display area 201 may present video chat item content, where the first view display area 201 includes a local view display area displaying local camera acquisition data and a remote view display area, and the second view display area 202 may present application layer item content (e.g., live video, web video, VOD presentation, application screen, etc.).
In some embodiments, as shown in fig. 8b, the user may turn off the video content of the local view display area, leaving only the remote video data of the second remote view display area and the content of the third view display area. In this case, it is detected that the user closes the local view display area, and the camera is automatically closed.
Alternatively, for fig. 8a, 8b, the presentation of the different view display areas has a priority difference, and the display priorities of the view display areas are different between the view display areas with different priorities. For example, the local view display area 2011 and the remote view display area 2012 have higher priority than the second view display area 202, and when the user uses the acquisition selector and the screen switch in the second view display area 202, the screen presentation of the first view display area 201 is not blocked; and when the size and position of the third view display area are changed according to the selection of the user, the sizes and positions of the first view display area 201 and the second view display area 202 are not affected.
The display screens of the same priority may also be presented, at which time the selector may switch between the first view display area and the second view display area, and the size and position of the second view display area may change as the size and position of the first view display area changes.
As one example, the first and second view display regions may present video chat item content and the second view display region may present application layer item content (e.g., live video, web video, VOD presentation, application screen, etc.).
As shown in fig. 9, in some embodiments, when a user opens a video chat application, a video chat interface is presented in a first view display area, and a second view display area can be accessed to an external device through HDMI2.0 to present live media play content; when receiving an instruction of switching to video-on-demand input by a user, the second view display area presents the content of the media-on-demand play through a second controller connected with the HDMI 1.0.
The application provides a display device for presenting video chat content while presenting video media play content. The system specifically comprises a camera, wherein the camera is configured to collect environmental image data;
a display configured to display a user interface, wherein the user interface includes a first view display area for presenting video chat content and a second view display area for presenting media play content including live media play content or on-demand media play content;
A first controller in communication with the display, configured to execute a presentation user interface, and to connect to an external device through a live media play content input channel;
a second controller in communication with the first controller and configured to decode the ambient image data collected by the camera, and to transmit the decoded ambient image data to the first controller for presentation, and to decode the on-demand media play content; the first controller is further configured to: receiving user input, and determining the type of the user input event; and detecting an instruction which is input by a user in a second view display area and is used for switching from the live media playing content to the on-demand media playing content, wherein the first controller is switched from a first content input channel connected with external equipment to a second content input channel connected with a second controller in the display device.
All other embodiments, which can be made by one of ordinary skill in the art without undue burden from the present application, are intended to be within the scope of the present application based on the exemplary embodiments shown in the present application. Furthermore, while the disclosure has been presented in terms of an exemplary embodiment or embodiments, it should be understood that various aspects of the disclosure can be practiced separately from the disclosure in a complete subject matter.
It should be understood that the terms "first," "second," "third," and the like in the description and in the claims and in the above-described figures are used for distinguishing between similar objects and not necessarily for describing a particular sequential or chronological order. It is to be understood that the data so used may be interchanged where appropriate, such as where appropriate, for example, implementations other than those illustrated or described in accordance with embodiments of the present application.
Furthermore, the terms "comprise" and "have," and any variations thereof, are intended to cover a non-exclusive inclusion, such that a product or apparatus that comprises a list of elements is not necessarily limited to those elements expressly listed, but may include other elements not expressly listed or inherent to such product or apparatus.
Finally, it should be noted that: the above embodiments are only for illustrating the technical solution of the present application, and not for limiting the same; although the present application has been described in detail with reference to the foregoing embodiments, it should be understood by those of ordinary skill in the art that: the technical scheme described in the foregoing embodiments can be modified or some or all of the technical features thereof can be replaced by equivalents; such modifications and substitutions do not depart from the spirit of the corresponding technical solutions from the scope of the technical solutions of the embodiments of the present application.

Claims (9)

1. A display device running a video chat-related application and a video on demand application, comprising:
a display configured to display a user interface;
an external device interface, wherein the external device interface is used for connecting the display equipment and an external device, so that the display equipment body receives live media play content of the external device and presents the live media play content on the display;
a controller configured to:
after receiving a video chat request sent by a mobile terminal, responding to input of a user, controlling the display to display a user interface comprising a first window and a second window, wherein the first window is used for displaying video chat content in a small window, and the second window is used for displaying on-demand media play content in a full screen; wherein the first window and the second window are positioned on different layers, and the first window floats on the second window for display;
responding to an instruction of a user for switching media playing content, switching the second window from displaying playing on-demand media playing content to displaying live media playing content, wherein the second window does not shade video chat content presented by the first window in the playing content switching process;
Presenting the live media play content in a full screen manner in the second window; and maintaining the first window floating from the second window to present video chat content.
2. The display device of claim 1, wherein each of the windows includes a layout of one or more different items, wherein the second window further includes a selector therein indicating that the item is selected, the position of the selector in the user interface being movable by user input to cause selection of a different one of the items.
3. The display device of claim 1, wherein the first window comprises at least one remote video display window for presenting image data acquired by a camera of the mobile device.
4. The display device of claim 1, wherein the display device comprises a display device,
the display device further comprises a camera and/or an image acquisition interface;
the video chat content comprises image data sent by the mobile terminal and/or local environment image data collected by the camera.
5. The display device of claim 1, wherein the display device comprises a display device,
the display device further comprises a camera and/or an image acquisition interface;
The first window further comprises a local view display area acquired by the camera, and the local view display area is used for presenting the environment image data acquired by the camera.
6. The display device of claim 1, wherein the first window and the second window are in different layers and the first window floats from the second window for display, specifically comprising,
and the display priority of the first window is higher than that of the second window, and when a user uses a selector to perform focus movement and picture switching in the second window, the picture display of the middle video chat content of the first window is not blocked.
7. The display device of claim 1, wherein the display device comprises a display device,
the display device of claim 1, wherein the display device comprises a display device,
and receiving a window switching instruction input by a user, and controlling the first window and the second window to switch the size and the position, wherein when the size and the position of the first window are changed, the size and the position of the second window are correspondingly changed.
8. The display device of claim 1, wherein the display device comprises a display device,
the controller comprises a first controller and a second controller, wherein,
a first controller in communication with the display, configured to execute a presentation user interface, and to connect to an external device through a live media play content input channel;
And the second controller is communicated with the first controller and is configured to decode the environment image data acquired by the camera, transmit the decoded environment image data to the first controller for presentation and decode the on-demand media play content.
9. The display device of claim 8, wherein the display device further comprises a display device,
the environment image data is transmitted to the first controller through the second controller, and is decoded and presented by the first controller; and after the on-demand media playing content is decoded by the second controller, the on-demand media playing content is transmitted to the first controller and is presented in the second window.
CN201910723241.1A 2019-06-10 2019-08-06 Display equipment Active CN112073763B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/081122 WO2020248650A1 (en) 2019-06-10 2020-03-25 Display apparatus
PCT/CN2020/092203 WO2020248810A1 (en) 2019-06-10 2020-05-26 Display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019104980980 2019-06-10
CN201910498098 2019-06-10

Publications (2)

Publication Number Publication Date
CN112073763A CN112073763A (en) 2020-12-11
CN112073763B true CN112073763B (en) 2023-05-12

Family

ID=73658706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910723241.1A Active CN112073763B (en) 2019-06-10 2019-08-06 Display equipment

Country Status (1)

Country Link
CN (1) CN112073763B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101687615B1 (en) * 2010-10-15 2016-12-19 엘지전자 주식회사 Method for providing telephone service in network tv and the network tv
CN102075799A (en) * 2010-12-31 2011-05-25 中国华录集团有限公司 Set top box system capable of realizing video telephone function in cable television network
CN102158764A (en) * 2011-05-27 2011-08-17 冠捷显示科技(厦门)有限公司 Television capable of simultaneously playing television program and having video call and realizing method thereof
CN103269445B (en) * 2013-05-17 2016-09-21 张一帆 Intelligent television system control method

Also Published As

Publication number Publication date
CN112073763A (en) 2020-12-11

Similar Documents

Publication Publication Date Title
CN113330736B (en) Display and image processing method
CN112073797B (en) Volume adjusting method and display device
CN112073788B (en) Video data processing method and device and display equipment
CN112073662A (en) Display device
CN112073795B (en) Video data processing method and device and display equipment
CN111385631B (en) Display device, communication method and storage medium
CN112068741B (en) Display device and display method for Bluetooth switch state of display device
CN112995733A (en) Display device, device discovery method and storage medium
CN113448529B (en) Display apparatus and volume adjustment method
CN112073776B (en) Voice control method and display device
CN112073777B (en) Voice interaction method and display device
CN112073666B (en) Power supply control method of display equipment and display equipment
CN112073812B (en) Application management method on smart television and display device
CN112463267B (en) Method for presenting screen saver information on display device screen and display device
CN112073803B (en) Sound reproduction method and display device
CN112073769A (en) Display device and method for applying common display
CN112073763B (en) Display equipment
CN112073808A (en) Color space switching method and display device
CN112071338A (en) Recording control method and device and display equipment
CN112071312B (en) Voice control method and display device
CN112073772B (en) Key seamless transmission method based on dual systems and display equipment
CN112073796B (en) Image motion compensation method and display device
CN113727163B (en) Display device
CN112995113B (en) Display device, port control method and storage medium
CN112399223B (en) Method for improving moire fringe phenomenon and display device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant