CN112072943A - 一种消除奇数次开关谐波的h桥型逆变电源pwm调制方法 - Google Patents

一种消除奇数次开关谐波的h桥型逆变电源pwm调制方法 Download PDF

Info

Publication number
CN112072943A
CN112072943A CN201911180141.5A CN201911180141A CN112072943A CN 112072943 A CN112072943 A CN 112072943A CN 201911180141 A CN201911180141 A CN 201911180141A CN 112072943 A CN112072943 A CN 112072943A
Authority
CN
China
Prior art keywords
signal
switch tube
switching
tube
bridge inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911180141.5A
Other languages
English (en)
Other versions
CN112072943B (zh
Inventor
吴钫
魏华
郑中祥
李保群
吴大立
姜波
陈涛
罗伟
耿攀
蔡凯
李锐
吴浩伟
孔祥伟
李小谦
李可维
李鹏
蔡久青
汪文涛
邓磊
金翔
张鹏程
张炜龙
张正卿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
719th Research Institute of CSIC
Original Assignee
719th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 719th Research Institute of CSIC filed Critical 719th Research Institute of CSIC
Priority to CN201911180141.5A priority Critical patent/CN112072943B/zh
Publication of CN112072943A publication Critical patent/CN112072943A/zh
Application granted granted Critical
Publication of CN112072943B publication Critical patent/CN112072943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种用于消除奇数次开关频率谐波的H桥型逆变电源PWM调制方法,所述H桥型逆变电源包括三相组合式H桥逆变电路,每相H桥逆变电路包括:第一开关管S1、第二开关管S2、第三开关管S3、第四开关管S4,所述第一开关管S1、第二开关管S2彼此串联后形成超前桥臂,第三开关管S3和第四开关管S4彼此串联后形成互补桥臂。本发明可实现对数字对称规则采样引起的奇数次开关频率谐波的抑制。本发明提出的PWM调制方法不需要通过提高控制器控制频率进行多重采样,即可达到在单个载波周期更新两次占空比信号的目的,降低了对控制系统计算实时性的要求。在同等控制频率下可以减小设备的高频电磁振动和噪声,减小输出滤波器的体积和容量。

Description

一种消除奇数次开关谐波的H桥型逆变电源PWM调制方法
技术领域
本发明涉及电力电子变流器控制领域,具体涉及一种H桥型直流-交流逆变电源PWM脉冲宽度调制方法。
背景技术
逆变电源作为直流-交流电能变换装置,是衔接直流电源与公用交流电网或负载的关键接口。随着能源需求量的增加和电力电子技术的发展,大功率、高性能的逆变电源被广泛应用于各类电力系统中。而由于大功率开关型器件性能的限值,其开关频率受限,其控制性能也会受到极大的制约。运用载波移相、单极性倍频等先进脉冲宽度调制方式,可提高电力电子变流器的等效开关频率,改善输出电能质量。
针对H桥型逆变电源,自然采样单极性倍频调制方式理论上可使等效开关频率提高一倍。但随着DSP(数字信号处理器)或FPGA(现场可编程逻辑门阵列)等数字控制器的普及应用,PWM调制波形将被离散化,引起逆变电源的输出电压或电流中将会包含有开关频率奇数倍次特征谐波,单极性倍频调制方式的输出性能被弱化。这些高频谐波将会引起磁性元器件的电磁振动,造成设备损耗增大,滤波装置容量增加等不利影响。
发明内容
本发明目的是为了克服H桥型逆变电源数字采样单极性倍频调制方式性能弱化、数字控制器处理能力受限等问题。提高逆变电源输出交流稳态品质和控制系统时延稳定性,消除奇数次开关频率谐波,减小设备电磁振动和噪声。
一种消除奇数次开关谐波的H桥型逆变电源PWM调制方法,所述H桥型逆变电源包括三相H桥逆变电路,每相H桥逆变电路包括:第一开关管S1、第二开关管S2、第三开关管S3、第四开关管S4,所述第一开关管S1、第二开关管S2彼此串联后形成超前桥臂,第三开关管S3和第四开关管S4彼此串联后形成互补桥臂,其特征在于,
所述方法包括通过控制模块产生PWM驱动信号给所述三相H桥逆变电路的开关管,
其中,所述控制模块生成用于PWM驱动信号的正弦占空比调制信号以及三角载波信号,其中,第i相第k个载波周期的正弦占空比调制信号为:
Figure BDA0002291032230000021
其中,M为调制比,f0为基波调制频率,fs为控制频率,k为当前载波周期拍数,
Figure BDA0002291032230000022
表示第i相调制信号移相角度;
该信号用于在第(k+1)个载波周期中三角载波波峰处装载,进而与三角载波信号进行比较并输出给超前桥臂及其互补桥臂的开关管,若正弦波调制信号大于等于三角载波信号,则输出高电平给第一开关管S1、第四开关管S4,低电平给第二开关管S2、第三开关管S3,否则反之;
第(k-1)个载波周期保存的正弦占空比调制信号为:
Figure BDA0002291032230000031
根据第k个载波周期和第(k-1)个载波周期的正弦占空比调制信号进行计算得到插值信号为;
Uri_ave(k)=0.5[Ur(k)+Ur(k-1)]
该插值信号用于在第(k+1)个载波周期中三角载波波谷处装载替换正弦占空比调制信号,进而与三角载波信号进行比较并输出给超前桥臂及其互补桥臂的开关管,若所装载信号高于等于三角载波信号,则输出高电平给第一开关管S1、第四开关管S4,低电平给第二开关管S2、第三开关管S3,否则反之。
相比于现有技术,本发明具有如下优点:
(1)可有效消除对称规则采样引起的PWM开关频率奇数次谐波,从而减小高频电磁振动和噪声,减小H桥型逆变电源输出滤波器的容量和体积。
(2)采取插值采样方式实现了单载波周期两次装载更新的效果,不需要提高控制频率来进行多重采样,减小了对数字控制器芯片的计算性能要求。
(3)保持了自然采样单极性倍频调制方法的优势,使逆变电源输出等效开关频率提高一倍。
(4)通过在控制环路中插入滞后半拍的插值信号,增强了H桥型逆变电源系统稳定裕度。
附图说明
图1为三相组合式H桥逆变电源原理图。
图2为本发明提供的一种用于H桥型逆变电源PWM调制方法流程示意图;
图3为现有技术和本发明PWM调制方法对比图;
图4为现有技术的H桥型逆变电源输出电感电流波形;
图5为现有技术的H桥型逆变电源输出电感电流FFT;
图6为本发明实施例提供的H桥型逆变电源输出电感电流波形;
图7为本发明实施例提供的H桥型逆变电源输出电感电流FFT;
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
如图1所示,本发明的消除奇数次开关频率谐波的PWM调制方法应用于三相组合式H桥型逆变电源,主电路包括有:1、三个分别独立的A(BC)相H桥式逆变电路;2、三相交流滤波电路;3、三相电压和电流传感器组,用于测量各相电感电流IL和电容电压UC;4、三相独立的PWM驱动信号。
每相H桥逆变电路包括:第一开关管S1、第二开关管S2、第三开关管S3、第四开关管S4,所述第一开关管S1、第二开关管S2彼此串联后形成超前桥臂,第三开关管S3和第四开关管S4彼此串联后形成互补桥臂。
所述的控制模块可采用数字信号处理器DSP、单片机或者现场可编程逻辑阵列FPGA等具有数字信号处理和控制能力的芯片来实现,
本实施例选用TI公司的DSP芯片TMS28335,具备150MHz的核心运行速度和多达12路PWM输出端。
图2为本发明的提供的用于H桥型逆变电源PWM调制方法流程示意图。
所述方法包括通过控制模块产生PWM驱动信号给所述三相H桥逆变电路的开关管,
其中,所述控制模块生成用于PWM驱动信号的正弦占空比调制信号以及三角载波信号,其中,第i相第k个载波周期的正弦占空比调制信号为:
Figure BDA0002291032230000051
其中,M为调制比,f0为基波调制频率,fs为控制频率,k为当前载波周期拍数,
Figure BDA0002291032230000053
表示第i相调制信号移相角度;
该信号用于在第(k+1)个载波周期中三角载波波峰处装载,进而与三角载波信号进行比较并输出给超前桥臂及其互补桥臂的开关管,若正弦波调制信号大于等于三角载波信号,则输出高电平给第一开关管S1、第四开关管S4,低电平给第二开关管S2、第三开关管S3,否则反之;
第(k-1)个载波周期保存的正弦占空比调制信号为:
Figure BDA0002291032230000052
根据第k个载波周期和第(k-1)个载波周期的正弦占空比调制信号进行计算得到插值信号为;
Uri_ave(k)=0.5[Ur(k)+Ur(k-1)]
该插值信号用于在第(k+1)个载波周期中三角载波波谷处装载替换正弦占空比调制信号,进而与三角载波信号进行比较并输出给超前桥臂及其互补桥臂的开关管,若所装载信号高于等于三角载波信号,则输出高电平给第一开关管S1、第四开关管S4,低电平给第二开关管S2、第三开关管S3,否则反之。
优选地,通过在第(k+1)个载波周期三角载波波峰和波谷处分别交替装载Uri(k)和Uri_ave(k),与三角载波比较得到非中心对称的PWM驱动波形。因此PWM驱动波形上升沿跳变位置与现有技术一致,但下降沿位置则因为采用插值信号Uri_ave(k)比较而有区别。图3中阴影区域即为增加的占空比区间信号。
进一步地,本发明的所述的PWM调制方法不需要采取提高控制频率的方式,即可达到单载波周期内两次更新占空比信号的效果。
如图4至图7为试验和仿真分析波形,基于如图1所示的三相组合式H桥型逆变器带电阻性负载的拓扑结构。表1为系统参数。
Figure BDA0002291032230000061
对比图4和图6的输出电感电流波形,可以看到现有技术和本发明的稳态特性基本一致。而从图5现有技术的电感电流FFT中可以看出,在传统数字采样PWM调制方式下,等效开关频率提高至6kHz,但是开关频率奇数倍次3kHz、9kHz谐波电流依然十分明显,单极性倍频调制方法的自然特性被弱化,势必会带来该频次谐波的电磁振动和噪声。只能通过增大滤波器参数来进行滤除,这样会带来设备体积和容量增大等不利影响。
从图7中的电感电流FFT分析中可以看到,采用本发明后,在不增加数字控制器计算负荷的条件下,等效开关频率提高至6kHz,而且开关频率奇数次3kHz、9kHz谐波电流被有效消除。保持了单极性倍频调制方法的自然特性,减小了系统谐波干扰和电磁振动噪声,具有极高的实用价值和经济效益。
本发明不仅局限于上述具体实施方式,本领域一般技术人员根据实施例和附图公开内容,可以采用其它多种具体实施方式实施本发明,因此,凡是采用本发明的设计发明和思路,做一些简单的变换或更改的设计,都落入本发明保护的范围。

Claims (3)

1.一种消除奇数次开关频率谐波的H桥型逆变电源PWM调制方法,所述H桥型逆变电源包括三相H桥逆变电路,每相H桥逆变电路包括:第一开关管S1、第二开关管S2、第三开关管S3、第四开关管S4,所述第一开关管S1、第二开关管S2彼此串联后形成超前桥臂,第三开关管S3和第四开关管S4彼此串联后形成互补桥臂,其特征在于,
所述方法包括通过控制模块产生PWM驱动信号给所述三相H桥逆变电路的开关管,
其中,所述控制模块生成用于PWM驱动信号的正弦占空比调制信号以及三角载波信号,其中,第i相第k个载波周期的正弦占空比调制信号为:
Figure FDA0002291032220000011
其中,M为调制比,f0为基波调制频率,fs为控制频率,k为当前载波周期拍数,
Figure FDA0002291032220000012
表示第i相调制信号移相角度;
该信号用于在第(k+1)个载波周期中三角载波波峰处装载,进而与三角载波信号进行比较并输出给超前桥臂及其互补桥臂的开关管,若正弦波调制信号大于等于三角载波信号,则输出高电平给第一开关管S1、第四开关管S4,低电平给第二开关管S2、第三开关管S3,否则反之;
第(k-1)个载波周期保存的正弦占空比调制信号为:
Figure FDA0002291032220000021
根据第k个载波周期和第(k-1)个载波周期的正弦占空比调制信号进行计算得到插值信号为;
Uri_ave(k)=0.5[Ur(k)+Ur(k-1)]
该插值信号用于在第(k+1)个载波周期中三角载波波谷处装载替换正弦占空比调制信号,进而与三角载波信号进行比较并输出给超前桥臂及其互补桥臂的开关管,若所装载信号高于等于三角载波信号,则输出高电平给第一开关管S1、第四开关管S4,低电平给第二开关管S2、第三开关管S3,否则反之。
2.根据权利要求1所述的H桥型逆变电源PWM调制方法,其特征在于,所述的控制模块采用数字信号处理器DSP、单片机或者现场可编程逻辑阵列FPGA芯片来实现。
3.根据权利要求1所述的H桥型逆变电源PWM调制方法,其特征在于,所述的控制模块为TMS28335芯片。
CN201911180141.5A 2019-11-27 2019-11-27 一种消除奇数次开关谐波的h桥型逆变电源pwm调制方法 Active CN112072943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911180141.5A CN112072943B (zh) 2019-11-27 2019-11-27 一种消除奇数次开关谐波的h桥型逆变电源pwm调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911180141.5A CN112072943B (zh) 2019-11-27 2019-11-27 一种消除奇数次开关谐波的h桥型逆变电源pwm调制方法

Publications (2)

Publication Number Publication Date
CN112072943A true CN112072943A (zh) 2020-12-11
CN112072943B CN112072943B (zh) 2022-04-12

Family

ID=73657874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911180141.5A Active CN112072943B (zh) 2019-11-27 2019-11-27 一种消除奇数次开关谐波的h桥型逆变电源pwm调制方法

Country Status (1)

Country Link
CN (1) CN112072943B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910299A (zh) * 2021-02-05 2021-06-04 郑州轻工业大学 一种单逆变器产生并输出双频正弦波的方法
CN116351686A (zh) * 2023-04-04 2023-06-30 重庆科技学院 一种可变压可变频超声清洗机发生器及控制方法
WO2023206876A1 (zh) * 2022-04-27 2023-11-02 杭州禾迈电力电子股份有限公司 电力线载波通讯装置、方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04172972A (ja) * 1990-10-15 1992-06-19 Mitsubishi Electric Corp Pwm電力変換装置
US6683800B2 (en) * 2001-05-16 2004-01-27 Koninklijke Philips Electronics N.V. Resonant switched mode power supply system
CN101295935A (zh) * 2007-12-10 2008-10-29 西北工业大学 一种可抑制谐波的优化pwm调制方法
CN103560654A (zh) * 2013-10-16 2014-02-05 华为技术有限公司 全桥逆变器驱动方法及全桥逆变器
CN104022667A (zh) * 2014-06-19 2014-09-03 安徽大学 三电平逆变器shepwm调制方法
CN107667460A (zh) * 2015-05-18 2018-02-06 Abb瑞士股份有限公司 用于抑制多电平功率转换器中的电压谐波的方法和设备
CN109039117A (zh) * 2018-08-15 2018-12-18 西北工业大学 高功率密度飞机交流变换器及其输入侧低次谐波抑制方法
US20190131869A1 (en) * 2017-10-30 2019-05-02 University Of Florida Research Foundation, Inc. Spwm with dc offset based on total energy reduction
CN109787278A (zh) * 2019-01-10 2019-05-21 东莞市钜大电子有限公司 一种基于插值预测和电感补偿的无差拍并网控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04172972A (ja) * 1990-10-15 1992-06-19 Mitsubishi Electric Corp Pwm電力変換装置
US6683800B2 (en) * 2001-05-16 2004-01-27 Koninklijke Philips Electronics N.V. Resonant switched mode power supply system
CN101295935A (zh) * 2007-12-10 2008-10-29 西北工业大学 一种可抑制谐波的优化pwm调制方法
CN103560654A (zh) * 2013-10-16 2014-02-05 华为技术有限公司 全桥逆变器驱动方法及全桥逆变器
CN104022667A (zh) * 2014-06-19 2014-09-03 安徽大学 三电平逆变器shepwm调制方法
CN107667460A (zh) * 2015-05-18 2018-02-06 Abb瑞士股份有限公司 用于抑制多电平功率转换器中的电压谐波的方法和设备
US20190131869A1 (en) * 2017-10-30 2019-05-02 University Of Florida Research Foundation, Inc. Spwm with dc offset based on total energy reduction
CN109039117A (zh) * 2018-08-15 2018-12-18 西北工业大学 高功率密度飞机交流变换器及其输入侧低次谐波抑制方法
CN109787278A (zh) * 2019-01-10 2019-05-21 东莞市钜大电子有限公司 一种基于插值预测和电感补偿的无差拍并网控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KELIANG ZHOU,ET AL: "Zero-phase Odd-Harmonic Repetitive Controller for a Single-phase PWM Inverter", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
杨君,等: ""谐波电流分次补偿控制的等效性研究"", 《电力电子技术》 *
阮进,等: ""舰船高效逆变电源技术方案研究"", 《电子技术与软件工程》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910299A (zh) * 2021-02-05 2021-06-04 郑州轻工业大学 一种单逆变器产生并输出双频正弦波的方法
CN112910299B (zh) * 2021-02-05 2022-05-10 郑州轻工业大学 一种单逆变器产生并输出双频正弦波的方法
WO2023206876A1 (zh) * 2022-04-27 2023-11-02 杭州禾迈电力电子股份有限公司 电力线载波通讯装置、方法及系统
CN116351686A (zh) * 2023-04-04 2023-06-30 重庆科技学院 一种可变压可变频超声清洗机发生器及控制方法

Also Published As

Publication number Publication date
CN112072943B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN103283135A (zh) 电力转换装置
CN104065291A (zh) 具有低频振荡抑制功能的中点电压平衡控制系统及方法
CN107508483A (zh) 一种降低开关损耗的三电平变流器非连续脉宽调制方法
CN112072943B (zh) 一种消除奇数次开关谐波的h桥型逆变电源pwm调制方法
CN102545681B (zh) 可消除低频谐波的阶梯波合成式三相逆变器及控制方法
US11146181B2 (en) Control method and apparatus for common-mode modulated wave of single-phase five-level inverter
Palanisamy et al. Maximum Boost Control for 7-level z-source cascaded h-bridge inverter
CN103560654B (zh) 全桥逆变器驱动方法及全桥逆变器
Chen et al. Attenuation of conducted EMI for three-level inverters through PWM
CN102769291A (zh) 一种基于多相变流结构的有源电力滤波器
Bede et al. Optimal interleaving angle determination in multi paralleled converters considering the DC current ripple and grid current THD
Mahbub et al. Design, simulation and comparison of three-phase symmetrical hybrid sinusoidal PWM fed inverter with different PWM techniques
CN111884532B (zh) 适用于三相高频链矩阵变换器的无窄脉冲调制方法
Lin et al. NOC-based multiple low-order harmonic currents suppression method
CN107196547B (zh) 一种三相双buck并网逆变器的对称全周期调制方法
Chen et al. An improved variable switching frequency modulation strategy for three-level converters with reduced conducted EMI
CN111564969B (zh) 一种逆变器共模电磁干扰噪音抑制方法及系统
CN113783441B (zh) 三相维也纳整流器载波断续脉宽调制方法
Luiz et al. An alternative five level NPC converter for medium voltage AC drives and technical issues
Sato et al. Hybrid PWM rectifiers to reduce electromagnetic interference
Yao et al. Research on grid-connected interleaved inverter with L filter
CN112803808B (zh) 降低模块化多电平换流器直流侧高频脉动电流控制方法
Wang et al. A VSFPWM method of three-phase CSI for EMI mitigation based on DC current ripple prediction
CN212324012U (zh) 移相倍频开关功率放大器
Wen et al. Single-Phase Inverter Asymmetrical Quad-Edge Sampling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant