CN112072220A - An Absorptive Broadband Bandpass Spatial Filter - Google Patents
An Absorptive Broadband Bandpass Spatial Filter Download PDFInfo
- Publication number
- CN112072220A CN112072220A CN202010666924.0A CN202010666924A CN112072220A CN 112072220 A CN112072220 A CN 112072220A CN 202010666924 A CN202010666924 A CN 202010666924A CN 112072220 A CN112072220 A CN 112072220A
- Authority
- CN
- China
- Prior art keywords
- metal
- layer
- absorptive
- broadband
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
本发明公开的吸收性宽带带通空间滤波器,包括呈周期排布的多个方形的滤波器单元,每个滤波器单元包括前后依次设置的损耗吸收层、空气层和无损带通层,损耗吸收层和无损带通层由空气层分隔,损耗吸收层包括第一金属层和第一损耗介质层,无损带通层包括前后依次叠置的第二金属层、第二损耗介质层、第三金属层、第三损耗介质层和第四金属层。该滤波器具备双边宽带吸收特性,宽带吸收能力优异,其吸收带宽可分别达到117.6%和21.4%、相对透射带宽可达47%,能够实现对工作频带内信号的自由收发和通带两侧干扰信号的吸收,同时该滤波器具有一个宽频通带,可以满足某些对工作频带提出宽带要求的场景,相比传统的滤波器结构,更具备实际应用价值。
The absorptive broadband bandpass spatial filter disclosed in the present invention includes a plurality of square filter units arranged periodically, and each filter unit includes a loss absorption layer, an air layer and a lossless bandpass layer arranged in sequence. The absorption layer and the lossless bandpass layer are separated by an air layer, the lossy absorption layer includes a first metal layer and a first lossy dielectric layer, and the lossless bandpass layer includes a second metal layer, a second lossy dielectric layer, a third a metal layer, a third lossy dielectric layer and a fourth metal layer. The filter has bilateral broadband absorption characteristics and excellent broadband absorption capability. Its absorption bandwidth can reach 117.6% and 21.4% respectively, and the relative transmission bandwidth can reach 47%. At the same time, the filter has a wide-band passband, which can meet some scenarios that put forward broadband requirements for the working frequency band. Compared with the traditional filter structure, it has more practical application value.
Description
技术领域technical field
本发明涉及一种空间滤波器,具体是一种吸收性宽带带通空间滤波器。The present invention relates to a spatial filter, in particular to an absorbing broadband bandpass spatial filter.
背景技术Background technique
随着科技的发展,电子设备的发展亦趋于多样化、普遍化,电磁环境日益错综复杂,通信系统对电磁兼容的要求越来越高。传统带通滤波器设计中,只考虑工作频带的低插损特性,带外噪音信号的干扰往往只是通过增强反射来实现,然而这部分反射的杂散信号会影响其它电子设备,急剧恶化宽带通信系统技术指标。如何保证带内工作频带内的信号的正常通讯,同时抑制带外干扰信号,成为一个重要的课题。With the development of science and technology, the development of electronic equipment tends to be diversified and universal, the electromagnetic environment is increasingly complex, and the communication system has higher and higher requirements for electromagnetic compatibility. In the design of traditional bandpass filters, only the low insertion loss characteristics of the working frequency band are considered, and the interference of out-of-band noise signals is often achieved only by enhancing reflection. However, the reflected stray signals in this part will affect other electronic equipment and drastically deteriorate broadband communication. System technical indicators. How to ensure the normal communication of signals in the in-band working frequency band and suppress out-of-band interference signals has become an important issue.
与此同时,现代战争中,雷达目标隐身是非常重要的指标之一。其中,雷达天线系统是重要的散射源,在某些频率具有很高的雷达散射截面(RCS)。降低雷达散射截面的主要方法有两种:一是涂覆诸如铁氧体、磁性材料等吸波材料,但是这种吸收型的涂敷方法会显著降低天线辐射效率,影响正常信号收发;二是采用类似频率选择表面的结构,改变反射波反射方向,降低前向辐射信号。这种方法不会影响天线本身的性能,但其二次散射的杂散信号仍然会干扰通信系统设备。且随着多站雷达和雷达组网技术的发展,这种方法无法达到真正隐身的目的。如何实现通信和宽带吸收的一体化设计,也成为一个重要的课题。At the same time, in modern warfare, radar target stealth is one of the very important indicators. Among them, the radar antenna system is an important scattering source, which has a very high radar cross section (RCS) at certain frequencies. There are two main ways to reduce the radar cross section: one is to coat absorbing materials such as ferrite and magnetic materials, but this absorbing coating method will significantly reduce the radiation efficiency of the antenna and affect normal signal transmission and reception; The structure similar to the frequency selective surface is adopted to change the reflection direction of the reflected wave and reduce the forward radiation signal. This method does not affect the performance of the antenna itself, but its secondary scattered spurious signals can still interfere with communication system equipment. And with the development of multi-station radar and radar networking technology, this method cannot achieve the purpose of true stealth. How to realize the integrated design of communication and broadband absorption has also become an important topic.
近些年,电磁超材料的发展取得了令人瞩目的成果。与频率选择表面(FrequencySelective Surface,FSS)类似,由大量周期性排列、具有特定形状的金属谐振单元所组成的二维结构,可实现带阻、低通、高通和带通等空间滤波器设计。传统频率选择表面设计中,没有考虑其带外反射所带来的电磁干扰问题。在这种背景下,吸收性带通滤波器应运而生,它在保证通带信号自由收发的同时,还将通带外的信号吸收掉,从而达到完美隐身/吸波和正常通信的结合。但由于同时兼顾透波和吸波能力,结构设计起来有一定的难度。目前普遍采取的设计方法可以概括为三步进行:首先是在金属条上加载集总电阻元件,在一定频带上实现阻抗匹配,同时由于金属接地板的存在,能量无法反射、透过,表面电流经过电阻元件时被消耗,从而达到了吸波效果;第二步是利用集总电阻加载的金属条带制造出一些可以等效为类电容、电感器件的结构,这些LC等效电路结构在特定吸波频段内发生谐振,阻抗接近无穷大,无法匹配自由空间,所以能量无法被吸收,而是形成了一个反射带;第三步是使用带通FSS代替原来的金属接地板结构,带通FSS的通带与第二步的反射带匹配对应,最终实现了吸、透一体的效果。目前吸收性滤波器还面临着如下几个瓶颈:首先,已有设计多为低频透波/高频吸波或高频透波/低频吸波单边带吸收,在实际应用中的效果有较大的局限性;其次,虽然透波和双边吸波已有报道,但大多数都是在牺牲透射带宽的基础上提升相对吸收带宽,难以同时兼顾宽带透射和宽带吸波能力。因此,对于同时具有宽带透射和宽带吸波能力的空间滤波器的研究同样成为一个重要的课题。In recent years, the development of electromagnetic metamaterials has achieved remarkable results. Similar to Frequency Selective Surface (FSS), a two-dimensional structure composed of a large number of periodically arranged metal resonator elements with specific shapes can realize band-stop, low-pass, high-pass, and band-pass spatial filter designs. In the traditional frequency selective surface design, the electromagnetic interference caused by its out-of-band reflection is not considered. In this context, the absorptive band-pass filter came into being, which not only ensures the free transmission and reception of pass-band signals, but also absorbs the signals outside the pass-band, so as to achieve the perfect combination of stealth/absorption and normal communication. However, it is difficult to design the structure due to taking into account both the wave-transmitting and wave-absorbing capabilities. The design method generally adopted at present can be summarized into three steps: first, load lumped resistance elements on the metal strips to achieve impedance matching in a certain frequency band. The second step is to use the metal strips loaded by lumped resistance to create some structures that can be equivalent to capacitor-like and inductive devices. These LC equivalent circuit structures are used in specific Resonance occurs in the absorbing frequency band, the impedance is close to infinity, and it cannot match the free space, so the energy cannot be absorbed, but a reflection band is formed; the third step is to use the band-pass FSS instead of the original metal grounding plate structure. The pass band matches the reflection band in the second step, and finally achieves the effect of absorption and penetration. At present, absorptive filters are still faced with the following bottlenecks: First, the existing designs are mostly low-frequency transmission/high-frequency absorption or high-frequency transmission/low-frequency absorption single-sideband absorption, which has a relatively good effect in practical applications. Second, although transmission and bilateral absorption have been reported, most of them increase the relative absorption bandwidth on the basis of sacrificing the transmission bandwidth, and it is difficult to take into account both broadband transmission and broadband absorption capabilities. Therefore, the research on spatial filters with both broadband transmission and broadband absorption capabilities has also become an important topic.
发明内容SUMMARY OF THE INVENTION
针对复杂电磁环境下的电磁兼容和雷达目标隐身问题,本发明提出一种吸收性宽带带通空间滤波器,该空间滤波器具备双边宽带吸收特性,宽带吸收能力优异,能够实现对工作频带内信号的自由收发和通带两侧干扰信号的吸收,同时该空间滤波器具有一个宽频通带,可以满足某些对工作频带提出宽带要求的场景。Aiming at the problems of electromagnetic compatibility and radar target stealth in a complex electromagnetic environment, the present invention proposes an absorbing broadband bandpass spatial filter. The spatial filter has bilateral broadband absorption characteristics, excellent broadband absorption capability, and can realize the detection of signals in the working frequency band. At the same time, the spatial filter has a wide-band passband, which can meet some scenarios that require broadband for the working frequency band.
本发明解决上述技术问题所采用的技术方案为:一种吸收性宽带带通空间滤波器,包括呈周期排布的多个方形的滤波器单元,每个所述的滤波器单元包括前后依次设置的损耗吸收层、空气层和无损带通层,所述的损耗吸收层和所述的无损带通层由所述的空气层分隔,所述的损耗吸收层包括第一金属层和第一损耗介质层,所述的第一金属层附着在所述的第一损耗介质层的正面,所述的第一金属层包括两个独立的金属图形结构,所述的第一金属层上加载有集总电阻元件,所述的无损带通层包括前后依次叠置的第二金属层、第二损耗介质层、第三金属层、第三损耗介质层和第四金属层,所述的第二金属层为由四片完全相同并呈中心对称排列的正方形金属薄膜构成的贴片型金属层,所述的第三金属层为与所述的第二金属层形状互补的镂空金属层,所述的第四金属层与所述的第二金属层完全相同,所述的第一损耗介质层、第二损耗介质层和第三损耗介质层为完全相同的损耗介质层。The technical solution adopted by the present invention to solve the above-mentioned technical problems is: an absorbing broadband bandpass spatial filter, comprising a plurality of square filter units arranged in a periodical manner, and each of the filter units includes sequentially arranged filter units. A lossy absorption layer, an air layer and a lossless bandpass layer, the lossy absorption layer and the lossless bandpass layer are separated by the air layer, and the lossy absorption layer includes a first metal layer and a first lossy The dielectric layer, the first metal layer is attached to the front surface of the first lossy dielectric layer, the first metal layer includes two independent metal pattern structures, and the first metal layer is loaded with collectors. A total resistance element, the lossless bandpass layer includes a second metal layer, a second lossy dielectric layer, a third metal layer, a third lossy dielectric layer and a fourth metal layer stacked in sequence, the second metal layer The layer is a patch-type metal layer composed of four identical and centrally symmetrical square metal films. The third metal layer is a hollow metal layer that is complementary in shape to the second metal layer. The fourth metal layer is exactly the same as the second metal layer, and the first lossy dielectric layer, the second lossy dielectric layer and the third lossy dielectric layer are completely the same lossy dielectric layer.
本发明吸收性宽带带通空间滤波器,通过在损耗吸收层的第一金属层引入两个独立的金属图形结构并加载集总电阻元件,分别实现高、低频侧的宽带吸波带,其吸收带宽可分别达到117.6%和21.4%,相对透射带宽可达47%,相比传统只具备单边吸收带的滤波器结构,其更具备实际应用价值;通过在无损带通层引入多层的结构,改善了宽频的阻抗匹配,拓宽了带通滤波频率范围,为宽带通信和吸波的一体化设计提供了解决方法。The absorptive broadband bandpass spatial filter of the present invention realizes the broadband absorbing bands on the high and low frequency sides respectively by introducing two independent metal pattern structures into the first metal layer of the loss absorbing layer and loading lumped resistance elements, which absorbs The bandwidth can reach 117.6% and 21.4% respectively, and the relative transmission bandwidth can reach 47%. Compared with the traditional filter structure with only one-side absorption band, it has more practical application value; by introducing a multi-layer structure in the lossless bandpass layer , improving the impedance matching of broadband, broadening the frequency range of band-pass filtering, and providing a solution for the integrated design of broadband communication and wave absorption.
第二金属层、第二损耗介质层、第三金属层、第三损耗介质层及第四金属层共同构成无损带通层,实现了宽频透波的性能。The second metal layer, the second lossy dielectric layer, the third metal layer, the third lossy dielectric layer and the fourth metal layer together constitute a lossless bandpass layer, which realizes the performance of broadband wave transmission.
本发明吸收性宽带带通空间滤波器所用材料均为常规材料,易于实现,制作成本低,可简单采用现有PCB加工工艺进行制作。通过比例缩放和适当的参数调整可实现频率调谐,较完美地移植到其它频段。The materials used in the absorptive broadband bandpass space filter of the present invention are all conventional materials, which are easy to realize and have low manufacturing cost, and can be manufactured simply by using the existing PCB processing technology. Frequency tuning can be achieved through scaling and appropriate parameter adjustment, and it can be perfectly transplanted to other frequency bands.
作为优选,每个所述的滤波器单元中,所述的第一金属层为中心对称的贴片金属图形结构,所述的第一金属层的贴片金属图形结构包括“口”字形金属图形结构和“井”字形金属图形结构,所述的“口”字形金属图形结构靠近该滤波器单元的外边缘,所述的“口”字形金属图形结构由四条第一金属条依次连接而成,每条所述的第一金属条的中心位置焊接有一个第一电阻元件;所述的“井”字形金属图形结构位于所述的“口”字形金属图形结构围成的区域的中部,所述的“井”字形金属图形结构由四条第二金属条依次垂直交叉而成,每条所述的第二金属条与任意一条所述的第一金属条的夹角为45°,每条所述的第二金属条的中心位置焊接有一个第二电阻元件,每个所述的第二电阻元件的电阻阻值与每个所述的第一电阻元件的电阻阻值不同。加载有四个第一电阻元件的“口”字形金属图形结构实现了低频侧对电磁波的吸收,加载有四个第二电阻元件的“井”字形金属图形结构则实现了高频侧对电磁波的吸收。Preferably, in each of the filter units, the first metal layer is a center-symmetric patch metal pattern structure, and the patch metal pattern structure of the first metal layer includes a "mouth"-shaped metal pattern structure and "well" shaped metal graphic structure, the "mouth" shaped metal graphic structure is close to the outer edge of the filter unit, and the "mouth" shaped metal graphic structure is formed by connecting four first metal strips in sequence, A first resistance element is welded at the center of each of the first metal strips; the "well"-shaped metal pattern structure is located in the middle of the area enclosed by the "mouth"-shaped metal pattern structure, and the The "well"-shaped metal pattern structure is formed by four second metal strips intersecting vertically in turn, and the included angle between each of the second metal strips and any one of the first metal strips is 45°. A second resistance element is welded at the center of the second metal strip, and the resistance value of each of the second resistance elements is different from that of each of the first resistance elements. The "mouth"-shaped metal pattern structure loaded with four first resistance elements realizes the absorption of electromagnetic waves on the low-frequency side, and the "well"-shaped metal pattern structure loaded with four second resistance elements realizes the electromagnetic wave absorption on the high-frequency side. absorb.
作为优选,每个所述的滤波器单元的周期边长为20~22mm;每个所述的滤波器单元中,每条所述的第一金属条的长度为18~20mm、宽度为0.5~1mm,每条所述的第一金属条与邻近的该滤波器单元的外边缘的距离为0.5~1mm,每条所述的第二金属条的长度为9~13mm、宽度为0.5~1mm。Preferably, the periodic side length of each of the filter units is 20-22 mm; in each of the filter units, the length of each of the first metal strips is 18-20 mm, and the width is 0.5-20 mm. 1 mm, the distance between each of the first metal strips and the outer edge of the adjacent filter unit is 0.5-1 mm, the length of each of the second metal strips is 9-13 mm, and the width is 0.5-1 mm.
作为优选,每个所述的第一电阻元件的电阻阻值为300~550Ω。Preferably, the resistance value of each of the first resistance elements is 300-550Ω.
作为优选,每对相互平行的两条所述的第二金属条的内边间距为3~4mm。Preferably, the distance between the inner edges of each pair of the two second metal strips parallel to each other is 3 to 4 mm.
作为优选,每个所述的第二电阻元件的电阻阻值为100~300Ω。Preferably, the resistance value of each of the second resistance elements is 100-300Ω.
作为优选,每个所述的滤波器单元中,每片所述的正方形金属薄膜的边长为5~7mm,每片所述的正方形金属薄膜与邻近的该滤波器单元的X轴方向的外边缘的距离以及与邻近的该滤波器单元的Y轴方向的外边缘的距离相等,均为1.5~2.5mm。Preferably, in each of the filter units, each piece of the square metal film has a side length of 5-7 mm, and each piece of the square metal film is outside the adjacent filter unit in the X-axis direction. The distance of the edge and the distance from the outer edge of the adjacent filter unit in the Y-axis direction are equal to 1.5~2.5mm.
作为优选,所述的第一金属层、第二金属层、第三金属层和第四金属层的厚度均为0.03mm,所述的空气层的厚度为13.5~14.5mm,所述的第一损耗介质层、第二损耗介质层和第三损耗介质层的厚度均为1.45~1.65mm。Preferably, the thicknesses of the first metal layer, the second metal layer, the third metal layer and the fourth metal layer are all 0.03 mm, the thickness of the air layer is 13.5-14.5 mm, and the first metal layer has a thickness of 13.5-14.5 mm. The thicknesses of the lossy dielectric layer, the second lossy dielectric layer and the third lossy dielectric layer are all 1.45-1.65 mm.
作为优选,所述的第一损耗介质层、第二损耗介质层和第三损耗介质层均为Rogers 4003C介质板,其相对介电常数为3.38,损耗正切值为0.0027。Preferably, the first lossy dielectric layer, the second lossy dielectric layer and the third lossy dielectric layer are all Rogers 4003C dielectric plates with a relative permittivity of 3.38 and a loss tangent value of 0.0027.
与现有技术相比,本发明具有如下优点:Compared with the prior art, the present invention has the following advantages:
(1)本发明提出的吸收性宽带带通空间滤波器,通过在损耗吸收层的第一金属层引入两个独立的金属图形结构并加载集总电阻元件,分别实现高、低频侧的宽带吸波带,其吸收带宽可分别达到117.6%和21.4%,相对透射带宽可达47%,能够实现对工作频带内信号的自由收发和通带两侧干扰信号的吸收,同时该空间滤波器具有一个宽频通带,可以满足某些对工作频带提出宽带要求的场景,相比传统只具备单边吸收带的滤波器结构,其更具备实际应用价值;(1) The absorptive broadband bandpass spatial filter proposed by the present invention realizes the broadband absorption on the high and low frequency sides respectively by introducing two independent metal pattern structures in the first metal layer of the loss absorbing layer and loading lumped resistance elements. Band, its absorption bandwidth can reach 117.6% and 21.4% respectively, and the relative transmission bandwidth can reach 47%, which can realize free sending and receiving of signals in the working frequency band and absorption of interference signals on both sides of the passband. At the same time, the spatial filter has a The wide-band passband can meet some scenarios that require broadband for the working frequency band. Compared with the traditional filter structure with only one-side absorption band, it has more practical application value;
(2)通过在无损带通层引入多层的结构,改善了宽频的阻抗匹配,拓宽了带通滤波频率范围,为宽带通信和吸波的一体化设计提供了解决方法;(2) By introducing a multi-layer structure into the lossless bandpass layer, the impedance matching of broadband is improved, the frequency range of bandpass filtering is broadened, and a solution is provided for the integrated design of broadband communication and wave absorption;
(3)本发明所提出的一种伴随双边宽吸收带的宽带带通空间滤波器,所用材料均为常规材料,易于实现,制作成本低,可简单采用现有PCB加工工艺进行制作。通过比例缩放和适当的参数调整可实现频率调谐,较完美地移植到其它频段。(3) A broadband bandpass spatial filter with a double-sided wide absorption band proposed by the present invention uses conventional materials, is easy to implement, and has low manufacturing cost, and can be manufactured simply by using the existing PCB processing technology. Frequency tuning can be achieved through scaling and appropriate parameter adjustment, and it can be perfectly transplanted to other frequency bands.
附图说明Description of drawings
图1为实施例中吸收性宽带带通空间滤波器的正视图;1 is a front view of an absorptive broadband bandpass spatial filter in an embodiment;
图2为实施例中单个滤波器单元的正视图;2 is a front view of a single filter unit in an embodiment;
图3为对应于图2的左视图;Fig. 3 is the left side view corresponding to Fig. 2;
图4为移除第一金属层、第一损耗介质层和空气层后的实施例中单个滤波器单元的正视图;4 is a front view of a single filter unit in the embodiment after removing the first metal layer, the first lossy dielectric layer and the air layer;
图5为移除第一金属层、第一损耗介质层、第二金属层和第二损耗介质层后的实施例中单个滤波器单元的正视图;5 is a front view of a single filter unit in an embodiment with the first metal layer, the first lossy dielectric layer, the second metal layer and the second lossy dielectric layer removed;
图6为电磁波沿-Z方向入射时实施例1中滤波器的S参数仿真曲线图;Fig. 6 is the S-parameter simulation curve diagram of the filter in the
图7为电磁波沿-Z方向入射时实施例1中滤波器的吸波率仿真曲线图;Fig. 7 is the simulation curve diagram of the wave absorption rate of the filter in the
图8为电磁波沿-Z方向入射时实施例2中滤波器的S参数仿真曲线图;Fig. 8 is the S-parameter simulation curve diagram of the filter in the
图9为电磁波沿-Z方向入射时实施例2中滤波器的吸波率仿真曲线图。FIG. 9 is a simulation curve diagram of the wave absorption rate of the filter in Example 2 when the electromagnetic wave is incident along the -Z direction.
具体实施方式Detailed ways
以下结合附图实施例对本发明作进一步详细描述。The present invention will be further described in detail below with reference to the embodiments of the accompanying drawings.
实施例1的吸收性宽带带通空间滤波器,如图所示,包括呈周期排布的9个方形的滤波器单元1,每个滤波器单元1包括前后依次设置的损耗吸收层2、空气层3和无损带通层4,损耗吸收层2和无损带通层4由空气层3分隔,损耗吸收层2包括第一金属层22和第一损耗介质层21,第一金属层22附着在第一损耗介质层21的正面,第一金属层22包括两个独立的金属图形结构,第一金属层22上加载有集总电阻元件,无损带通层4包括前后依次叠置的第二金属层41、第二损耗介质层42、第三金属层43、第三损耗介质层44和第四金属层45,第二金属层41为由四片完全相同并呈中心对称排列的正方形金属薄膜46构成的贴片型金属层,第三金属层43为与第二金属层41形状互补的镂空金属层,第四金属层45与第二金属层41完全相同,第一损耗介质层21、第二损耗介质层42和第三损耗介质层44为完全相同的损耗介质层。As shown in the figure, the absorptive broadband bandpass spatial filter of
实施例1的每个滤波器单元1中,第一金属层22为中心对称的贴片金属图形结构,第一金属层22的贴片金属图形结构包括“口”字形金属图形结构23和“井”字形金属图形结构24,“口”字形金属图形结构23靠近该滤波器单元1的外边缘,“口”字形金属图形结构23由四条第一金属条25依次连接而成,每条第一金属条25的中心位置焊接有一个第一电阻元件26;“井”字形金属图形结构24位于“口”字形金属图形结构23围成的区域的中部,“井”字形金属图形结构24由四条第二金属条27依次垂直交叉而成,每条第二金属条27与任意一条第一金属条25的夹角为45°,每条第二金属条27的中心位置焊接有一个第二电阻元件28,每个第二电阻元件28的电阻阻值R1与每个第一电阻元件26的电阻阻值R2不同。In each
实施例1中,第一金属层22、第二金属层41、第三金属层43和第四金属层45为相同材质的金属材料,厚度H1均为0.03mm;空气层3的厚度H3为14mm;第一损耗介质层21、第二损耗介质层42和第三损耗介质层44均为Rogers 4003C介质板,其厚度H2均为1.524mm,相对介电常数为3.38,损耗正切值为0.0027。In Example 1, the
实施例1的每个滤波器单元1的周期边长P为20mm;每个滤波器单元1中,每条第一金属条25的长度L1为19mm、宽度W1为0.5mm,每条第一金属条25与邻近的该滤波器单元1的外边缘的距离W2为0.5mm,每条第二金属条27的长度L2为9mm、宽度W3为0.5mm,每对相互平行的两条第二金属条27的内边间距W4为4mm;每个第一电阻元件26的电阻阻值R1为500Ω,每个第二电阻元件28的电阻阻值R2为150Ω。The periodic side length P of each
实施例1的每个滤波器单元1中,每片正方形金属薄膜46的边长L3为6.7mm,每片正方形金属薄膜46与邻近的该滤波器单元1的X轴方向的外边缘的距离W5以及与邻近的该滤波器单元1的Y轴方向的外边缘的距离W5相等,均为1.65mm;第三金属层43为与第二金属层41形状互补的边长w6为6.5mm的镂空金属层。In each
实施例2的吸收性宽带带通空间滤波器,与实施例1的结构相同,不同之处仅在于部分尺寸参数取值不同,具体地,实施例2中,L3=7mm,W5=1.5mm,W6=7mm,H3=18mm。The absorptive broadband bandpass spatial filter of
图6为电磁波沿-Z方向入射时实施例1中滤波器的S参数仿真曲线图,图6中,S11和S12分别代表反射曲线和透射曲线;图7为电磁波沿-Z方向入射时实施例1中滤波器的吸波率仿真曲线图。从图7可以看出,低频侧的吸波率仿真曲线在频率范围为1.43~5.51GHz时,实施例1的滤波器的吸波率始终高于80%,且相对吸收带宽为117.6%;高频侧的吸波率仿真曲线在频率范围为12.07~14.96GHz时,实施例1的滤波器的吸收率始终高于80%,且相对吸收带宽为21.4%。Fig. 6 is the S-parameter simulation curve diagram of the filter in Example 1 when the electromagnetic wave is incident along the -Z direction, in Fig. 6, S 11 and S 12 represent the reflection curve and the transmission curve respectively; Fig. 7 is when the electromagnetic wave is incident along the -Z direction The simulation curve diagram of the wave absorption rate of the filter in Example 1. It can be seen from Fig. 7 that when the frequency range of the simulation curve of the absorption rate on the low frequency side is 1.43-5.51 GHz, the absorption rate of the filter of Example 1 is always higher than 80%, and the relative absorption bandwidth is 117.6%; When the frequency range of the absorption rate simulation curve is 12.07-14.96 GHz, the absorption rate of the filter of Example 1 is always higher than 80%, and the relative absorption bandwidth is 21.4%.
图8为电磁波沿-Z方向入射时实施例2中滤波器的S参数仿真曲线图,图8中,S11和S12分别代表反射曲线和透射曲线;图9为电磁波沿-Z方向入射时实施例2中滤波器的吸波率仿真曲线图。从图9可以看出,低频侧的吸波率仿真曲线在频率范围为1.25~4.71GHz时,实施例2的滤波器的吸波率始终高于80%,且相对吸收带宽为116.1%;高频侧的吸波率仿真曲线在频率范围为10.4~12.53GHz时,实施例2的滤波器的吸收率始终高于80%,且相对吸收带宽为16.7%。Fig. 8 is the S-parameter simulation curve diagram of the filter in Example 2 when the electromagnetic wave is incident along the -Z direction, in Fig. 8, S 11 and S 12 represent the reflection curve and the transmission curve respectively; Fig. 9 is when the electromagnetic wave is incident along the -Z direction The simulation curve diagram of the wave absorption rate of the filter in Example 2. It can be seen from Fig. 9 that when the frequency range of the wave absorption rate simulation curve on the low frequency side is 1.25~4.71GHz, the wave absorption rate of the filter of Example 2 is always higher than 80%, and the relative absorption bandwidth is 116.1%; When the frequency range of the wave absorption rate simulation curve is 10.4-12.53 GHz, the absorption rate of the filter of Example 2 is always higher than 80%, and the relative absorption bandwidth is 16.7%.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010666924.0A CN112072220B (en) | 2020-07-13 | 2020-07-13 | Absorptive broadband band-pass spatial filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010666924.0A CN112072220B (en) | 2020-07-13 | 2020-07-13 | Absorptive broadband band-pass spatial filter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112072220A true CN112072220A (en) | 2020-12-11 |
CN112072220B CN112072220B (en) | 2021-10-19 |
Family
ID=73656488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010666924.0A Active CN112072220B (en) | 2020-07-13 | 2020-07-13 | Absorptive broadband band-pass spatial filter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112072220B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114512819A (en) * | 2022-02-18 | 2022-05-17 | 中国舰船研究设计中心 | Low-loss wave-absorbing wave-transmitting integrated stealth cover structure |
CN117895244A (en) * | 2024-03-04 | 2024-04-16 | 电子科技大学 | P-band double-layer groined-shaped metal metamaterial wave absorber based on NiZn ferrite |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040100418A1 (en) * | 2002-11-22 | 2004-05-27 | Best Timothy E. | Complementary dual antenna system |
US20050030137A1 (en) * | 2003-06-20 | 2005-02-10 | Mckinzie William E. | Artificial magnetic conductor surfaces loaded with ferrite-based artificial magnetic materials |
CN1825678A (en) * | 2006-03-21 | 2006-08-30 | 东南大学 | Frequency selective surface based on substrate-integrated waveguide technology |
US20090273527A1 (en) * | 2008-05-05 | 2009-11-05 | University Of Central Florida Research Foundation, Inc. | Low-profile frequency selective surface based device and methods of making the same |
CN107611622A (en) * | 2017-09-27 | 2018-01-19 | 中国人民解放军国防科技大学 | Double-side-frequency broadband wave absorber with controllable pass band |
CN108270085A (en) * | 2018-03-05 | 2018-07-10 | 南京航空航天大学 | Inhale integrated frequency-selective surfaces structure thoroughly |
CN110247196A (en) * | 2019-06-20 | 2019-09-17 | 南京航空航天大学 | The frequency that a kind of intermediate frequency broadband wave transparent, high and low frequency inhale wave selects wave-absorber |
CN110729532A (en) * | 2019-09-02 | 2020-01-24 | 杭州电子科技大学 | Dual polarization absorbing/transmitting frequency selection structure based on wave absorbing silicon rubber |
CN111146596A (en) * | 2019-12-30 | 2020-05-12 | 华中科技大学 | Wave absorbing/transmitting device of composite window absorber |
CN111403917A (en) * | 2020-05-01 | 2020-07-10 | 杭州灵芯微电子有限公司 | Ultra-thin broadband metamaterial wave absorber unit |
-
2020
- 2020-07-13 CN CN202010666924.0A patent/CN112072220B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040100418A1 (en) * | 2002-11-22 | 2004-05-27 | Best Timothy E. | Complementary dual antenna system |
US20050030137A1 (en) * | 2003-06-20 | 2005-02-10 | Mckinzie William E. | Artificial magnetic conductor surfaces loaded with ferrite-based artificial magnetic materials |
CN1825678A (en) * | 2006-03-21 | 2006-08-30 | 东南大学 | Frequency selective surface based on substrate-integrated waveguide technology |
US20090273527A1 (en) * | 2008-05-05 | 2009-11-05 | University Of Central Florida Research Foundation, Inc. | Low-profile frequency selective surface based device and methods of making the same |
CN107611622A (en) * | 2017-09-27 | 2018-01-19 | 中国人民解放军国防科技大学 | Double-side-frequency broadband wave absorber with controllable pass band |
CN108270085A (en) * | 2018-03-05 | 2018-07-10 | 南京航空航天大学 | Inhale integrated frequency-selective surfaces structure thoroughly |
CN110247196A (en) * | 2019-06-20 | 2019-09-17 | 南京航空航天大学 | The frequency that a kind of intermediate frequency broadband wave transparent, high and low frequency inhale wave selects wave-absorber |
CN110729532A (en) * | 2019-09-02 | 2020-01-24 | 杭州电子科技大学 | Dual polarization absorbing/transmitting frequency selection structure based on wave absorbing silicon rubber |
CN111146596A (en) * | 2019-12-30 | 2020-05-12 | 华中科技大学 | Wave absorbing/transmitting device of composite window absorber |
CN111403917A (en) * | 2020-05-01 | 2020-07-10 | 杭州灵芯微电子有限公司 | Ultra-thin broadband metamaterial wave absorber unit |
Non-Patent Citations (3)
Title |
---|
MENGLAN LIN ET AL.: "X-band Absorber Integrated with A Low-frequency Transmission Performance", 《2019 IEEE ASIA-PACIFIC MICROWAVE CONFERENCE (APMC)》 * |
TARIQ RAHIM ET AL.: "Design of X- band Frequency Selective Surface (FSS) with band pass characteristics based on miniaturized unit cell", 《2016 13TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST)》 * |
YAZDAN RAHMANI-SHAMS ET AL.: "Dual band, low profile and compact tunable frequency selective surface with wide tuning range", 《JOURNAL OF APPLIED PHYSICS》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114512819A (en) * | 2022-02-18 | 2022-05-17 | 中国舰船研究设计中心 | Low-loss wave-absorbing wave-transmitting integrated stealth cover structure |
CN117895244A (en) * | 2024-03-04 | 2024-04-16 | 电子科技大学 | P-band double-layer groined-shaped metal metamaterial wave absorber based on NiZn ferrite |
Also Published As
Publication number | Publication date |
---|---|
CN112072220B (en) | 2021-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110247196B (en) | Frequency selective wave absorber for medium-frequency broadband wave transmission, high-frequency wave absorption and low-frequency wave absorption | |
CN108270085B (en) | Suction-through integrated frequency selective surface structure | |
CN110265780B (en) | Stealth antenna housing with medium-frequency broadband wave-transmitting, high-frequency and low-frequency polarization conversion | |
CN108899656B (en) | A Salisbury absorbing screen loaded with FSS | |
WO2020019675A1 (en) | Wave absorption and transmission integrated device, and radome | |
CN107579352B (en) | An ultra-broadband frequency selective surface suitable for radome | |
CN105914462A (en) | Ultra broadband mobile communication radome based on antenna-filter-antenna array | |
CN108365306B (en) | A Novel Dual-Polarized Low-pass Band Suction Frequency Selective Structure | |
CN106602252A (en) | 2.5-dimensional ultra-wide band mobile communication radome of grid square ring loading via hole structure | |
CN112736481B (en) | Three-screen double-passband high-selectivity frequency selection surface and design method thereof | |
CN110265788B (en) | A Novel Dual-Polarization Bandpass Radar Absorber Combined with Two-dimensional and Three-dimensional | |
CN113346250B (en) | A Millimeter-Wave Tri-Frequency Frequency Selective Surface Based on Multilayer Coupling Structure | |
CN208093763U (en) | Inhale integrated frequency-selective surfaces structure thoroughly | |
CN114221139B (en) | A bandgap type absorbing plate with a wide reflection band | |
CN109509978B (en) | High performance mobile communication radome | |
CN114976660B (en) | Band-pass type frequency selection surface with ultra-wideband suppression characteristic | |
CN112072220A (en) | An Absorptive Broadband Bandpass Spatial Filter | |
CN112290210B (en) | Antenna housing with in-band transmission and out-band absorption | |
CN207967320U (en) | A kind of low frequency suction wave height frequency wave transparent antenna filter structure | |
CN118137168B (en) | Two-dimensional and three-dimensional mixed structure frequency selective absorber with broadband transmission and broadband wave absorption | |
CN114421174A (en) | X-waveband absorption and transmission integrated frequency selection surface unit structure and surface structure | |
CN110380228B (en) | A wave absorbing device based on the principle of non-reflection filter | |
CN110768009A (en) | Wave-absorbing and wave-transmitting integrated device and antenna housing | |
CN105322913A (en) | High rejection surface acoustic wave filter | |
CN206961988U (en) | A kind of mode filter of micro-strip five |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |