CN112071759B - 一种提高p型场效应晶体管空穴迁移率的方法 - Google Patents

一种提高p型场效应晶体管空穴迁移率的方法 Download PDF

Info

Publication number
CN112071759B
CN112071759B CN202010958811.8A CN202010958811A CN112071759B CN 112071759 B CN112071759 B CN 112071759B CN 202010958811 A CN202010958811 A CN 202010958811A CN 112071759 B CN112071759 B CN 112071759B
Authority
CN
China
Prior art keywords
field effect
effect transistor
hole mobility
gasb
type field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010958811.8A
Other languages
English (en)
Other versions
CN112071759A (zh
Inventor
杨再兴
孙嘉敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202010958811.8A priority Critical patent/CN112071759B/zh
Publication of CN112071759A publication Critical patent/CN112071759A/zh
Application granted granted Critical
Publication of CN112071759B publication Critical patent/CN112071759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/068Nanowires or nanotubes comprising a junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66469Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with one- or zero-dimensional channel, e.g. quantum wire field-effect transistors, in-plane gate transistors [IPG], single electron transistors [SET], Coulomb blockade transistors, striped channel transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及一种提高p型场效应晶体管空穴迁移率的方法,有助于改善目前集成电路中p沟道晶体管元器件载流子迁移率较低,无法与n沟道晶体管迁移率相匹配的现状。本发明利用金属‑半导体异质结降低沟道半导体中载流子浓度,从而提高元器件的载流子迁移率。本发明在GaSb纳米线场效应晶体管表面沉积CMOS兼容的低功函数铝、锡或钛金属颗粒,当沉积铝颗粒时,器件峰值空穴迁移率提高到3372cm2·v‑1·s‑1,是未沉积时的三倍,达到室温大气环境中p沟道晶体管空穴迁移率最大值。工艺可控性强,操作简单,成本低廉。

Description

一种提高p型场效应晶体管空穴迁移率的方法
技术领域
本发明涉及一种提高p型场效应晶体管空穴迁移率的方法,属于半导体纳米材料及器件领域。
背景技术
在现代集成电路中,由于p沟道晶体管的载流子迁移率往往低于n沟道晶体管,制约了芯片进一步小型化的发展,因此,研究p型场效应晶体管空穴迁移率提高的方法至关重要。上述元器件的载流子迁移率主要取决于器件的制造技术和沟道半导体材料。在器件制造技术方面,使用更洁净的衬底,可以将石墨烯场效应晶体管的电子迁移率提升四倍(Do-Hyun Park,et al.2019,The evolution of surface cleanness and electronicproperties of graphene field-effect transistors during mechanical cleaningwith atomic force microscopy,Nanotechnology,30,394003)。另外,元器件的载流子迁移率可以通过改善沟道材料的结晶度、生长面、载流子有效质量和浓度等方法调节。例如,高结晶度的黑磷薄膜基场效应管中载流子传输散射很低,提升了场效应迁移率(Yijun Xu,et al.2020,Epitaxial nucleation and lateral growth of high-crystalline blackphosphorus films on silicon,Nat.Comm.,11,1330);具有特定生长面的InP纳米线的极性、载流子有效质量和表面散射得到很好的控制,从而提高了晶体管迁移率(Jiamin Sun,et al.2018,Nonpolar-oriented wurtzite InP nanowires with electron mobilityapproaching the theoretical limit,ACS Nano,12,10410)。
在过去的研究中,调控沟道半导体载流子浓度是调控元器件载流子迁移率的有效途径,其中,掺杂是实现载流子浓度控制的最主要方法。一般来说,本征半导体的载流子迁移率随着其浓度的降低而增加,但同时应选择合适的掺杂剂浓度和种类,否则额外引入的载流子和晶体缺陷会增加载流子浓度和输运散射,导致迁移率降低。对于本征p型半导体,轻掺杂有助于提高结晶度,降低空穴浓度,从而提高空穴迁移率。除了掺杂外,在元器件中构建金属-半导体异质结的方法也可以调控沟道半导体的载流子浓度。当半导体与低功函金属接触时,电子从金属转移向半导体,导致n型半导体中电子浓度增加或p型半导体中空穴浓度降低。相对地,当半导体与高功函金属接触时,n型半导体中的电子浓度会降低,p型半导体中的空穴浓度会增加。总之,n沟道元器件的电子迁移率将通过与高功函金属接触而增加,p沟道元器件的空穴迁移率将通过与低功函金属接触而增加。通过在元器件表面沉积金属纳米颗粒,可以很简单地实现金属-半导体异质结。在之前的研究中,此方法用于n沟道元器件的阈值电压调控,但目前没有将其应用于调控p沟道元器件空穴迁移率的报道。另一方面,寻找与互补金属氧化物半导体兼容的低功函金属,也是目前的调控p沟道元器件空穴迁移率的难点。
此外,中国专利文件CN111233023A公开了一种提高CuI空穴迁移率的方法,以铼片作为垫片材料,红宝石荧光峰作为压力大小的标定对象;在金刚石对顶砧上布置四根电极,在垫片的样品腔中添加CuI粉末样品,利用金刚石对顶砧装置样品对腔内部施加0.55~15.16GPa的压力,得到空穴迁移变率提高的CuI材料。但是,此专利通过改变CuI粉末压力的方法提高材料霍尔迁移率,并未实现器件应用。中国专利文件CN108074982A公开了增进效能的垂直装置及其形成方法,揭示数种增进效能的垂直装置(例如,垂直场效晶体管(FET)或并入垂直FET的互补金属氧化物半导体(CMOS)装置)及形成此类装置的方法。其中,带应变介电层横向毗邻垂直FET的栅极,在垂直p型FET(PFET)中,应变为拉伸型以改善在垂直PFET内的电流方向所给定的空穴移动率。但是,此专利通过应变介电层的拉伸与压缩改变应力,从而改善移动率,着重介绍装置的半导体结构,并未针对每种结构给出对应的移动率增强效果及具体数值。US20080272395A1公开了增强的空穴迁移率p型JFET和制造方法。p型结型场效应晶体管,包括n型衬底,形成在衬底中的源极区和漏极区;其中源极区和漏极区是p型掺杂的,并且源极区和漏极区中的至少一个由硅锗化合物(Si1-xGex)形成,p型沟道设置在衬底中的源极和漏极之间;其中Si1-xGex和p型沟道内的n型栅极区基本上沿着沟道长度在p型沟道中诱导压应力。n型栅极区电耦合到栅极触点,该栅极触点可操作以调制p型沟道的耗尽宽度。
然而,以上现有技术中均采用施加应力的方法调控迁移率,对材料形态具有一定的局限性,而且着重提出方法及器件结构的设计,结构和工艺复杂,未针对每个器件结构给出迁移率具体调控的结果。基于上述研究现状,提出本发明。
发明内容
针对目前集成电路中p沟道晶体管元器件载流子迁移率较低,无法与n沟道晶体管迁移率相匹配的现状和不足,本发明提供一种提高p型场效应晶体管空穴迁移率的方法,利用金属-半导体异质结降低沟道半导体中载流子浓度,从而提高元器件的载流子迁移率。本发明在GaSb纳米线场效应晶体管表面沉积CMOS兼容的低功函数铝、锡或钛金属颗粒,当沉积铝颗粒时,器件峰值空穴迁移率提高到3372cm2·v-1·s-1,是未沉积时的三倍,达到室温大气环境中p沟道晶体管空穴迁移率最大值。
本发明的技术方案如下:
一种提高p型场效应晶体管空穴迁移率的方法,所述p型场效应晶体管包括p型硅作为底栅电极、Si/SiO2衬底上的源极和漏极、源极和漏极之间由GaSb纳米线材料组成的沟道,所述的GaSb纳米线掺杂有锡,沟道GaSb纳米线表面沉积低功函的金属颗粒,用于形成金属/半导体接触,以降低p型沟道半导体中载流子浓度。
根据本发明,优选的,所述的沟道GaSb纳米线表面沉积的低功函金属颗粒为铝、锡或钛颗粒;进一步优选的颗粒厚度为0.1-2纳米。
根据本发明,优选的,所述的锡掺杂GaSb纳米线直径为30-50纳米,长度≥10微米,纳米线表面光滑。
根据本发明,优选的,所述的源极和漏极为镍电极,保证与GaSb纳米线之间形成良好的欧姆接触;进一步优选的镍电极厚度为50纳米;优选的,源极和漏极的电极间距为2-5微米。
根据本发明,优选的,沟道GaSb纳米线表面沉积低功函的金属颗粒的方法为利用电子束蒸发或热蒸发的方法。
根据本发明,所述的一种提高p型场效应晶体管空穴迁移率的方法,一种优选的实施方案,包括以下步骤:
(1)将GaSb纳米线分散至无水乙醇中,通过液滴涂布法转移至Si/SiO2衬底,形成分散的纳米线;
(2)通过紫外光刻技术定义器件的源、漏电极图案,经过旋胶、烘胶、曝光、显影过程;
(3)通过电子束蒸发或热蒸发方法蒸镀50纳米金属镍作为源、漏电极;
(4)利用去胶剂进行剥离,形成p型场效应晶体管结构;
(5)利用电子束蒸发或热蒸发方法在场效应晶体管结构表面沉积0.1-2纳米铝、锡或钛金属颗粒,形成GaSb纳米线/金属颗粒异质结,完成高空穴迁移率p型场效应晶体管的制备。
根据本发明,利用显微镜定位源、漏两电极之间具有单根GaSb纳米线的器件,将硅衬底作为底栅电极。可利用直流探针台对器件进行电学性能的测试。
本发明首次将金属-半导体异质结应用于提高p型场效应晶体管空穴迁移率,利用低功函数金属与p型沟道半导体材料形成异质结,降低沟道半导体中载流子浓度,首次将GaSb纳米线场效应晶体管的空穴迁移率提升至3372cm2·V-1·s-1,达到室温大气环境中p沟道晶体管空穴迁移率最大值。
本发明的有益效果在于:
本发明通过一种操作简单、成本低廉的方法,可以大幅提升p型场效应晶体管空穴迁移率。在GaSb纳米线场效应晶体管表面沉积低功函数的铝、锡或钛金属颗粒,形成的金属-半导体异质结使得GaSb纳米线沟道中载流子浓度降低至1016量级,器件峰值空穴迁移率提高至3372cm2·v-1·s-1,是未沉积时的三倍。
附图说明
图1为本发明高空穴迁移率p型场效应晶体管的结构示意图和空穴迁移率提高的能带原理图;其中图1a为高空穴迁移率p型场效应晶体管的结构示意图,图1b为空穴迁移率提高的能带原理图,以低功函数铝金属颗粒为例。
图2为本发明实施例1-4中铝沉积前后GaSb纳米线场效应晶体管的电学性能图。其中,图2a和2b分别为沉积0.5纳米铝前后GaSb纳米线场效应晶体管的转移特性曲线和空穴迁移率,图2c为沉积0.1/0.5/1/2纳米铝后GaSb纳米线场效应晶体管峰值空穴迁移率增加值的统计图。
图3为本发明实施例5-6中锡和钛沉积前后GaSb纳米线场效应晶体管的电学性能图。其中,图3a和3b分别为沉积0.5纳米锡前后GaSb纳米线场效应晶体管的转移特性曲线和空穴迁移率,图3c和3d分别为沉积0.5纳米钛前后GaSb纳米线场效应晶体管的转移特性曲线和空穴迁移率。
图4为本发明试验例3中沉积0.5纳米铝/锡/钛后GaSb纳米线场效应晶体管峰值空穴迁移率增加值的统计图。
具体实施方案
为了更清楚地说明本发明,下面通过具体实施例和附图对本发明做进一步说明。
实施例1
将制备场效应晶体管的Si/SiO2衬底进行预处理,用去离子水、丙酮、乙醇分别超声清洗,并干燥。将GaSb纳米线经低功率超声分散至无水乙醇中,通过液滴涂布法转移至Si/SiO2衬底,形成分散的单根纳米线。
通过紫外光刻技术定义器件电极位置,经过旋胶、烘胶、曝光、显影过程,形成源、漏电极图案,电极间距为2-5微米。通过电子束蒸发或热蒸发方法蒸镀50纳米金属镍作为源、漏电极,蒸发速率为0.2纳米/秒。利用去胶剂进行剥离,形成p型场效应晶体管的结构。
利用显微镜定位源、漏两电极之间具有单根GaSb纳米线的器件,将硅衬底作为底栅电极,利用直流探针台对未进行金属沉积的GaSb纳米线场效应晶体管进行电学性能的测试,得到输出及转移特性曲线。
利用热蒸发方法在GaSb纳米线场效应晶体管结构表面沉积0.1纳米铝颗粒,形成GaSb纳米线/金属颗粒异质结。
利用直流探针台对沉积金属后的GaSb纳米线场效应晶体管进行电学性能的测试,得到输出及转移特性曲线。
实施例2
利用热蒸发方法在GaSb纳米线场效应晶体管表面沉积0.5纳米铝颗粒,其他步骤均与实施例1相同。
实施例3
利用热蒸发方法在GaSb纳米线场效应晶体管表面沉积1纳米铝颗粒,其他步骤均与实施例1相同。
实施例4
利用热蒸发方法在GaSb纳米线场效应晶体管表面沉积2纳米铝颗粒,其他步骤均与实施例1相同。
实施例5
利用热蒸发方法在GaSb纳米线场效应晶体管表面沉积0.5纳米锡颗粒,其他步骤均与实施例1相同。
实施例6
利用电子束蒸发方法在GaSb纳米线场效应晶体管表面沉积0.5纳米钛颗粒,其他步骤均与实施例1相同。
对比例1
如实施例1所述,不同的是:
利用热蒸发方法在GaSb纳米线场效应晶体管表面沉积高功函数的镍金属颗粒,厚度0.5纳米,形成GaSb纳米线/镍金属颗粒异质结,使GaSb纳米线中空穴浓度增加了2.1×1017cm-3,引起空穴迁移率降低。对10个器件沉积高功函数镍颗粒前后的峰值空穴迁移率进行统计,空穴迁移率降低128±73cm2·V-1·s-1
试验例1
测试实施例1-4中铝沉积前后GaSb纳米线场效应晶体管的电学性能,如图2所示。其中,图2a和2b分别为沉积0.5纳米铝前后GaSb纳米线场效应晶体管的转移特性曲线和空穴迁移率,图2c为沉积0.1/0.5/1/2纳米铝后GaSb纳米线场效应晶体管峰值空穴迁移率增加值的统计图。
从图2可知,在沉积低功函数的铝金属颗粒后,GaSb纳米线场效应晶体管空穴迁移率明显提高。从图2a转移特性曲线中得到,器件在沉积0.5纳米铝颗粒后,开态电流维持在0.4微安,阈值电压左移,亚阈值摆幅降低。因此空穴迁移率由1214cm2·v-1·s-1提高至3372cm2·v-1·s-1,如图2b所示。从图2c中对总共40个器件的峰值空穴迁移率进行统计得到的数据可知,沉积0.1/0.5/1/2纳米铝颗粒后,GaSb纳米线场效应晶体管空穴迁移率分别提高24±151cm2·V-1·s-1,1607±503cm2·V-1·s-1,1429±385cm2·V-1·s-1和1437±557cm2·V-1·s-1。迁移率显著提高的原因是器件表面沉积了低功函数铝金属颗粒,形成GaSb纳米线/铝异质结,导致p型沟道材料中空穴浓度降低。
试验例2
测试实施例5-6中锡和钛沉积前后GaSb纳米线场效应晶体管的电学性能,如图3所示。其中,图3a和3b分别为沉积0.5纳米锡金属颗粒前后GaSb纳米线场效应晶体管的转移特性曲线和迁移率,图3c和3d分别为沉积0.5纳米钛金属颗粒前后GaSb纳米线场效应晶体管的转移特性曲线和迁移率。
从图3可知,在沉积低功函数的锡、钛金属颗粒后,GaSb纳米线场效应晶体管空穴迁移率也具有明显提高。从图3a和3c转移特性曲线中得到,器件在沉积0.5纳米锡或钛颗粒后,开态电流保持,阈值电压左移,亚阈值摆幅降低,空穴迁移率分别提高至2840cm2·v-1·s-1和1938cm2·v-1·s-1,如图3b和3d所示。
试验例3
测试沉积铝、锡、钛金属颗粒前后GaSb纳米线场效应晶体管空穴迁移率,分别取10个器件的迁移率增加值进行统计,统计结果如图4所示。图4中同时给出金属功函数和GaSb功函数的差值,可以得到低功函数金属与GaSb形成异质结后有效提高GaSb空穴迁移率的方法是普适的。
以上所述仅为本发明优选实例,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,从而实现其他研究领域中p型场效应晶体管空穴迁移率的提高,这些改进和变型也应视为本发明的保护范围。

Claims (7)

1.一种提高p型场效应晶体管空穴迁移率的方法,其特征在于,所述p型场效应晶体管包括p型硅作为底栅电极、Si/SiO2衬底上的源极和漏极、源极和漏极之间由GaSb纳米线材料组成的沟道,所述的GaSb纳米线掺杂有锡,沟道GaSb纳米线表面沉积低功函的金属颗粒,用于形成金属/半导体接触,以降低p型沟道半导体中载流子浓度。
2.根据权利要求1所述的提高p型场效应晶体管空穴迁移率的方法,其特征在于,所述的沟道GaSb纳米线表面沉积的低功函金属颗粒为铝、锡或钛颗粒。
3.根据权利要求1所述的提高p型场效应晶体管空穴迁移率的方法,其特征在于,所述的沉积低功函的金属颗粒的厚度为0.1-2纳米。
4.根据权利要求1所述的提高p型场效应晶体管空穴迁移率的方法,其特征在于,所述的锡掺杂GaSb纳米线直径为30-50纳米,长度≥10微米,纳米线表面光滑。
5.根据权利要求1所述的提高p型场效应晶体管空穴迁移率的方法,其特征在于,所述的源极和漏极为镍电极,保证与GaSb纳米线之间形成良好的欧姆接触,镍电极厚度为50纳米,源极和漏极的电极间距为2-5微米。
6.根据权利要求1所述的提高p型场效应晶体管空穴迁移率的方法,其特征在于,沟道GaSb纳米线表面沉积低功函的金属颗粒的方法为利用电子束蒸发或热蒸发的方法。
7.根据权利要求1所述的提高p型场效应晶体管空穴迁移率的方法,其特征在于,包括以下步骤:
(1)将GaSb纳米线分散至无水乙醇中,通过液滴涂布法转移至Si/SiO2衬底,形成分散的纳米线;
(2)通过紫外光刻技术定义器件的源、漏电极图案,经过旋胶、烘胶、曝光、显影过程;
(3)通过电子束蒸发或热蒸发方法蒸镀50纳米金属镍作为源、漏电极;
(4)利用去胶剂进行剥离,形成p型场效应晶体管结构;
(5)利用电子束蒸发或热蒸发方法在场效应晶体管结构表面沉积0.1-2纳米铝、锡或钛金属颗粒,形成GaSb纳米线/金属颗粒异质结,完成高空穴迁移率p型场效应晶体管的制备。
CN202010958811.8A 2020-09-14 2020-09-14 一种提高p型场效应晶体管空穴迁移率的方法 Active CN112071759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010958811.8A CN112071759B (zh) 2020-09-14 2020-09-14 一种提高p型场效应晶体管空穴迁移率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010958811.8A CN112071759B (zh) 2020-09-14 2020-09-14 一种提高p型场效应晶体管空穴迁移率的方法

Publications (2)

Publication Number Publication Date
CN112071759A CN112071759A (zh) 2020-12-11
CN112071759B true CN112071759B (zh) 2021-10-15

Family

ID=73696647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010958811.8A Active CN112071759B (zh) 2020-09-14 2020-09-14 一种提高p型场效应晶体管空穴迁移率的方法

Country Status (1)

Country Link
CN (1) CN112071759B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690307B (zh) * 2021-08-20 2023-04-14 电子科技大学 一种具有三叠层栅介质结构的金刚石场效应晶体管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104145340A (zh) * 2012-01-10 2014-11-12 挪威科技大学 具有石墨烯顶部电极和底部电极的纳米线装置以及制造该装置的方法
CN105336687A (zh) * 2014-05-28 2016-02-17 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN105632935A (zh) * 2015-12-31 2016-06-01 青岛大学 一种调控半导体纳米线场效应晶体管阈值电压的方法
CN110164997A (zh) * 2019-06-05 2019-08-23 山东大学 一种基于高空穴迁移率GaSb纳米线的高性能红外探测器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10516050B2 (en) * 2016-07-29 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming stressor, semiconductor device having stressor, and method for forming the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104145340A (zh) * 2012-01-10 2014-11-12 挪威科技大学 具有石墨烯顶部电极和底部电极的纳米线装置以及制造该装置的方法
CN105336687A (zh) * 2014-05-28 2016-02-17 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN105632935A (zh) * 2015-12-31 2016-06-01 青岛大学 一种调控半导体纳米线场效应晶体管阈值电压的方法
CN110164997A (zh) * 2019-06-05 2019-08-23 山东大学 一种基于高空穴迁移率GaSb纳米线的高性能红外探测器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Manipulating III–V Nanowire Transistor Performance via Surface Decoration of Metal-Oxide Nanoparticles;Wang Fengyun等;《Manipulating III–V Nanowire Transistor Performance via Surface Decoration of Metal-Oxide Nanoparticles》;Advanced materials;20170615;第1700260-1至1700260-8页 *
Tunable Electronic Transport Properties of Metal-Cluster Decorated III–V Nanowire Transistors;Han Ning等;《Tunable Electronic Transport Properties of Metal-Cluster Decorated III–V Nanowire Transistors》;Advanced materials;20130827;第4445-4451页 *

Also Published As

Publication number Publication date
CN112071759A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
Smets et al. Ultra-scaled MOCVD MoS 2 MOSFETs with 42nm contact pitch and 250µA/µm drain current
US8772910B2 (en) Doping carbon nanotubes and graphene for improving electronic mobility
US8525228B2 (en) Semiconductor on insulator (XOI) for high performance field effect transistors
CN100505264C (zh) 一种基于半导体纳米材料的cmos电路及其制备
Gao et al. Optimized transport properties in lithium doped black phosphorus transistors
Gong et al. Towards high performance Ge 1− x Sn x and In 0.7 Ga 0.3 As CMOS: A novel common gate stack featuring sub-400 C Si 2 H 6 passivation, single TaN metal gate, and sub-1.3 nm EOT
Morita et al. Tunnel field-effect transistor with epitaxially grown tunnel junction fabricated by source/drain-first and tunnel-junction-last processes
CN108807553B (zh) 一种基于二维半导体材料的同质pn结及其制备方法
Pan et al. Novel 10-nm gate length MoS 2 transistor fabricated on Si fin substrate
Yang et al. Ferroelectric α‐In2Se3 Wrapped‐Gate β‐Ga2O3 Field‐Effect Transistors for Dynamic Threshold Voltage Control
CN112071759B (zh) 一种提高p型场效应晶体管空穴迁移率的方法
KR101904383B1 (ko) 원자층 증착을 이용한 이차원 반도체의 도핑방법 및 그를 포함하는 cmos 소자의 제조방법
Jia et al. Complementary tunneling transistors based on WSe2/SnS2 van der Waals heterostructure
Jin et al. A novel high-low-high Schottky barrier based bidirectional tunnel field effect transistor
US20210111283A1 (en) Multi-negative differential transconductance device and method of producing the same
Sha et al. Fabrication of liquid-gated molybdenum disulfide field-effect transistor
Zota et al. Record performance for junctionless transistors in InGaAs MOSFETs
Oliva et al. Hysteresis Dynamics in Double-Gated n-Type WSe 2 FETs With High-k Top Gate Dielectric
Koo et al. Type conversion of n-type silicon nanowires to p-type by diffusion of gold ions
Fu Electrical Properties of Indium Arsenide Nanowires and Their Field-Effect Transistors
Dehzangi et al. Field effect in silicon nanostructure fabricated by Atomic Force Microscopy nano lithography
Hilleringmann et al. Semiconductor nanoparticles for electronic device integration on foils
Chang et al. Investigation of hot carrier reliability of ultrathin poly-Si nanobelt junctionless (UTNB-JL) transistors on different underlying insulators
Kumar et al. Laterally grown show better performance: ZnO nanorods network based field effect transistors
KR102581497B1 (ko) 반도체성 2차원 물질 기반 트랜지스터 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant