CN112067574A - 不等光程法太赫兹光谱测量方法及其系统 - Google Patents

不等光程法太赫兹光谱测量方法及其系统 Download PDF

Info

Publication number
CN112067574A
CN112067574A CN202011067243.9A CN202011067243A CN112067574A CN 112067574 A CN112067574 A CN 112067574A CN 202011067243 A CN202011067243 A CN 202011067243A CN 112067574 A CN112067574 A CN 112067574A
Authority
CN
China
Prior art keywords
terahertz
sample
signal
signals
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011067243.9A
Other languages
English (en)
Inventor
李德华
季琲琲
李照鑫
周薇
宋宾宾
曹秋红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN202011067243.9A priority Critical patent/CN112067574A/zh
Publication of CN112067574A publication Critical patent/CN112067574A/zh
Priority to US17/307,160 priority patent/US11408823B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/278Constitution of standards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种提高太赫兹光谱测量精度的新方案。利用飞秒激光器和太赫兹时域光谱系统,对不同厚度的待测样品进行时域太赫兹信号扫描,得到样品材料在两种不同厚度下的透射信号。通过样品厚度为
Figure 100004_DEST_PATH_IMAGE001
的信号为参考信号,通过样品厚度为

Description

不等光程法太赫兹光谱测量方法及其系统
技术领域
本发明基于不等光程法提高太赫兹光谱测量的精度,为太赫兹波段精确测量材料光学参数提供了新的方法,属于太赫兹技术领域。
背景技术
太赫兹时域光谱技术是继紫外光谱、红外光谱、圆二色谱、X射线等传统光谱技术之后又一种新的测量技术,该技术可以弥补传统测量技术低频部分的空白,成为研究材料在太赫兹波段吸收率、折射率等光学参数的新的方法。从太赫兹光谱的应用上来看,渗透到生物分子、化学反应、医学、通信和安全检查等领域,目前利用太赫兹时域光谱仪对样品的测量模式有3种,分别为透射式、反射式和衰减全反射式。传统的太赫兹时域光谱系统是由飞秒激光器、太赫兹脉冲发射器、信号接收器、时间延迟控制系统和信号处理系统组合。在THz-TDS 中,利用光电导天线产生并探测太赫兹脉冲。一束激光脉冲被分束器分为两束激光,分别被用作产生太赫兹脉冲的泵浦光和用来探测太赫兹信号的探测光。太赫兹脉冲穿过空气和样品,分别记录下通过空气的参考信号和通过样品的太赫兹时域电场波形,对时域波形进行傅立叶变换得到参考和样品的频域波形,进一步处理提取出样品的折射率、吸收系数、消光系数等材料参数。
传统的太赫兹时域光谱测量方法是把通过空气的太赫兹信号作为参考信号,将通过待测样品的太赫兹信号与参考信号进行比较,经过傅里叶变换等手段获得待测样品不同频率的折射率、消光系数、吸收系数以及介电常数,这会导致材料折射率和吸收系数的提取存在明显误差。
发明内容
本发明基于不等光程法实现对太赫兹光谱测量精度的增强。精确计算材料折射率和吸收系数等材料参数。
本发明为实现上述目的,采用如下的技术解决方案:第一步,获取参考信号和样品信号。取两种不同厚度的同种材料,将其放置在透射式太赫兹时域光谱系统上进行测量,从而获取参考信号和样品信号,通过样品厚度为d1的信号为参考信号,通过样品厚度为d2的信号为样品信号。
第二步,不等光程法提取样品参数。将带有样品信息的太赫兹脉冲所形成的时域信号经过傅里叶变换转换成频域谱,提取振幅和相位信息,利用不等光程法计算样品的吸收系数和折射率等参数。
本发明的优势在于:(1)不等光程测量法可以有效的消除由于两层介质之间信号反射引起的测量误差。(2)不等光程法测量不需要做近似处理,且光学常数计算独立,能够更加精确计算材料折射率和吸收系数等材料参数。不等光程法较常规法比可以揭示常规方法无法测得的材料特征吸收峰,与常规法相比测量精度更加精确,更具有优势。
附图说明
图1为太赫兹时域光谱原理示意图。
图2为太赫兹透射式测量示意图。
具体实施方式
实施例1
获取参考信号和样品信号实验方案:利用透射式太赫兹时域光谱获得参考信号和样品信号的实验方案如图1所示。飞秒激光器中发射出激光通过分光镜后被分成泵浦脉冲和和探测脉冲两部分。泵浦脉冲通过时间延迟装置平移台后入射到太赫兹辐射产生装置上,从而产生太赫兹脉冲。然后,从太赫兹福射产生装置中发射出的太赫兹脉冲透过固定好的待测实验样品,此时太赫兹脉冲中就含有了实验样品的信息。最后,太赫兹脉冲与探测脉冲一起共线入射到透射探测装置上。通过对泵浦脉冲和探测脉冲的时间延迟进行调节,就能够获得在整个实验时域内带有样品信息的太赫兹脉冲的完整波形。
实施例2
不等光程法样品参数提取方案:利用不等光程法太赫兹时域光谱技术,提取出样品在太赫兹波段的光学参量原理如图2所示。左图是常规法透射式太赫兹时域光谱测量原理,发射器与探测器之间的距离为L,以通过空气Air的太赫兹信号为参考信号Eref,通过厚度为d的样品 Sample信号为样品信号Esam;右图是透射式不等光程法太赫兹时域光谱测量原理图,取两种不同厚度同种材料进行测量,通过样品厚度为d1的信号为参考信号Eref',通过样品厚度为d2的信号为样品信号Esam'。
取同种材料但厚度不同的两个样品先后进行测量。设厚度分别为d1、d2(d2>d1),若只考虑垂直入射并忽略反射信号,参考信号和样品信号强度分别表示为:
Figure RE-GDA0002766938760000021
Figure RE-GDA0002766938760000022
记△d=d2-d1,利用公式(1)、(2),可得到通过厚度为d1、d2材料的传递函数:
Figure RE-GDA0002766938760000031
时域信号经过傅里叶变换后得到包含相位的频谱,比值写成指数形式:
Figure RE-GDA0002766938760000032
通过公式(3)、(4)可以得到样品的折射率消光系数和吸收系数分别为:
Figure RE-GDA0002766938760000033
Figure RE-GDA0002766938760000034
Figure RE-GDA0002766938760000035

Claims (3)

1.一种提高太赫兹光谱测量精度的方法,其特征在于:能够更加精确计算材料折射率和吸收系数等材料参数,并可以揭示常规方法无法测得的材料特征吸收峰。
2.根据权利要求1所述的提高太赫兹光谱测量精度的方法,其特征在于:对不同厚度的 待测样品进行时域太赫兹信号扫描,通过样品厚度为
Figure DEST_PATH_IMAGE001
的信号为参考信号,通过样品厚度 为
Figure DEST_PATH_IMAGE002
的信号为样品信号。
3.根据权利要求1、2所述的提高太赫兹光谱测量精度的方法,其特征在于:垂直入射不同厚度的样品信号会产生光程差,时域信号经过傅里叶变换后得到包含相位的频谱,通过光程差和所提取的包含相位的频谱信息,获取更高精度的材料参数。
CN202011067243.9A 2020-10-05 2020-10-05 不等光程法太赫兹光谱测量方法及其系统 Pending CN112067574A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011067243.9A CN112067574A (zh) 2020-10-05 2020-10-05 不等光程法太赫兹光谱测量方法及其系统
US17/307,160 US11408823B2 (en) 2020-10-05 2021-05-04 Terahertz spectrum measurement method and system based on unequal optical path method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011067243.9A CN112067574A (zh) 2020-10-05 2020-10-05 不等光程法太赫兹光谱测量方法及其系统

Publications (1)

Publication Number Publication Date
CN112067574A true CN112067574A (zh) 2020-12-11

Family

ID=73683859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011067243.9A Pending CN112067574A (zh) 2020-10-05 2020-10-05 不等光程法太赫兹光谱测量方法及其系统

Country Status (2)

Country Link
US (1) US11408823B2 (zh)
CN (1) CN112067574A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763452A (zh) * 2020-12-29 2021-05-07 西北工业大学 一种复合材料分层损伤的检测方法及系统
CN113038678A (zh) * 2021-03-09 2021-06-25 北京环境特性研究所 基于太赫兹时域光谱的等离子体密度测量方法
CN114152588A (zh) * 2021-08-27 2022-03-08 北京工业大学 反射式太赫兹时域光谱复合材料自参考光学参量测量方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115435696A (zh) * 2022-07-12 2022-12-06 福州大学 一种基于太赫兹时域光谱的轴套自润滑涂层厚度检测方法
CN117195734B (zh) * 2023-09-18 2024-04-16 安徽工程大学 融合时间序列与太赫兹特征的热生长氧化层演变预测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6517202B2 (ja) * 2013-11-15 2019-05-22 ピコメトリクス、エルエルシー テラヘルツ放射線を使用してシート誘電体サンプルの少なくとも1つの特性を判定するためのシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763452A (zh) * 2020-12-29 2021-05-07 西北工业大学 一种复合材料分层损伤的检测方法及系统
CN113038678A (zh) * 2021-03-09 2021-06-25 北京环境特性研究所 基于太赫兹时域光谱的等离子体密度测量方法
CN114152588A (zh) * 2021-08-27 2022-03-08 北京工业大学 反射式太赫兹时域光谱复合材料自参考光学参量测量方法

Also Published As

Publication number Publication date
US20220107268A1 (en) 2022-04-07
US11408823B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
CN112067574A (zh) 不等光程法太赫兹光谱测量方法及其系统
Withayachumnankul et al. Fundamentals of measurement in terahertz time-domain spectroscopy
Scheller Data extraction from terahertz time domain spectroscopy measurements
US7652769B2 (en) Method and apparatus for assessing purity of vegetable oils by means of terahertz time-domain spectroscopy
WO2018042938A1 (ja) テラヘルツ時間領域分光装置
US20070296957A1 (en) Imaging of Sample Using Terahertz Time Domain Spectroscopy in Reflection Mode to Identify in a First Material Like Normal Breast Tissue a Second Material Like Cancerous Tissue by Evaluating the Phase Change at the Interface Between the Sample and a Window Like a Quartz Window, Against Which the Sample is Pressed
CN106442424B (zh) 利用石墨烯太赫兹表面等离子效应的酒精浓度测量装置及其方法
JPH10153547A (ja) 媒体の解析処理方法
CN105300920B (zh) 一种基于太赫兹反射光谱提取固体薄片复折射率的方法
CN108918458B (zh) 一种确定材料太赫兹吸收峰的方法
Wang et al. Wood species identification using terahertz time-domain spectroscopy
WO2020130942A1 (en) A non-destructive system and method for determining the quality of chinese herb using terahertz time-domain spectroscopy
JP2002277393A (ja) 測定方法及び装置、並びに、イメージ化方法及び装置
CN109142266B (zh) 一种太赫兹精细谱探测仪
CN116399850B (zh) 一种用于光信号处理的光谱探测识别系统及其探测方法
CN110987899B (zh) 一种测定白酒中总酸总酯含量及鉴别白酒质量等级的方法
EP1376099A1 (en) Infrared circular dichroism measuring apparatus and method
Hirsch et al. Techniques for cancellation of interfering multiple reflections in terahertz time-domain measurements
US6411388B1 (en) System and method for frequency domain interferometric second harmonic spectroscopy
CN102012361A (zh) 消除位相误差的反射式太赫兹光谱分析方法
US20240142372A1 (en) Adulteration and authenticity analysis method of organic substances and materials by terahertz spectroscopy
WO2022177534A1 (en) Adulteration and authenticity analysis method of organic substances and materials by terahertz spectroscopy
CN110763650B (zh) 用于诺氟沙星太赫兹微弱信号增强的超材料结构及方法
CN112229814B (zh) 太赫兹光谱测量装置、测量方法及其用途
CN115561202A (zh) 一种绝缘油中甲醇的快速测量方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Li Dehua

Inventor after: Ji Beibei

Inventor after: Zhou Wei

Inventor after: Li Zhaoxin

Inventor after: Song Binbin

Inventor after: Cao Qiuhong

Inventor before: Li Dehua

Inventor before: Ji Beibei

Inventor before: Li Zhaoxin

Inventor before: Zhou Wei

Inventor before: Song Binbin

Inventor before: Cao Qiuhong

CB03 Change of inventor or designer information