CN112054665A - 转换器 - Google Patents

转换器 Download PDF

Info

Publication number
CN112054665A
CN112054665A CN202010504104.1A CN202010504104A CN112054665A CN 112054665 A CN112054665 A CN 112054665A CN 202010504104 A CN202010504104 A CN 202010504104A CN 112054665 A CN112054665 A CN 112054665A
Authority
CN
China
Prior art keywords
converter
thyristors
capacitor
control
thyristor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010504104.1A
Other languages
English (en)
Inventor
诺伯特·梅西贝内埃隆杜
辛加拉比鲁·马尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo eAutomotive France SAS
Original Assignee
Valeo Siemens eAutomotive France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Siemens eAutomotive France SAS filed Critical Valeo Siemens eAutomotive France SAS
Publication of CN112054665A publication Critical patent/CN112054665A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及一种转换器,转换器配置以在操作阶段期间对能量消耗元件(M1)供电,且在操作阶段之前的预充电阶段期间对所述电容器(C1)充电。所述转换器(10)包括功率因数校正(PFC)电路,功率因数校正电路包括所述电容器(C1)和晶闸管(TR1、TR2)。所述转换器(10)进一步包括配置以控制所述预充电阶段的控制系统(100)。所述控制系统(100)包括控制单元(110),控制单元配置以在所述操作阶段期间检测电容器(C1)的充电状态,且依据电容器(C1)的充电状态来产生配置以控制所述晶闸管(TR1、TR2)的控制信号。

Description

转换器
技术领域
本发明一般来说涉及用于电动车辆的充电器的转换器。本发明尤其涉及转换器和其控制系统。
背景技术
以现有方式,电动车辆(electric vehicle;EV)或混合动力车辆的充电器包括转换器,所述转换器包括功率因数校正(power factor correction;PFC)电路。再明确地说用于车辆充电器的转换器中实施的PFC电路的若干拓扑存在。
在这些现有拓扑当中,交错图腾柱无桥PFC电路视为与其它现有PFC拓扑相比较有吸引力的PFC拓扑,这是因为其使得转换器不仅能够包括较少电子组件,且还能够呈现较少损耗。所述交错图腾柱无桥PFC电路通常与DC链电容器相关联。在实行能量的转移以用于对能量消耗元件供电之前,DC链电容器需要预先充电,以避免在转换器的操作期间的涌入电流。两个开关电路2a和开关电路2b分别描述于图1和图2中,所述两个开关电路因其用于对电容器预充电而闻名。
图1说明用于连接到交流电压源V1和连接到能量消耗元件M1的转换器1a的PFC电路的拓扑。转换器1a包括PFC电路和开关电路2a。开关电路2a配置以在预充电阶段期间或在操作阶段期间控制在交流电压源V1与转换器1a之间循环的电流,在所述预充电阶段期间对转换器1a的电容器C1充电,在所述操作阶段期间能量消耗元件M1消耗由交流电压源V1供应的电能。
所述PFC电路是包括多个开关Q1到开关Q4、至少二极管D5和二极管D6、变压器以及电容器C1的交错图腾柱无桥PFC电路。开关Q1到开关Q4是金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor;MOSFET)。开关Q1和开关Q2串联连接且由此形成第一臂。开关Q3和开关Q4串联连接且形成第二臂。变压器包括两个电感L1和电感L2,所述两个电感如图1中所说明各自包括连接到对应于所述第一臂或所述第二臂的中间点的节点J1或节点J2的端子。
二极管D5和二极管D6分别连接到电容器C1,连接到开关Q1到开关Q4且连接到交流电压源V1。串联连接的二极管D5和二极管D6配置以形成整流器,所述整流器使得有可能将由交流电压源V1产生的交流电变换成单向电流。二极管D5和二极管D6是常规二极管或由碳化硅(SiC)制成的二极管。另外,对应于两个二极管D5与二极管D6之间的连接点的节点J3连接到交流电压源V1的负极端子。
由二极管D5和二极管D6、所述第一臂、所述第二臂、电容器C1以及能量消耗元件M1串联构成的电路是并联连接的。
连接到交流电压源V1和连接到所述PFC电路的开关电路2a包括转移继电器S1和预充电电路。预充电电路包括串联连接的预充电继电器S2和限制电阻器RL。限制电阻器RL可由热敏电阻器替换。所述预充电电路与转移继电器S1并联连接。转移继电器S1和预充电继电器S2是交流电继电器。限制电阻器RL可由热敏电阻器替换。
在转换器1a的预充电阶段期间,预充电继电器S2闭合,而转移继电器S1切断。预充电继电器S2配置以在电容器C1的预充电完成后与限制电阻器RL断开连接。在转换器1a的操作阶段期间,转移继电器S1闭合,而预充电继电器S2切断。开关电路2a的转移继电器S1随后配置以允许或切断在恒定电流源V1与转换器1a之间转移的电流。
图2说明转换器1b中包括的开关电路2b的另一配置。开关电路2b也包括转移继电器S1和预充电电路。图1和图2中所说明的两个电路之间的唯一差异在于开关电路2b的配置。开关电路2b的预充电电路包括并联连接的预充电继电器S2和限制电阻器RL。在开关电路2b中,预充电电路和转移继电器S1串联连接。在图2中,在转换器1b的预充电阶段期间,预充电继电器S2切断且转移继电器S1闭合。预充电继电器S2配置以在电容器C1的预充电完成后使限制电阻器RL短路。在转换器1b的操作阶段期间,转移继电器S1以及预充电继电器S2仍闭合。开关电路2b的转移继电器S1随后配置以允许或切断在恒定电流源V1与转换器1a之间转移的电流。
然而,用于汽车应用的交流电继电器S1和交流电继电器S2是罕见的,且包括明确地说限制电阻器RL的开关电路2a或开关电路2b是昂贵的。
为了克服前述缺点,本发明的目标是使得有可能实行电容器的预充电而不使用如先前所描述的典型开关电路的价格较低的解决方案。
发明内容
为实现这个结果,本发明涉及配置以在操作阶段期间对能量消耗元件供电以及配置以在操作阶段之前的预充电阶段期间对所述电容器充电的转换器。所述转换器包括功率因数校正(PFC)电路,所述功率因数校正电路包括所述电容器和晶闸管。所述转换器进一步包括配置以控制所述预充电阶段的控制系统。所述控制系统包括控制单元,所述控制单元配置以在所述事先预充电阶段期间检测电容器的充电状态,且依据电容器的充电状态来产生配置以控制所述晶闸管的控制信号。
本发明由此使得有可能实行电容器的预充电而不使用如先前所描述的典型开关电路。
操作阶段明确地说是经由所述转换器对能量消耗元件供电的阶段。
有利地,如果控制单元配置以使得控制信号包括栅极脉冲,所述栅极脉冲以使得两个晶闸管交替地置于传导状态中以启用电容器的预充电的方式施加到所述晶闸管。
以有利方式,栅极脉冲明确地说具有可变持续时间。明确地说至少依据电容器的充电状态来确定这些栅极脉冲持续时间。
以有利方式,PFC电路配置以使得在操作阶段中所述晶闸管操作为二极管。
以优先方式,控制单元配置以在操作阶段中产生包括分别配置以控制第一晶闸管和第二晶闸管的第一栅极信号和第二栅极信号的控制信号,两个栅极信号各自处于高电平。明确地说,栅极信号在整个操作阶段中各自处于高电平。
优先地,控制单元配置以在操作阶段中产生包括分别配置以控制第一晶闸管和第二晶闸管的第一栅极信号和第二栅极信号的控制信号,且在供应电压的每一过零处,栅极信号中的仅一个包括处于高电平的脉冲,使得所述晶闸管在过零的检测时交替地受控制。
有利地,所述控制系统包括起始电路,所述起始电路分别专用于所述晶闸管中的一个且分别配置以依据所述控制信号来控制起始电路专用于的晶闸管。
以有利方式,所述起始电路各自包括配置以经由电隔离进行控制的信号调适组件。
以优先方式,所述起始电路各自至少包括电阻器和二极管,其中所述起始电路中的一个的二极管连接到对应于电容器与起始电路专用于的晶闸管之间的连接点的节点;所述起始电路中的另一个的二极管连接到对应于串联连接的晶闸管之间的连接点的节点。
优先地,所述PFC电路包括第一臂、第二臂,所述第一臂包括两个开关,所述第二臂包括两个开关;所述第一臂、所述第二臂、包括所述晶闸管的第三臂、电容器以及能量消耗元件连接在两个节点之间。
有利地,PFC电路是交错图腾柱无桥PFC电路;电容器是DC链电容器。
有利地,PFC电路的开关是金属氧化物半导体场效应晶体管(MOSFET)或隔离栅极双极晶体管(isolated gate bipolar transistor;IGBT)。
附图说明
通过阅读以下描述,本发明的其它特征和优点将变得清楚。这仅仅是说明性的且应相对于附图来阅读,在所述附图当中:
图1说明用于形成转换器的常规PFC电路和开关电路的拓扑。
图2说明转换器中包括的开关电路的另一常规配置。
图3说明根据本发明的实施例的包括控制系统的转换器。
图4是根据本发明的实施例的当转换器处于预充电阶段中和处于能量转移阶段中时在不同时刻处测量的电流和电压的强度的附图。
图5说明根据本发明的实行以在操作阶段中控制所述晶闸管的两种方式。
应注意,各图以用于实施本发明的详细方式来阐述本发明,所述图显然能够在需要时更好地定义本发明。
附图标号说明
1a、1b:转换器;
2a、2b:开关电路;
5a、5b:实例;
10:转换器;
100:控制系统;
110:控制单元;
C1:电容器;
D5、D6、D51、D61:二极管;
FC1、FC2:起始电路;
G1:第一栅极信号;
G2:第二栅极信号;
J1、J2、J3、J31:节点;
L1、L2:电感;
m1、m2、m3:时刻;
M1:能量消耗元件;
PT:操作阶段;
PP:预充电阶段;
Q1、Q2、Q3、Q4:开关;
R1、R2、R3、R4:电阻器;
RL:限制电阻器;
S1:转移继电器;
S2:预充电继电器;
TR1、TR2:晶闸管;
U1、U2:信号调适组件;
V1:供应电压/交流电压源。
具体实施方式
图3说明根据本发明的实施例的包括控制系统100的转换器10。控制系统100包括控制单元110、第一起始电路FC1以及第二起始电路FC2。控制系统100配置以在预充电阶段期间或在操作阶段期间控制交流电压源V1与转换器10之间的电流,在所述预充电阶段期间对转换器10的电容器C1充电,在所述操作阶段期间能量消耗元件M1消耗由交流电压源V1经由转换器10供应的电能。控制系统100的以上电子组件将在以下段落中更详细地描述。另外,应注意,由前述参考引用的转换器10的元件类似于图1和图2中所说明的转换器1a和转换器1b的元件。
转换器10包括功率因数校正(PFC)电路。转换器10的PFC电路至少包括优选地是交错图腾柱无桥PFC电路或者标准PFC电路的常规电子组件的开关、变压器以及电容器C1。电容器C1优选地是DC链电容器。可使用类似或等于DC链型电容器的其它类型的电容器。
在本实施例中,PFC电路包括优先地是金属氧化物半导体场效应晶体管(MOSFET)或隔离栅极双极晶体管(IGBT)的四个开关Q1到开关Q4。优选地,开关Q1和开关Q2串联连接且随后形成第一臂。开关Q3和开关Q4串联连接且形成第二臂。第一臂和第二臂并联连接。
变压器包括至少两个电感。在本实施例中,变压器包括第一电感L1和第二电感L2。第一电感L1连接到交流电压源V1且连接到对应于开关Q1与开关Q2之间的第一臂的中间点的节点J1。第二电感L2连接到对应于开关Q3与开关Q4之间的第二臂的中间点的节点J2且连接到交流电压源V1。然而,本发明不限于转换器10的PFC电路中包括的开关的数目或电感的数目。
然而,代替包括不能控制电流的常规PFC电路的二极管(例如,转换器1a或转换器1b的二极管D5和二极管D6),转换器10的PFC电路包括多个晶闸管,所述多个晶闸管包括串联连接的第一晶闸管TR1和第二晶闸管TR2。第一晶闸管TR1和第二晶闸管TR2分别连接到第一起始电路FC1且连接到第二起始电路FC2,以便不仅形成使得有可能将由交流电压源V1产生的交流电变换成单向电流的整流器,且还与控制单元110合作控制单向传导电流。另外,对应于第一晶闸管TR1与第二晶闸管TR2之间的连接点的节点J31均连接到交流电压源V1的负极端子且连接到第二起始电路FC2。
所述第一臂、所述第二臂、包括所述晶闸管TR1和晶闸管TR2的第三臂、电容器C1以及能量消耗元件M1连接在两个节点之间。
晶闸管TR1和晶闸管TR2配置以由依据电容器C1的充电状态而产生的控制信号控制。以优先方式,控制信号包括分别配置以控制第一晶闸管TR1和第二晶闸管TR2的第一栅极信号G1和第二栅极信号G2。
第一起始电路FC1连接到控制单元110。包括第一信号调适组件U1、至少电阻器以及第一二极管D51的第一起始电路FC1配置以依据来自控制单元110的控制信号来控制第一晶闸管TR1。
在一实施例中,第一起始电路FC1包括第一电阻器R1和第二电阻器R2。第一信号调适组件U1连接到大地且连接到与控制单元110连接的第一电阻器R1。第一信号调适组件U1也连接到PFC电路的第一晶闸管TR1且连接到与第一二极管D51连接的第二电阻器R2。第一二极管D51连接到对应于第一晶闸管TR1与电容器C1之间的连接点的节点。在优先实施例中,第一起始电路FC1包括电隔离。有利地,第一信号调适组件U1使得有可能经由这一电隔离来传输信号。第一信号调适组件U1是例如光电耦合器,或不具有或具有推挽型晶体管的数字隔离器。
控制单元110也连接到第二起始电路FC2。在电路拓扑方面,第二起始电路FC2类似于第一起始电路FC1。
第二起始电路FC2包括第二信号调适组件U2、至少电阻器以及第二二极管D61,且第二起始电路FC2配置以依据来自控制单元110的控制信号来控制PFC电路的第二晶闸管TR2。
在一实施例中,第二起始电路FC2包括第三电阻器R3和第四电阻器R4。第二信号调适组件U2连接到大地且连接到通过G2与控制单元110连接的第三电阻器R3。第二信号调适组件U2也连接到第二晶闸管TR2且连接到与第二二极管D61连接的第四电阻器R4。第二二极管D61连接到所述晶闸管TR1与晶闸管TR2之间的所述节点J31。在优先实施例中,第二起始电路FC2包括电隔离。有利地,第二信号调适组件U2使得有可能经由这一电隔离来传输信号。第二信号调适组件U2是例如光电耦合器,或不具有或具有推挽型晶体管的数字隔离器。
转换器10可处于预充电阶段中或处于操作阶段中,如图4中所描述。图4是根据本发明的实施例的当转换器10处于预充电阶段(即,在图4中由“PP”引用)中和处于能量转移阶段(即,由“PT”引用)中时在不同时刻处测量的电流“Icap”、电流“Iac”以及电压“DCOUT”的强度的附图。术语“Icap”、“Iac”以及“DCOUT”分别表示电容器C1中通过的电流、由交流电压源V1产生的输入电流以及电容器C1的端子处的电压。
如先前所提到,在切换到操作阶段之前,电容器C1必须强制性地且预先充分充电以便避免在转换器10的操作阶段期间的涌入电流。
控制单元110随后配置以至少依据电容器C1的端子处的电压来检测电容器C1的充电状态。控制单元110随后配置以依据电容器C1的充电状态来产生控制信号。
有利地,通过在电容器C1的端子处的电压与预定义能量阈值之间进行比较来确定电容器C1的充电状态。如果电容器C1的端子处的电压低于预定义能量阈值,那么电容器C1视为不充分充电。因此,电容器C1的充电状态意指转换器10必须进入预充电阶段中,如图4的实例中所描述。根据图4的这一实例,在操作阶段PT的开始之后的1.3秒结束时,转换器10进入预充电阶段PP中。
在预充电阶段期间,控制单元110依据电容器C1的端子处的电压来确定所需预充电持续时间,在所述所需预充电持续时间结束时电容器C1视为充分充电。为这个目的,控制单元110配置以如上文所提及产生包括栅极脉冲的控制信号,所述栅极脉冲预期用于所述晶闸管TR1和晶闸管TR2且应用于至少依据电容器C1的端子处的电压确定的可变脉冲持续时间和/或所需预充电持续时间。
第一起始电路FC1和第二起始电路FC2由此分别依据由控制单元110产生的控制信号来控制第一晶闸管TR1和第二晶闸管TR2。在预充电阶段处,栅极脉冲以使得所述两个晶闸管TR1和晶闸管TR2交替地置于传导状态中以在对能量消耗元件M1供电之前启用电容器C1的预充电的方式依据所述控制信号来施加到两个晶闸管TR1和晶闸管TR2。以这种方式,可实行对第一晶闸管TR1的点火角和第二晶闸管TR2的点火角的控制。
施加到所述晶闸管TR1和晶闸管TR2的栅极脉冲可依据控制信号而延迟一段时间。由此以便于在所述所需预充电持续时间的期间实行电容器C1的充电的方式来控制传导。
如果存储于电容器C1中的电能等于或高于预定义能量阈值,那么电容器C1视为充分充电。电容器C1的充电状态由此意指转换器10可处于操作阶段中且由此能够对能量消耗元件M1供电。
在操作阶段期间,所述晶闸管TR1和晶闸管TR2操作为二极管。图5说明实行以在操作阶段中控制所述晶闸管TR1和晶闸管TR2的两种方式(分别引用“5a”和“5b”)。在由图5中的实例5a说明的实施例中,控制信号的栅极信号G1和栅极信号G2各自在操作阶段期间持续处于高电平。因此,所述晶闸管TR1和晶闸管TR2始终受到控制。
在例如由图5中的5b说明的另一实施例中,在由交流电压源V1供应的供应电压的每一过零处(例如,在实例5b的时刻m1、时刻m2以及时刻m3处),栅极信号G1和栅极信号G2中的仅一个起作用。栅极信号G1和栅极信号G2各自包括处于高电平的栅极脉冲且使得晶闸管TR1和晶闸管TR2在对应于上升沿或下降沿的过零的检测时根据所述过零是否与第一晶闸管TR1或第二晶闸管TR2有关而交替地受控制。换句话说,单个晶闸管依据由交流电压源V1供应的交替供应电压的交替来接收控制。为从负电压过渡到正电压,被点火的是第一晶闸管TR1。为从正电压过渡到负电压,被点火的是第二晶闸管TR2。因此,在由交流电压源V1供应的供应电压的过零处通过专用于每一晶闸管TR1、晶闸管TR2(即,G1用于TR1且G2用于TR2)的栅极信号来点火所述每一晶闸管TR1、晶闸管TR2。当每一晶闸管TR1、晶闸管TR2的阳极与阴极之间的电压的差值变为负时,所述每一晶闸管TR1、晶闸管TR2自动地切断。也就是说,对于第一晶闸管TR1,当由交流电压源V1供应的供应电压从正交替切换到负交替时;以及类似地,对于第二晶闸管TR2,当由交流电压源V1供应的供应电压从负交替切换到正交替时。
本发明使用控制单元110而非使用典型开关电路(即,在图1或图2中描述的开关电路2a和开关电路2b)来确定在给定时刻转换器10必须或无须处于预充电阶段中,这使得有可能自动地实行电容器C1的预充电而不需要使用典型开关电路。因此,与典型控制电路相比较,控制系统100更高效且具有以下优点:减小转换器10的大小且降低转换器10的制造成本,简化转换器10的制造以及改进转换器10的可靠性。
本发明不限于先前描述的实施例但延伸到与本发明的精神一致的任何实施例。

Claims (10)

1.一种转换器,配置以在操作阶段期间对能量消耗元件(M1)供电,所述转换器(10)包括功率因素校正电路,所述功率因素校正电路包括电容器(C1),所述转换器(10)配置以在所述操作阶段之前的预充电阶段期间对所述电容器(C1)充电,所述转换器(10)包括配置以控制所述预充电阶段的控制系统(100);所述转换器(10)的特征在于:
所述功率因素校正电路包括多个晶闸管(TR1、TR2);以及
所述控制系统(100)包括控制单元(110),所述控制单元配置以在所述预充电阶段期间检测所述电容器(C1)的充电状态,且依据所述电容器(C1)的所述充电状态来产生配置以控制所述多个晶闸管(TR1、TR2)的控制信号。
2.根据权利要求1所述的转换器,其中所述控制单元(110)配置以使得所述控制信号包括栅极脉冲,所述栅极脉冲以使得所述多个晶闸管(TR1、TR2)交替地置于传导状态中以启用所述电容器(C1)的预充电的方式施加到所述多个晶闸管(TR1、TR2)。
3.根据权利要求1或2所述的转换器,其中所述功率因素校正电路配置以使得在所述操作阶段中所述多个晶闸管(TR1、TR2)操作为二极管。
4.根据权利要求3所述的转换器,其中所述控制单元(110)配置以在所述操作阶段中产生包括分别配置以控制所述多个晶闸管的第一晶闸管(TR1)和所述多个晶闸管的第二晶闸管(TR2)的第一栅极信号(G1)和第二栅极信号(G2)的所述控制信号,所述第一栅极信号(G1)和所述第二栅极信号(G2)各自处于高电平。
5.根据权利要求3所述的转换器,其中所述控制单元(110)配置以在所述操作阶段中:
产生包括分别配置以控制所述多个晶闸管的第一晶闸管(TR1)和所述多个晶闸管的第二晶闸管(TR2)的第一栅极信号(G1)和第二栅极信号(G2)的所述控制信号,且
在供应电压(V1)的每一过零处,所述第一栅极信号(G1)和所述第二栅极信号(G2)中的仅一个包括处于高电平的脉冲,使得所述多个晶闸管(TR1、TR2)在过零的检测时交替地受控制。
6.根据权利要求1或2所述的转换器,其中所述控制系统(100)包括多个起始电路(FC1、FC2),所述多个起始电路分别专用于所述多个晶闸管(TR1、TR2)中的一个且分别配置以依据所述控制信号来控制所述起始电路专用于的所述多个晶闸管(TR1、TR2)中的所述一个。
7.根据权利要求6所述的转换器,其中所述多个起始电路(FC1、FC2)各自包括配置以经由电隔离进行控制的信号调适组件(U1、U2)。
8.根据权利要求7所述的转换器,其中所述多个起始电路(FC1、FC2)各自至少包括电阻器(R1到R4)和二极管(D51、D61),且其中所述多个起始电路(FC1)中的一个的所述二极管(D51)连接到对应于所述电容器(C1)与所述多个起始电路(FC1)专用于的所述多个晶闸管(TR1)中的所述一个之间的连接点的节点;所述多个起始电路(FC2)中的另一个的所述二极管(D61)连接到对应于串联连接的所述多个晶闸管(TR1、TR2)之间的连接点的节点(J31)。
9.根据权利要求1或2的转换器,其中所述功率因素校正电路包括第一臂、第二臂,所述第一臂包括两个开关(Q1、Q2),所述第二臂包括两个开关(Q3、Q4);所述第一臂、所述第二臂、包括所述多个晶闸管(TR1、TR2)的第三臂、所述电容器(C1)以及所述能量消耗元件(M1)连接在两个节点之间。
10.根据权利要求1或2所述的转换器,其中所述功率因素校正电路是交错图腾柱无桥功率因素校正电路;所述电容器(C1)是DC链电容器。
CN202010504104.1A 2019-06-07 2020-06-05 转换器 Pending CN112054665A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1906070A FR3097089B1 (fr) 2019-06-07 2019-06-07 Un convertisseur et son systeme de controle de courant
FR1906070 2019-06-07

Publications (1)

Publication Number Publication Date
CN112054665A true CN112054665A (zh) 2020-12-08

Family

ID=68072698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010504104.1A Pending CN112054665A (zh) 2019-06-07 2020-06-05 转换器

Country Status (4)

Country Link
US (1) US11264894B2 (zh)
EP (1) EP3748831A1 (zh)
CN (1) CN112054665A (zh)
FR (1) FR3097089B1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230074505A1 (en) * 2021-09-08 2023-03-09 Stmicroelectronics (Tours) Sas Voltage converter
WO2024093101A1 (zh) * 2022-10-31 2024-05-10 广东美的制冷设备有限公司 升降压供电系统及空调器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3118356A1 (fr) * 2020-12-18 2022-06-24 Stmicroelectronics (Tours) Sas Convertisseur de tension
CN112910243B (zh) * 2021-01-28 2022-06-14 三峡大学 一种单相三电平伪图腾柱功率因数校正电路
CN112910244B (zh) * 2021-01-28 2022-05-20 三峡大学 一种混合桥臂单相三电平功率因数校正电路
CN112865562B (zh) * 2021-01-28 2022-05-20 三峡大学 一种单相三开关管伪图腾柱式三电平整流器
CN112865567B (zh) * 2021-01-28 2022-05-20 三峡大学 一种异构二极管钳位式的三电平整流器
CN112865566B (zh) * 2021-01-28 2022-05-20 三峡大学 一种三开关管单相三电平整流器
KR102550710B1 (ko) * 2021-03-16 2023-06-30 인하대학교 산학협력단 브리지리스 부스트 컨버터 및 이를 포함하는 하이브리드배전 시스템
KR102627906B1 (ko) * 2022-09-30 2024-01-19 인천대학교 산학협력단 누설전류 저감이 가능한 유니폴라 인버터 역률 보상 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6009008A (en) * 1997-03-31 1999-12-28 International Rectifier Corporation Soft strat bridge rectifier circuit
EP3349343B1 (en) * 2013-11-08 2019-07-17 Delta Electronics (Thailand) Public Co., Ltd. Resistorless precharging
FR3037741A1 (fr) * 2015-06-22 2016-12-23 St Microelectronics Tours Sas Convertisseur a circuit correcteur du facteur de puissance
US10217559B2 (en) * 2016-04-12 2019-02-26 Virginia Tech Intellectual Properties, Inc. Multiphase coupled and integrated inductors with printed circuit board (PBC) windings for power factor correction (PFC) converters
FR3068547B1 (fr) * 2017-06-30 2019-08-16 Stmicroelectronics (Tours) Sas Convertisseur ac/dc reversible a thyristors
FR3068546B1 (fr) * 2017-06-30 2020-12-11 St Microelectronics Tours Sas Convertisseur ac/dc reversible a triacs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230074505A1 (en) * 2021-09-08 2023-03-09 Stmicroelectronics (Tours) Sas Voltage converter
WO2024093101A1 (zh) * 2022-10-31 2024-05-10 广东美的制冷设备有限公司 升降压供电系统及空调器

Also Published As

Publication number Publication date
EP3748831A1 (fr) 2020-12-09
FR3097089A1 (fr) 2020-12-11
US11264894B2 (en) 2022-03-01
US20200389086A1 (en) 2020-12-10
FR3097089B1 (fr) 2022-03-25

Similar Documents

Publication Publication Date Title
CN112054665A (zh) 转换器
US6937483B2 (en) Device and method of commutation control for an isolated boost converter
US8946931B2 (en) Dual boost converter for UPS system
US8288887B2 (en) Systems and methods for commutating inductor current using a matrix converter
US10027232B2 (en) Motor bi-directional DC/DC converter and control method thereof
EP1605577A2 (en) Method and apparatus for converting a DC voltage to an AC voltage
CN104638949A (zh) 无电阻器预充电
JP2021151184A (ja) プリチャージ可能なdcdc変換回路
US8508962B2 (en) Power conversion apparatus
JP3829846B2 (ja) 無停電電源装置
JPH10271703A (ja) 充電器用のコンバータ回路
CN115868105A (zh) 软开关脉冲宽度调制dc-dc功率转换器
JP2000116120A (ja) 電力変換装置
CN112956099A (zh) 连接高压电池前dc-dc转换器的整流变压器的电压适应的方法和设备
CN212367151U (zh) 一种逆变电路
US8605470B2 (en) Power converter performing soft switching
US20220302844A1 (en) Control method for a dc-dc converter and dc-dc converter
US11411505B2 (en) DC-DC converter with pre-charging of a first electrical network from a second electrical network
JP2019531047A (ja) 直流電圧変換器、および直流電圧変換器の作動方法
CN111555648A (zh) 一种逆变电路
CN113507229A (zh) 基于开关电容网络的宽输入降压逆变系统及控制方法
CN114747113A (zh) 充电设备和用于运行充电设备的方法
CN108832814B (zh) 双降压变换器
CN115411921A (zh) 一种变换器和逆变器
Kumar et al. Analysis And Design Of An Interleaved AC-DC Boost Converter With ZVS–PWM Technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination