CN112021676A - High-precision heating temperature control circuit and control method thereof - Google Patents
High-precision heating temperature control circuit and control method thereof Download PDFInfo
- Publication number
- CN112021676A CN112021676A CN202011034601.6A CN202011034601A CN112021676A CN 112021676 A CN112021676 A CN 112021676A CN 202011034601 A CN202011034601 A CN 202011034601A CN 112021676 A CN112021676 A CN 112021676A
- Authority
- CN
- China
- Prior art keywords
- temperature
- thermocouple
- heating
- preset temperature
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 9
- 229910000570 Cupronickel Inorganic materials 0.000 claims description 12
- 229910001120 nichrome Inorganic materials 0.000 claims description 7
- 239000003571 electronic cigarette Substances 0.000 abstract description 15
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 9
- 241000208125 Nicotiana Species 0.000 description 8
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 8
- 238000009529 body temperature measurement Methods 0.000 description 4
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 2
- 235000019504 cigarettes Nutrition 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 235000019640 taste Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/51—Arrangement of sensors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/57—Temperature control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/02—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K2215/00—Details concerning sensor power supply
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K2219/00—Thermometers with dedicated analog to digital converters
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Resistance Heating (AREA)
Abstract
The invention provides a high-precision heating temperature control circuit and a control method thereof, and the high-precision heating temperature control circuit comprises: a thermocouple as a heating wire for heating an article, and as a sensor for detecting temperature; a voltage measuring circuit for measuring a potential difference of the thermocouple; the temperature sensor is used for measuring the temperature of the cold end of the thermocouple; the controller is respectively electrically connected with the thermocouple, the voltage measuring circuit and the temperature sensor and is used for acquiring the preset temperature and the preset temperature difference range of the thermocouple; acquiring the temperature measured by the temperature sensor and the potential difference measured by the voltage measuring circuit, and calculating to obtain the temperature of the thermocouple; and comparing the preset temperature of the thermocouple with the temperature of the thermocouple obtained by calculation, and controlling the opening and closing of the thermocouple so that the temperature difference between the actual temperature of the thermocouple and the preset temperature of the thermocouple falls into the preset temperature difference range. According to the technical scheme of the technical embodiment of the invention, the problem that the temperature of the electronic cigarette is not accurately controlled is solved.
Description
Technical Field
The invention relates to the field of temperature control, in particular to a high-precision heating temperature control circuit and a control method thereof.
Background
The electronic cigarette is a fashionable scientific and technological new product generated along with the scientific and technological progress and the improvement of living standard of people, has various tastes and mouthfeel which are not possessed by common real cigarettes, and along with the development and popularization of the electronic cigarette, the electronic cigarette becomes a culture.
The heating wire of the electronic cigarette generally needs to be controlled to be at 250-300 ℃, some special cigarettes need to be heated to be at 350 ℃ or even higher, the electronic cigarette has strict requirements on the temperature control of the heating wire, and tobacco tar/tobacco shreds are easily burnt when the temperature is too high; too low a temperature is detrimental to the production of smoke.
At present, the temperature measurement modes of electronic cigarettes generally include the following modes: (1) the heating wire is wrapped in the middle of the tobacco tar cotton, and the temperature sensor is placed on the tobacco tar cotton, so that the temperature sensor is not in direct contact with the heating wire, and the error of temperature measurement is large; (2) the temperature sensor is directly arranged on the heating wire, and because the temperature of the heating wire is high, the mode requires high working temperature of the temperature sensor, the temperature sensor which can meet the conditions is expensive, and the electronic cigarette (especially the disposable electronic cigarette) is extremely sensitive to cost; (3) other electronic cigarette temperature measurement schemes, such as testing the resistance change of the heating wire and the current change of the heating wire, are indirect measurements, and have larger errors; (4) even many electronic cigarettes do not measure temperature, and heating power is controlled by adopting a mode of screening resistance values of heating wires, so that the aim of empirical temperature control is fulfilled, and errors are large.
Therefore, a low-cost and high-precision temperature control scheme is needed in the market, the cost is not increased too much, the existing structure of the electronic cigarette is not changed greatly, and the temperature can be measured and controlled accurately.
Disclosure of Invention
In order to solve the problem of inaccurate temperature control of the electronic cigarette in the background art, a high-precision heating temperature control circuit and a control method thereof are provided on the basis of not greatly changing the structure of the electronic cigarette and not increasing the cost.
A high accuracy heating temperature control circuit comprising:
a thermocouple as a heating wire for heating an article, as a sensor for detecting temperature;
a voltage measuring circuit for measuring a potential difference of the thermocouple;
the temperature sensor is used for measuring the temperature of the cold end of the thermocouple;
the controller is respectively electrically connected with the thermocouple, the voltage measuring circuit and the temperature sensor and is used for acquiring the preset temperature and the preset temperature difference range of the thermocouple; acquiring the temperature measured by the temperature sensor and the thermocouple potential difference measured by the voltage measuring circuit, and calculating to obtain the temperature of the thermocouple; and comparing the preset temperature of the thermocouple with the temperature of the thermocouple obtained by calculation, and controlling the opening and closing of the thermocouple so that the temperature difference between the actual temperature of the thermocouple and the preset temperature of the thermocouple falls into the preset temperature difference range.
Preferably, the thermocouple consists of a nickel-chromium alloy heating wire and a copper-nickel alloy wire, and the nickel-chromium alloy heating wire and the copper-nickel alloy wire form an E-type thermocouple.
Preferably, the thermoelectric module further comprises a memory electrically connected with the controller and used for storing the preset temperature and the preset temperature difference range of the thermocouple.
Preferably, the device further comprises a heating switch, wherein one end of the heating switch is connected with the controller, and the other end of the heating switch is connected with the thermocouple.
Preferably, the voltage measuring circuit comprises a transport amplifier U2 and an analog-to-digital converter U3, wherein the input end of the transport amplifier U2 is connected with two ends of the thermocouple, the output end of the transport amplifier U2 is connected with the analog-to-digital converter U3, and the input end and the output end of the analog-to-digital converter U3 are respectively connected with the transport amplifier U2 and the controller.
A control method of a high-precision heating temperature control circuit comprises the following steps:
s1: the controller cuts off power supply to the thermocouple, obtains the temperature measured by the temperature sensor and the potential difference measured by the voltage measuring circuit, and calculates the measured temperature of the thermocouple;
s2: acquiring a preset temperature of a thermocouple, and comparing the preset temperature with a measured temperature;
s3: if the preset temperature is higher than the measured temperature, the controller supplies power to the thermocouple; if the preset temperature is lower than the measured temperature, the controller cuts off the power supply to the thermocouple;
s4: the above steps S1, S2, S3 are repeated so that the temperature difference between the actual temperature of the thermocouple and the preset temperature of the thermocouple falls within the preset temperature difference range.
Compared with the prior art, the invention has the advantages that: 1. the nickel-chromium alloy heating wire and the copper-nickel alloy wire are skillfully combined together to form an E-shaped thermocouple, so that the E-shaped thermocouple can be used for heating tobacco tar/tobacco shreds, can also be used for conveniently measuring the temperature difference of the heating wire, and is combined with the cold end temperature measured by a temperature sensor in a common temperature measuring scheme to accurately measure the temperature data of the heating wire; 2. compared with the existing temperature measurement scheme, only on the basis of taking the nichrome wire as the heating wire, a section of the copper-nickel alloy wire and the thermocouple consisting of the nichrome wire are added, the number of added original devices is small, and the total cost is increased slightly.
Drawings
FIG. 1 is a schematic block diagram of a high precision heating temperature control circuit of the present invention;
fig. 2 is a circuit diagram of a high-precision heating temperature control circuit of the present invention.
Detailed Description
In order to make the technical solutions of the present invention better understood, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Referring to fig. 1, a high-precision heating temperature control circuit includes a thermocouple, a voltage measurement circuit, a thermistor, and a controller, wherein when the thermocouple is powered on, the thermocouple is used as a heating wire for heating tobacco shreds/tobacco tar, and when the thermocouple is powered off, the thermocouple is used as a sensor for detecting temperature; the thermocouple can be formed by a typical E-type thermocouple by selecting a nickel-chromium alloy heating wire and a copper-nickel alloy heating wire, and can also be formed by other types of thermocouples by using other materials; the voltage measuring circuit is connected with the thermocouple and measures the potential difference of the thermocouple; the temperature sensor is arranged at the cold end of the thermocouple and used for measuring the temperature of the cold end of the thermocouple; the controller is respectively electrically connected with the thermocouple, the voltage measuring circuit and the temperature sensor, acquires the preset temperature and the preset temperature difference range of the thermocouple, calculates the temperature of the thermocouple after acquiring the potential difference between the temperature measured by the temperature sensor and the potential difference measured by the voltage measuring circuit, compares the preset temperature of the thermocouple with the temperature of the thermocouple obtained by calculation, and controls the opening and closing of the thermocouple, so that the temperature difference between the actual temperature of the thermocouple and the preset temperature of the thermocouple falls into the preset temperature difference range.
Optionally, a memory and a heating switch are further arranged in the circuit, and the memory is electrically connected with the controller and used for storing the preset temperature and the preset temperature difference range of the thermocouple; the heating switch is a PMOS type MOSFET tube or other switching devices, and the controller controls the power-on and power-off of the thermocouple through the heating switch.
It should be noted that the controller may be an ARM single chip, a DSP, an FPGA, or an ASIC chip; the temperature sensor may be a thermistor or other type of temperature sensor.
Referring to fig. 2, fig. 2 is a schematic circuit diagram of a high-precision heating temperature control circuit according to the present invention, the circuit includes a microprocessor U1, a transportation amplifier U2, an analog-to-digital converter U3, a heating switch Q1, a nichrome heating wire R1, a copper-nickel alloy wire R2, and a thermistor R3, the nichrome heating wire R1 and the copper-nickel alloy wire R2 are combined to form an E-type thermocouple, the microprocessor U1 controls the power on and off of the nichrome heating wire R1 through the heating switch Q1, the thermistor R3 is used to measure a temperature signal at the end of the copper-nickel alloy wire R2 and input the temperature signal to the microprocessor U1, the transportation amplifier U2 and the analog-to-digital converter U3 form a voltage measurement circuit, measure a potential difference of the E-type thermocouple and feed back the potential difference to the microprocessor U1, the microprocessor U1 can calculate an actual temperature of the copper-nickel alloy wire R2 through a potential difference of the E-type thermocouple and a temperature of the end, the microprocessor U1 controls the on/off of the heating switch Q1 according to the comparison between the actual temperature and the preset temperature, so that the temperature on the cupronickel alloy wire R2 is always kept near the preset temperature.
A control method of a high-precision heating temperature control circuit comprises the following steps:
s1: the controller cuts off power supply to the thermocouple, then obtains the temperature measured by the temperature sensor and the thermocouple potential difference measured by the voltage measuring circuit, and calculates the measured temperature of the thermocouple;
s2: acquiring a preset temperature of a thermocouple, and comparing the preset temperature with a measured temperature;
s3: if the preset temperature is higher than the measured temperature, the controller supplies power to the thermocouple; if the preset temperature is lower than the measured temperature, the controller cuts off the power supply to the thermocouple;
s4: the above steps S1, S2, S3 are repeated so that the temperature difference between the actual temperature of the thermocouple and the preset temperature of the thermocouple falls within the preset temperature difference range.
On the premise of measuring the accurate temperature of the thermocouple, the starting time of the power switch is continuously adjusted, so that the temperature of the thermocouple is kept to swing nearby a set value, and the aim of accurately controlling the temperature is fulfilled.
Heating of the thermocouple and detection of the potential difference are alternately performed. And immediately detecting the temperature when the heating is stopped, continuously monitoring for a short period (sampling period T1), stopping detecting and starting heating when the temperature of the heating wire is detected to be close to or equal to the lower limit of the set temperature, stopping heating after the heating time T2, starting temperature detection again, and repeating the steps. By adjusting the optimum sampling period T1 and the heating time T2 per heating, the accuracy of temperature control can be made sufficiently high.
It should be noted that the thermocouple in the invention can be a thermocouple of various types, such as B-type, J-type, K-type, S-type thermocouples, and is not limited to E-type thermocouples, as long as the temperature range requirement, precision requirement and environmental requirement of actual operation can be met; meanwhile, the method can be used in electronic cigarettes and can also be used in other fields of temperature detection and control by heating with heating wires.
Claims (6)
1. A high accuracy heating temperature control circuit, its characterized in that includes:
a thermocouple as a heating wire for heating an article, and as a sensor for detecting temperature;
a voltage measuring circuit for measuring a potential difference of the thermocouple;
the temperature sensor is used for measuring the temperature of the cold end of the thermocouple;
the controller is respectively electrically connected with the thermocouple, the voltage measuring circuit and the temperature sensor and is used for acquiring the preset temperature and the preset temperature difference range of the thermocouple; acquiring the temperature measured by the temperature sensor and the potential difference measured by the voltage measuring circuit, and calculating to obtain the temperature of the thermocouple; and comparing the preset temperature of the thermocouple with the temperature of the thermocouple obtained by calculation, and controlling the opening and closing of the thermocouple so that the temperature difference between the actual temperature of the thermocouple and the preset temperature of the thermocouple falls into the preset temperature difference range.
2. A high accuracy heating temperature control circuit according to claim 1, wherein the thermocouple is composed of nichrome heating wire and cupronickel wire, and the nichrome heating wire and the cupronickel wire constitute type E thermocouple.
3. A high accuracy heating temperature control circuit according to claim 1, further comprising a memory electrically connected to the controller for storing the preset temperature and the preset temperature differential range of the thermocouple.
4. A high accuracy heating temperature control circuit according to claim 1, further comprising a heating switch, one end of said heating switch being connected to the controller and the other end being connected to the thermocouple.
5. A high accuracy heating temperature control circuit according to claim 4, wherein the voltage measuring circuit comprises a transport amplifier U2 and an analog-to-digital converter U3, the input terminal of the transport amplifier U2 is connected to both ends of the thermocouple, the output terminal of the transport amplifier U2 is connected to the analog-to-digital converter U3, and the input terminal and the output terminal of the analog-to-digital converter U3 are connected to the transport amplifier U2 and the controller, respectively.
6. A control method of a high-precision heating temperature control circuit is characterized by comprising the following steps:
s1: the controller cuts off power supply to the thermocouple, obtains the temperature measured by the temperature sensor and the thermocouple potential difference measured by the voltage measuring circuit, and calculates the measured temperature of the thermocouple;
s2: acquiring a preset temperature of a thermocouple, and comparing the preset temperature with a measured temperature;
s3: if the preset temperature is higher than the measured temperature, the controller supplies power to the thermocouple; if the preset temperature is lower than the measured temperature, the controller cuts off the power supply to the thermocouple;
s4: the above steps S1, S2, S3 are repeated so that the temperature difference between the actual temperature of the thermocouple and the preset temperature of the thermocouple falls within the preset temperature difference range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011034601.6A CN112021676A (en) | 2020-09-27 | 2020-09-27 | High-precision heating temperature control circuit and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011034601.6A CN112021676A (en) | 2020-09-27 | 2020-09-27 | High-precision heating temperature control circuit and control method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112021676A true CN112021676A (en) | 2020-12-04 |
Family
ID=73574037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011034601.6A Pending CN112021676A (en) | 2020-09-27 | 2020-09-27 | High-precision heating temperature control circuit and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112021676A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113170923A (en) * | 2021-05-18 | 2021-07-27 | 深圳市鹏翔半导体有限公司 | Electronic cigarette tobacco tar detection method and system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102735361A (en) * | 2012-06-13 | 2012-10-17 | 江苏华鑫合金有限公司 | High-precision nickel-chromium/copper-nickel thermocouple alloy wires |
CN208737325U (en) * | 2018-09-26 | 2019-04-12 | 深圳市卓力能电子有限公司 | A kind of temperature control system of electronic cigarette |
CN110236230A (en) * | 2019-06-21 | 2019-09-17 | 精赟智能科技(上海)有限公司 | The temperature control device and electronic cigarette of electronic cigarette |
CN110836733A (en) * | 2019-11-27 | 2020-02-25 | 株洲耀辉光机电研究开发有限公司 | YHWE E type thermocouple temperature sensor |
CN111207849A (en) * | 2020-01-14 | 2020-05-29 | 浙江清华柔性电子技术研究院 | Temperature detection circuit and temperature detection method |
CN212306820U (en) * | 2020-09-27 | 2021-01-08 | 胥海洲 | High-precision heating temperature control circuit |
-
2020
- 2020-09-27 CN CN202011034601.6A patent/CN112021676A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102735361A (en) * | 2012-06-13 | 2012-10-17 | 江苏华鑫合金有限公司 | High-precision nickel-chromium/copper-nickel thermocouple alloy wires |
CN208737325U (en) * | 2018-09-26 | 2019-04-12 | 深圳市卓力能电子有限公司 | A kind of temperature control system of electronic cigarette |
CN110236230A (en) * | 2019-06-21 | 2019-09-17 | 精赟智能科技(上海)有限公司 | The temperature control device and electronic cigarette of electronic cigarette |
CN110836733A (en) * | 2019-11-27 | 2020-02-25 | 株洲耀辉光机电研究开发有限公司 | YHWE E type thermocouple temperature sensor |
CN111207849A (en) * | 2020-01-14 | 2020-05-29 | 浙江清华柔性电子技术研究院 | Temperature detection circuit and temperature detection method |
CN212306820U (en) * | 2020-09-27 | 2021-01-08 | 胥海洲 | High-precision heating temperature control circuit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113170923A (en) * | 2021-05-18 | 2021-07-27 | 深圳市鹏翔半导体有限公司 | Electronic cigarette tobacco tar detection method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5009374B2 (en) | Detection of temperature sensor configuration in a process variable transmitter | |
CA1114635A (en) | Temperature measurement apparatus | |
CN108873976A (en) | The temperature control system of electronic cigarette | |
EP3249488A1 (en) | Temperature control system and control method thereof, and electronic cigarette containing said temperature control system | |
CN1991654B (en) | Temperature sensor needless accurate heating-up temperature control device and method | |
CN109043675A (en) | A kind of electric heating is not burnt smoking set and its temperature control device | |
CN107941363B (en) | Temperature pick-up device and method based on program-controlled double constant-current supplies | |
US8864378B2 (en) | Process variable transmitter with thermocouple polarity detection | |
US11733108B2 (en) | Method for calibrating short temperature measuring device using dry body temperature calibrator | |
EP2302344A2 (en) | An apparatus for measuring temperature and method thereof | |
WO2018170800A1 (en) | Electronic smoking device and temperature control method thereof | |
US10209143B2 (en) | Thermo wire testing circuit | |
CN108618206B (en) | Smoking set equipment and temperature measuring and controlling method for smoking set equipment | |
KR100791431B1 (en) | Fluid-measuring device and fluid-measuring method | |
CN105466603A (en) | An automatic calibration method for temperature measurement by a thermometer, a temperature measurement probe and a thermometer | |
CN109645571B (en) | Heating non-combustion device, heating assembly and calibration method thereof | |
CN212306820U (en) | High-precision heating temperature control circuit | |
CN112021676A (en) | High-precision heating temperature control circuit and control method thereof | |
US20030169802A1 (en) | Method of stabilizing an infrared clinical thermometer and the apparatus thereof | |
WO2015131539A1 (en) | Temperature measurement device | |
US4370546A (en) | Kiln temperature controller | |
US20090067474A1 (en) | Adjusting method and system thereof for a temperature sensing element | |
WO2019196003A1 (en) | Smoking set device and temperature measuring and controlling method for same | |
US11503671B2 (en) | Temperature controller for electronic smoking device | |
ATE434847T1 (en) | METHOD AND DEVICE FOR MEASURING THE TEMPERATURE OF THERMAL TUNING ELEMENTS IN TUNABLE OPTICAL DEVICES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |