CN112020845B - 对由于网络基础设施的地理空间接近性所导致的物理风险的定量分析 - Google Patents

对由于网络基础设施的地理空间接近性所导致的物理风险的定量分析 Download PDF

Info

Publication number
CN112020845B
CN112020845B CN201980026292.7A CN201980026292A CN112020845B CN 112020845 B CN112020845 B CN 112020845B CN 201980026292 A CN201980026292 A CN 201980026292A CN 112020845 B CN112020845 B CN 112020845B
Authority
CN
China
Prior art keywords
point
network
spof
span
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980026292.7A
Other languages
English (en)
Other versions
CN112020845A (zh
Inventor
安伦·施洛斯伯格
莱文·海默克
多米尼克·施密德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Google LLC filed Critical Google LLC
Publication of CN112020845A publication Critical patent/CN112020845A/zh
Application granted granted Critical
Publication of CN112020845B publication Critical patent/CN112020845B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0659Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities
    • H04L41/0661Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities by reconfiguring faulty entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • H04L41/0836Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability to enhance reliability, e.g. reduce downtime
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/40Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1433Vulnerability analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings
    • H04L41/0816Configuration setting characterised by the conditions triggering a change of settings the condition being an adaptation, e.g. in response to network events

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

提供了评估计算机网络中的单点故障的系统和方法。所述系统包括处理器,所述处理器被配置为接收至少两个多段线,所述多段线近似相应的网络跨度。针对表示地理位置的一组点中的每个点,处理器能够确定所述点处的事件会影响至少所述第一多段线和所述第二多段线的风险等级。所述处理器能够通过将针对所述组点中的每个点的风险等级相组合来确定总体故障风险。所述处理器能够基于针对至少一个点的风险等级输出指示所述至少一个点被确定为潜在SPoF的报告。

Description

对由于网络基础设施的地理空间接近性所导致的物理风险的 定量分析
相关申请
本申请要求于2018年7月18日提交的标题为“QUANTITATIVE ANALYSIS OFPHYSICAL RISK DUE TO GEOSPATIAL PROXIMITY OF NETWORK INFRASTRUCTURE(对由于网络基础设施的地理空间接近性所导致的物理风险的定量分析)”的美国专利申请No.16/039,003的权益和优先权,其整个内容出于所有目的通过引用被整体合并于此。
背景技术
计算机网络主要依靠物理电缆在计算机之间发送信号,无论它们是在建筑物内还是跨大陆和海洋。这样的网络以相同端点之间但跨越不同地理路线的两个或更多个网络路径的形式利用冗余。这允许一个电缆发生故障(例如,导致光纤或电线被切断的物理损坏)不会完全损害端点之间的连接性。单点故障(SPoF)是两个或更多个冗余电缆路径可能受到同一中断事件影响的区域。例如,如果两个电缆彼此紧邻,并且建筑工程损坏了一个,那么很可能也会损坏另一个,导致尽管有预期的冗余性但仍会完全损害连接性。
发明内容
至少一个方面涉及一种用于评估计算机网络中的单点故障(SPoF)的系统。该系统包括一个或多个处理器和存储指令的存储器,该指令被配置为使该一个或多个处理器接收至少近似于第一网络跨度的第一多段线和近似于第二网络跨度的第二多段线。针对表示地理位置的一组点中的每个点,处理器能够确定该点处的事件会影响至少第一多段线和第二多段线的风险等级。处理器能够通过将针对该组点中的每个点的风险等级相组合来确定总体故障风险。处理器能够基于针对至少一个点的风险等级,输出指示该至少一个点被确定为潜在SPoF的报告。
至少一个方面涉及一种用于评估计算机网络中的单点故障(SPoF)的方法。该方法在一个或多个处理器上执行。该方法包括:接收至少近似于第一网络跨度的第一多段线和近似于第二网络跨度的第二多段线。针对表示地理位置的一组点中的每个点,确定该点处的事件将至少影响所述第一多段线和所述第二多段线的风险等级。该方法包括:通过将针对该组点中的每个点的风险等级相组合来确定总体故障风险。该方法包括:基于针对至少一个点的风险等级,输出指示该至少一个点被确定为潜在SPoF的报告。
这些和其他方面以及实施方式在下面详细讨论。前述信息和以下详细描述包括各个方面和实施方式的说明性示例,并且提供用于理解所要求保护的方面和实施方式的性质和特征的概述或框架。附图提供对各个方面和实施方式的说明和进一步理解,并且被并入本说明书中并构成本说明书的一部分。
附图说明
附图并非旨在按比例绘制。在各个附图中,相似的附图标记和名称指示相似的元素。为了清楚起见,并非在每个附图中都标记了每个组件。在附图中:
图1示出了根据说明性实施方式的用于评估计算机网络中的单点故障的示例系统;
图2示出了根据说明性实施方式的地图,该地图包括两个网络跨度以及与较高风险等级阈值相对应的潜在单点故障区域;
图3示出了根据说明性实施方式的地图,该地图包括两个网络跨度以及与较低风险等级阈值相对应的潜在单点故障区域;
图4示出了根据说明性实施方式的地图,该地图包括三个网络跨度以及与第一和第二网络跨度而不是第三网络跨度的破坏相对应的潜在单点故障区域;
图5是示出了根据说明性实施方式的累积分布函数的计算的概念图;
图6是示出了根据说明性实施方式,针对地球上圆形冠的基于小区的覆盖物的、提高的精度等级的表示600、610和620,通过将其投影到立方体上并以四叉树的方式将每个面划分为任意深度来实现;
图7示出了根据说明性实施方式的使用希尔伯特曲线将2D平面中的小区映射到一系列一维区间的示例映射;
图8示出了根据说明性实施方式的用于评估计算机网络中的单点故障的示例方法的流程图。
图9是图示根据说明性实施方式的可以被采用以实现本文描述和说明的系统和方法的要素的计算机系统的通用体系结构的框图。
具体实施方式
本公开总体上涉及对由于网络基础设施的地理空间接近性而导致的物理风险的定量分析。计算机网络主要依靠物理电缆在计算机之间发送信号,无论它们是在建筑物内还是跨大陆和海洋。这样的网络以相同端点之间但跨越不同地理路线的两个或更多个网络路径的形式利用冗余。这允许一个电缆发生故障(例如,导致光纤被切断的物理损坏)不会完全损害端点之间的连接性。
单点故障(SPoF)是两个或更多个冗余电缆路径可能受到同一中断事件影响的区域。例如,如果两个电缆彼此紧邻,并且建筑工程损坏了一根,那么很可能也会损坏另一个,导致尽管有预期的冗余性但仍会完全损害连接性。
针对SPoF检查电缆对的蛮力法是检查电缆的每种可能的配对。对于大量电缆n,其中n是非零的正整数,可以选择n(n-1)/2个不同的、无序的对,这将导致过程具有以Big-O记号法表示为O(n^2)的计算复杂性。Big-O记号法将过程的计算复杂性描述为O(f(n)),其中f(n)是n的某个函数,而n是特定于问题大小的某个值。针对该问题,n可以是要进行SPoF检查的电缆数,n^2可以表示n的平方。Big-O记号法描述用特定过程解决问题所需的计算时间或内存资源的相对量。通常的做法是忽略Big-O记号法中的常数因子,使得,例如,将O(3n)简单地写为O(n),而仅保留所谓的支配项;例如,O(n^2+n)变为O(n^2)。
本公开描述了可以在最坏情况下使用O(n)时间检查电缆的过程。与O(n^2)蛮力法相比,这显著降低了计算复杂性。从理论上讲,不可能在少于O(n)的时间内执行此类检查,因为必须对全部电缆进行至少一次检查。因此,本文公开的过程可以实现最佳可能的性能。
在本文公开的过程中,每个电缆——有时称为网络跨度——可以通过多段线来近似,该多段线在地球上具有一系列纬度/经度顶点,这些顶点通过测地线(围绕球体的最短线)相连。未通过测地线适当近似的跨度的任何线段都可以沿该线段添加任意数量的附加顶点,直到充分近似为止。
接下来,该过程可以将地球上的全部点映射到立方体表面上的小区。考虑在地球周围放置一个立方体,并从该行星上的每个点直接向上(即,从地球中心径向向外的方向)投影一条线,直到它接触到立方体为止。每组纬度/经度坐标现在以一对一映射的方式在立方体上都有不同的对应点。然后将这些面(本文中称为0级)划分成四个相等的正方形(1级),每个正方形又分为四个相等的正方形(2级),依此类推直至任何任意等级的深度。每个正方形无论其等级如何都称为小区。由于地球上的每个坐标在立方体上都有一个镜像点,因此,针对任何给定等级,坐标将恰好位于一个小区内。
对于给定的跨度,现在可以定义覆盖定义了该跨度的全部顶点和测地线的一组小区。注意,这些小区不必全部处于同一等级。针对每个电缆,查找小区的该覆盖组一次,因此总体上构成了该过程的O(n)贡献。以这种方式映射相应的跨度可以并行执行。
可以通过类似于在覆盖每个电缆的小区中着色——一次仅一个电缆——并且检查小区中是否已经存在颜色的过程来执行电缆的检测。首先,将每组小区映射到一系列一维区间。将小区映射到区间的一种可能方式可以包括使用希尔伯特曲线。希尔伯特曲线(Hilbert curve)是一种空间填充曲线,它将一维线映射到填充整个正方形的分形。因此,使用逆映射可以将任何小区映射到[0,1]范围内的区间,其中立方体的整个面的区间为[0,1],1级小区的区间为[0,0.25]、[0.25,0.5]、[0.5,0.75]和[0.75,1],针对任何任意等级,依此类推。希尔伯特曲线的性质是,作为较低等级小区的后代的任何小区的区间都必须严格位于其祖先的区间内。希尔伯特曲线可以应用于立方体的六个面中的每个面。立方体的六个面的开始和结束位置对齐,以使它们各自的希尔伯特曲线连续,因此我们可以遍历整个地球并将其映射到0到6之间的值;例如,第一个面为[0,1],第二个面为[1,2],依此类推。下面将参考图7进一步描述使用希尔伯特曲线将2D小区线性化为1D区间的情况。可以使用具有相同属性的其他空间填充曲线。
针对每个跨度,它的这组覆盖小区被转换为六条希尔伯特曲线上的一组区间,即,介于0到6之间。确定区间需要O(n)时间,并且可以并行执行。然后可以对全部区间的开放点和封闭点进行排序。尽管通常在O(n log n)时间执行此操作,但是由于全部处理已经并行执行,因此可以在收集和合并区间时使用例如并行合并排序进行排序。以这种方式,有可能获得sub-O(n)时间,同时保留支配O(n)项。
检测SPoF现在是确定已排序列表中全部重叠区间的问题。可以在O(m)时间内完成此操作,其中m是一维区间的数量,方法是迭代全部开放和封闭点,并注意在开放一个新的区间时还开放了哪些其他区间,从而指示它们各自的电缆之间的潜在SPoF。这也需要O(m)内存。
通过对用于近似单个跨度的小区大小设置下限,可以检测所述跨度与任何其他跨度之间的任意接近性。这可以通过在小区周围创建缓冲区——例如,通过添加全部尚未包括的相邻小区——来实现,该缓冲区不仅覆盖了跨度,而且还覆盖了处于最低接近公差范围内的全部区域。
一旦确定了一个或多个潜在SPoF,系统就可以发布包括潜在SPoF的区域的报告。
在一些实施方式中,系统可以向网络设备发送指令以例如改变交换和路由行为以缓解SPoF。
该过程通常包括以下步骤:
1.将每条多段线映射到一组小区,其中每条多段线近似于网络跨度,并且每个小区表示不同的地理区域。
2.针对表示地理位置的一组点中的每个点,确定该点处的事件会影响至少两条多段线的风险等级。
3.针对至少一个点区域,如果该区域全部点的组合风险等级超过阈值,则确定该区域为潜在SPoF。
4.生成包括潜在SPoF的区域的报告。
5.重新配置计算机网络的网络设备以缓解潜在SPoF。
在一些实施方式中,可以通过将问题限制为仅一组点被预定为具有单点故障的非零风险,来进一步节省计算资源。例如,这组点表示地理位置可以包括以下步骤:
1.将每组小区映射到一系列一维区间。
2.确定相应系列的一维区间之间的一组重叠区间,其中每个重叠区间对应于表示候选潜在SPoF的小区。
3.根据该组重叠区间生成该组点。
认识到破坏两个网络跨度的事件会导致与破坏三个网络跨度的事件截然不同的故障情形,在一些实施方式中,系统可以确定在点处的事件会破坏这两个网络跨度但不会破坏第三网络跨度的概率。此过程可以进一步推广到任意数,其中对于一组n个小区,可以确定事件会破坏2≤r≤n个小区但不会破坏其余的n-r个小区的概率。
在一些实施方式中,系统可以另外地或替代地将包括区域相关故障概率的附加参数纳入考虑。区域相关故障概率通过针对这组点中的一个或多个点预定的基线风险等级来表示,或者可以通过用于根据跨度接近性计算故障风险的不同函数来表示。针对点的基线风险等级可以表示网络基础设施更倾向于故障,或者表示中断事件在该地理区域中更常见或具有不同的幅度分布。
系统的其他能力和益处将通过以下说明而变得显而易见。
下面是针对给定的一组网络跨度(多段线)用于量化SPoF风险的拟议严重性分析的数学描述。
1.术语
以下定义将有助于随后的描述。
·小区(cell):地球表面上的四边形区域。同一等级内的小区具有近似相同的面积。
·多段线(polyline):地球表面上的网络电缆的表示。多段线由一组有序的顶点和连接测地线组成,这些测地线定义了电缆的路径。
·中断事件(outage event):假设事件,以r为半径的圆形影响,如果与任何多段线Li相交,将导致网络中断,从而影响Li表示的电缆。
在整个过程中,事件的发生概率将基于无记忆的分布。这意味着,观察的持续时间将被忽略,并且概率等于持续时间的比例。
2.问题定义
给定:
·一组多段线{Li};以及
·针对中断事件半径的累积分布函数(CDF),cdf(x)=P(r<x)。
被定义为至少一个中断事件的SPoF的概率是多少,从而使其圆形影响区域与{Li}所描述的每个电缆路径相交?
假设存在一组已知的小区{Cj},其足够接近全部多段线以保证得到考虑,并且中断事件必须以一个小区为中心。针对每个小区,还存在一种计算阈值半径tj的方法,使得当且仅当(“iff”)rj>=tj时中断事件会导致全部{Li}发生故障。
3.解决方案
定义:
·Fij:表示由于以Cj为中心的中断事件导致Li发生故障的中断事件;
·Fj:表示由于以Cj为中心的半径rj的中断事件导致全部{Li}发生故障的中断事件(即,当且仅当rj>=tj时,Fj发生);
·|F|:表示计算跨越全部j个小区的Fj的发生次数;以及
·S:表示使|F|>0的SPoF事件。
因此,问题在于计算P(S)。我们首先考虑全部小区具有相等的面积。
等式(1)是根据阈值半径和CDF的定义,即,会导致全部网络电缆发生故障的最小大小的中断事件以及事件半径小于此值的概率。因为Fj是相对于以小区Cj中心的中断事件定义的,所以它们是独立的。即使以相邻小区为中心的中断事件可能会具有重叠的影响区域,但这并不能否定其发生的独立性的主张。因此,通过独立事件的联合概率:
并且,将(1)代入(2):
4.考虑小区面积差异
(2)中的的乘积假定对于某个任意定义的单位,小区的单位面积相等。通过引入与小区Cj相对应的面积aj,可以使用几何权重{aj}使其一般化。因此,等式(2)变为:
当全部aj=1时折叠为(2)。
小区的使用是对现实世界中连续问题的离散近似。相当于说,对于小区Cj内的全部坐标,|tlat,lng-tj|<∈,其中∈为适当的较小错误阈值。具有m个单位面积的小区必须具有与单个单位面积的m个子小区相同的故障概率和相同的cdf(tj),因此(5)成立。减小近似小区的大小,从而提高分辨率,具有将∈减小到可容忍的上限之内的效果。
5.阈值半径的计算
当中断事件的半径rj>=dij时发生事件Fij,其中dij是从小区Cj中心到多段线Li的任何部分的最短距离。这可以借助于几何库来计算,诸如下面进一步描述的SPoF评估系统110的几何库120。因此,事件Fj发生(即全部电缆均发生故障)的阈值tj是:
6.排他性电缆故障
定义将{Li}划分为包含{Linc}和排除{Lexc}电缆的不相交集;即:
{Linc}∪{Lexc}={Li} (8)
现在,我们希望导出排他SPoF的P(SE)作为发生使至少一个中断事件的大小足以导致全部{Linc}发生故障但不会使任何{Lexc}发生故障的SPoF事件的概率。
首先将阈值半径定义为与tj等效,但仅与{Linc}中的电缆有关;即,会导致{Linc}中全部电缆发生故障而与{Lexc}中任何电缆的故障状态无关的以小区Cj为中心的中断事件的最小可能半径。
针对全部先前定义的事件和随机变量F*,将其针对排他性SPoF的等效FE *定义为事件,其中F*对于全部{Linc}都为真,但对于全部{Lexc}都不为真。回顾dij,多段线特定的故障距离,由小区Cj处的中断事件导致的排他性SPoF的概率被定义为:
当排除集{Lexc}中至少有一个多段线比所包括的组的最远成员更接近Cj的中心时,发生零概率,这意味着不可能有影响到{Linc}的全部且只影响{Linc}的排他性SPoF。
排他性SpoF可能的情况对应于描述了排他性中断事件的影响区的环。环的内半径为(即全部{Linc}都会受影响),而外半径为/>(即全部{Lexc}都不会发生故障)。
时,该问题折叠回原来的非排他性SPoF计算,其中,因为/>有效地是无限大的且作为x→∞,所以/>
遵循与非排他性SPoF相同的逻辑:
其中应将(9)代入(12)。等式(11)(及其标准的非排他性的相对等式(3)和(5))的关联和交换性质允许并发计算跨越分布式系统中的一个或多个处理器和一个或多个计算机服务器的故障概率贡献。
7.定义中断事件CDF
这项工作的目标是导出经验SPoF数据的理论模型——该模型的全部调谐都通过CDF进行。中断事件的使用纯粹是假设性的构造,因为我们没有与事件半径有关的数据,但相反,有历史中断形式的代理。
我们描述了从两个平行跨度之一的SpoF故障风险到两个或更多个任意形状跨度的故障公式化的直线近似的概括。直线近似始终被称为标准(Pstd),并且必须定义与跨度的长度成正比且与跨度之间的间隔距离成反比的故障概率,由于间隔距离趋于无穷大因此限于零风险。本文中,我们描述了针对通用指数函数的推导,其中0<k<1且λ>0,单位长度电缆的间隔距离为2s:
S=2s (13)
Pstd(S)=ke-2λs (14)
注意,使用2s距离代替s纯粹是为了数学上的方便。
针对长度为d的电缆,我们转化为生存概率;即,1-Pstd(S),然后在再次转化之前升至d的幂:1-(1-Pstd(S))d。这等效于说明全部单位长度的段都可以生存,因此整个电缆也可以生存,并且根据概率的要求,随着d趋于无穷大,它逐渐趋向于1。这是通过基于小区的方法隐式捕获的。
目的是定义一种CDF,该CDF导致P(S)近似于Pstd(S)),并且当小区趋向于零面积时会发生等效。然后,基于小区的方法将隐式推广到任意形状的电缆和有n≥2个电缆的SPoF。
出于导出CDF的目的,我们将假定多段线位于具有任意定义的x和y轴的平面上,并且宽度和高度分别是沿这些轴的尺寸。此外,假定小区的全部四个边界都平行于它们各自的轴。这些假设不会违反现实,因为使用越来越小的小区——接近零面积——会导致等效。
考虑两个电缆,每个电缆都平行于x轴,以±s偏移(即,如Pstd(S)中那样具有2s的间隔距离),并且对于相同的上述距离d>0,跨x=[0,d]。现在,我们尝试计算小区的列对单位宽度和相等高度h的贡献,该列沿y轴的正方向跨越无限范围。通过对称,我们简单地将该贡献平方,使得y<0,并将其升到d的幂,以解决沿着电缆长度的全部列。
针对小区j,其垂直居中于yj>0,两个电缆故障的阈值中断事件半径tj=yj+s,因为中断事件必须首先到达x轴(保证与x轴上方的电缆相交),然后到达附加间隔s,从而导致在轴下方的电缆发生故障。
由于具有单位宽度,小区的面积等于其高度。因此,除了y轴上方的中断事件的单位宽度列,引入|F+|等效于|F|,并且对于非负整数 以h×(n+0.5)垂直居中的小区:
由于基于小区的计算仅仅是对连续值问题的离散近似,因此我们考虑了小区高度的缩小。该操作的图示在图5中示出,下面将对其进行进一步描述。
因此,我们看到CDF是直线近似标准的几何导数(Grossman和Katz,1972年),并引入Grossman和Katz的(代数积分)记号法来表示几何积分:
对于任意函数f(x),其中f’(x)是标准导数而f*(x)是几何导数,Grossman和Katz指出f’(x)的存在暗示了f*(x)的存在,反之亦然,我们注意到以下特性:
以及
因此,剩下的是找到一些f(x)以同时满足等式(16)、(19)和(20),并且代入等式(21)以便定义CDF。(注意,对于随s趋于无穷大而逐渐为0的任何函数f(s),这种形式通常都可以解决CDF条件。)
对于,
As required根据要求
因此,对于半径为r的中断事件:
根据CDF的要求,它是正的,相对于r单调递增,并且随着r→∞渐近为1。
将存在两个以(0,0)和(0,d)为中心的半圆,这两个半圆构成用于计算SPoF概率的基于小区的方法的半影。由于电缆的长度(以千米为单位)远大于SPoF的典型间隔距离(以米为单位),因此冠的贡献可忽略不计,因此可以安全地忽略它们。
在计算测试中证明了这种方法的正确性有两个方面。几何积分的近似(通过高度不断减小的环)证明了代数中没有错误,同时对已知长度的虚拟电缆进行了风险分析,而间隔证明了对当前问题的常见适用性。
8.充分封闭小区
超出Cj的小区当然会贡献P(S),但是,例如,多段线{LCalifornia}会导致——这反映在CDF中,因此可以合理地排除。检测引擎118专门检测tj<tmax的小区,其中tmax是可调的。对于任何给定的CDF和/或系数,将存在一个上限,在该上限处cdf(t)≡1的双精度浮点表示形式,因此定义了tmax的计算上限-在上述情况下约为60m。
图1示出了根据说明性实施方式的用于评估计算机网络中的单点故障(SPoF)的示例系统110。SPoF评估系统110可以在示例环境100中运行。环境100包括SPoF评估系统110、网络105和网络设备140a、140b和140c(统称为“网络设备140”)。该环境可以可选地包括几何库120和/或地图库130。
网络105可以表示诸如数据中心网络的安全的局域网(LAN)、或诸如互联网的不安全的广域网(WAN)、或两者的组合。SPoF评估系统110可以经由网络105与网络设备140通信。另外,网络设备140可以构成网络105的物理基础设施。电或光缆可以将网络设备140互连。两个网络设备140之间的电缆链路可以被称为网络跨度。网络跨度可以具有任意长度和形状,并且可以由多段线近似,该多段线本身可以映射到一组小区,如本文进一步所述。
每个网络设备140可以是交换机、路由器、调制解调器、网关、软件定义的网络应用或计算机网络基础设施的其他组件。在一些实施方式中,每个网络设备140可以是网络设备1524,诸如下面参照图9讨论的网络设备1524。每个网络设备140可以从其他网络设备140、主机、服务器和/或客户端设备,包括例如SPoF评估系统110,接收数据分组以及其他网络业务,并向其他网络设备140、主机、服务器和/或客户端设备,包括例如SPoF评估系统110,转发数据分组和其他网络业务。在一些实施方式中,网络设备140可以在一个或多个软件定义的网络(SDN)中运行。在一些实施方式中,网络设备140可以在数据平面中接收并转发数据分组和其他网络业务。在一些实施方式中,网络设备140可以经由控制平面从一个或多个SDN控制器发送和接收包括控制命令和遥测数据的消息。
SPoF评估系统110可以接收表示计算机网络的网络跨度的数据作为输入,并输出指示被确定为包含潜在SPoF的全部区域的报告。SPoF评估系统110包括映射引擎112a、量化引擎114、报告引擎116和存储器115。在一些实施方式中,SPoF评估系统110可以可选地包括附加映射引擎112b和112c。映射引擎112a、112b和112c可以被统称为“映射引擎112”。在一些实施方式中,SPoF评估系统110可以包括更多或更少的映射引擎112。映射引擎112可以并行执行映射操作,这将在下面更详细地描述。在一些实施方式中,SPoF评估系统110可以包括重新配置引擎117。在一些实施方式中,SPoF评估系统110可以包括检测引擎118。在一些实施方式中,SPoF评估系统110和/或其组件可以在计算系统中实现,诸如下面参照图9描述的计算系统1510。
存储器115可以包括一个或多个存储器设备,该存储器设备包括易失性和/或非易失性存储器中的一种或组合。存储器115可以包括随机存取存储器(RAM)、闪存、诸如硬盘驱动器或磁带驱动器之类的磁存储器、或诸如光盘之类的光学存储器。在一些实施方式中,存储器115可以包括下面参照图9描述的高速缓存1575和/或存储器1570。在一些实施方式中,存储器115可以被划分为多个存储器空间或区域。各种存储器空间可以存在于同一物理存储器设备中,也可以分布在多个物理存储器设备之间。每个存储器空间可以存储例如用于实现本文描述的方法的计算机程序指令、以及通过这种方法接收、处理和产生的数据。
映射引擎112可以接收表示网络的网络跨度的数据作为输入并且输出表示分别覆盖网络跨度的多组小区的数据。映射引擎112可以将每个网络跨度转换为多段线,该多段线在地球上具有由测地线连接的一系列纬度/经度顶点。映射引擎112可以沿线段添加附加顶点,直到相对于检测潜在SPoF所需的精度充分表示出网络跨度的多段线近似为止。映射引擎112可以将地球上的全部点映射到围绕地球的立方体表面上的小区。考虑在地球周围放置一个立方体,并从地球上的每个点直接向上投影一条线,直到它接触到立方体。现在,每组纬度/经度坐标以一对一映射的方式在立方体上都有不同的对应点。然后将这些面(本文中称为0级)划分成四个相等的正方形(1级),每个正方形又划分为四个相等的正方形(2级),依此类推直至任何任意等级的深度。每个正方形与等级无关都称为小区。由于地球上的每个坐标在立方体上都有一个镜像点,因此,针对任何给定等级,坐标将恰好位于一个小区内。映射引擎112然后可以将每个多段线映射到一组小区,其中,该组小区覆盖定义与网络跨度相对应的多段线的全部顶点和测地线。小区可以处于不同等级。例如,一个覆盖该跨度的区域的小区可以是一个1级小区,而另一个覆盖另一个该跨度的区域的小区可以是一个2级小区。针对每个电缆,查找该组覆盖小区一次,因此总体上构成了该过程的O(n)贡献。在一些实施方式中,SPoF评估系统110可以包括一个以上的映射引擎112,诸如映射引擎112a、映射引擎112b和映射引擎112c。映射引擎112可以将相应网络跨度并行映射到多组小区。例如,在重叠时间段期间,第一映射引擎112a可以将第一多段线映射到第一组小区,而第二映射引擎112b将第二多段线映射到第二组小区。
在一些实施方式中,映射引擎112可以与几何库120结合操作。在一些实施方式中,几何库120可以在SPoF评估系统110内部。在一些实施方式中,几何库120可以是第三方服务,诸如驻留在SPoF评估系统110外部的一个或多个计算机服务器上的云计算服务。几何库120可以帮助将地球——球体——上的点映射到一个或多个平面上的点,例如,前面描述的立方体。这种映射可以称为投影。多段线映射到的小区可以是这些平面的细分。可公开用的几何库120的示例是S2Geometry库,可从http://s2geometry.io/获得。
在一些实施方式中,SPoF评估系统110可以与地图库130结合进行操作。在一些实施方式中,地图库130可以在SPoF评估系统110内部。在一些实施方式中,地图库130可以是第三方服务,诸如驻留在SPoF评估系统110外部的一个或多个计算机服务器上的云计算服务。地图库130可以向SPoF评估系统110提供有关地理、基础设施、开发等方面的数据。SPoF评估系统110可以使用地理数据作为网络跨度/多段线可以放置在其上的地图层。因此,地理数据可以提供SPoF的背景及其附近;例如陆地或水域、已开发或未开发等。公开可用的地图库130的示例是Google Maps Platform,可从https://cloud.google.com/maps-platform/获得。
量化引擎114可以量化在给定点处的事件会影响至少两个网络跨度的风险等级。例如,可以通过映射引擎112将两个网络跨度映射到近似于网络跨度的相应多段线。然后,量化引擎114可以针对表示地理位置的一组点中的每个点,确定是否一定大小的事件会影响至少两个网络跨度。在一些实施方式中,事件的大小可以被建模为距该点的半径。因此,量化引擎114可以确定从该点起给定半径的圆是否将到达对应于两个或更多个网络跨度的多段线。如果是这样,则可以认为该点是潜在SPoF。在一些实施方式中,量化引擎114可以针对该组点中的每个点,确定到达一组两个或更多个网络跨度中的全部网络跨度所需的事件大小(即,半径)。所需的大小与该点处的事件会影响一组两个或更多个网络跨度中的网络跨度的风险等级成反比。可以将全部点之间的风险等级相组合,量化引擎114可以确定区域包含潜在SPoF。量化引擎114然后可以将该潜在SPoF通知给报告引擎116。
在一些实施方式中,量化引擎114可以确定潜在SPoF情形,其中地理区域中的一些但不是全部网络跨度都受到影响。例如,对于地理位置,第一大小的事件可以影响第一网络跨度和第二网络跨度,但不影响第三网络跨度。多个但并非完全的网络跨度破坏表示的故障情况与两个端点之间的全部网络跨度都被破坏的情况截然不同。图4示出了对多个但并非完全的网络跨度破坏情况的分析。图4示出了地理区域的地图400,其中,在网络跨度430断开之前,三个网络跨度410、420和430彼此接近地延伸一段距离。在图4中,如框440所示,感兴趣的区域已被限制为整个地理区域的子集。在一些实施方式中,可以手动将要量化的该组点的这种限制输入SPoF评估系统110。在一些实施方式中,可以由检测引擎118根据下面进一步描述的过程来预先确定要量化的点。在量化引擎114确定其中地理区域中的一些但不是全部网络跨度都受到影响的潜在SPoF情形的实施方式中,映射引擎112可以将第一、第二和第三多段线分别映射到第一、第二和第三组小区。然后,量化引擎114可以针对一组点中的每个点,确定针对该点处的事件会影响第一网络跨度和第二网络跨度而不影响第三网络跨度的风险等级的第一阈值。然后,量化引擎114可以针对该组点中的每个点,确定针对该点处的事件会影响全部三个网络跨度的风险等级的第二阈值。如果针对该点处的第一风险等级超过第一阈值但小于第二阈值,则量化引擎114可以确定该点为潜在SPoF。可以图形方式报告与每个点相关联的风险,如图4的地图400中的明暗处理450所示,下面将对其进行进一步描述,较高的风险用较大的不透明度表示,零风险用透明区域表示。
在一些实施方式中,量化引擎114可以附加地或替代地考虑包括与区域相关故障概率的附加参数。区域相关故障概率可以由针对该组点中的一个或多个点预定的基线风险等级来表示。针对点的基线风险等级可以表示该地理区域中的网络基础设施更容易发生故障,或者中断事件更常见。因此,在一些实施方式中,一组点中的每个点包括基线风险等级和事件半径的区域特定分布,其中基线风险等级和区域特定分布表示与地理区域相关的中断事件概率。因此,针对每个点的风险等级包括针对该点的基线风险等级,加上该点处的事件会影响至少第一组小区中的第一小区和第二组小区中的第二小区的风险。可以通过替换区域特定CDF或区域特定CDF系数来实现对区域相关故障的考虑。
SPoF缓解系统110包括报告引擎116。报告引擎116可以输出指示被确定为包含潜在SPoF的全部区域的报告。该报告可以包括数字文件或传输,该数字文件或传输包括指示被确定为潜在SPoF的点的数据。报告引擎116可以将报告提供给SPoF缓解系统的另一个模块——例如,重新配置引擎117,或者将报告输出到外部系统或客户端。在一些实施方式中,该报告可用于创建可视化和警报或潜在SPoF的记录。在某些实施方式中,报告可以包括评估的其他详细信息,诸如针对每个点的风险等级以及用于确定每个点是潜在SPoF的阈值。在一些实施方式中,报告可以包括关于受每个潜在SPoF影响的网络跨度的数据。在一些实施方式中,报告可以包括两个或更多个网络跨度会受到潜在SPoF影响的概率。在一些实施方式中,报告可以包括两个或更多个网络跨度会受到潜在SPoF影响而一个或多个其他网络跨度未明显受影响的概率。在一些实施方式中,报告可以包括潜在SPoF会影响两个网络节点之间的全部网络跨度的概率。在一些实施方式中,报告可以包括或采取SPoF数据的图形显示的形式。这样的数据可以以表格格式显示(例如,按SPoF概率、SPoF的潜在网络性能影响或SPoF在给定位置的概率和潜在性能影响两者的函数来排序)或在标识SPoF的地理位置的地图上显示。在一些实施方式中,例如可以基于SPoF概率、潜在影响或SPoF概率和潜在影响的函数,对SPoF的图形标识进行颜色编码。
在一些实施方式中,可以根据需要执行SPoF评估过程,并根据请求输出报告。在一些实施方式中,评估过程可以周期性地或持续地运行,并在确定潜在SPoF时输出报告。
在一些实施方式中,SPoF评估系统110可以包括重新配置引擎117。重新配置引擎117可以从报告引擎116接收指示潜在SPoF的报告,并且输出用于将一个或多个网络设备140重新配置以缓解潜在SPoF的命令或指令。可以通过几种方式来实现SPoF缓解,包括重新配置网络设备140以经由不同的网络跨度将业务路由到目的地、重新配置网络设备140以将网络跨度设置为备份路由以在一个或多个其他网络跨度出现故障时处理业务、和/或重新配置网络设备140以在遍历潜在SPoF的网络跨度和不遍历潜在SPoF的另一网络跨度之间划分数据业务。在一些实施方式中,通过将通过网络设备140的数据业务重新路由到第一网络跨度上的第一点与第一网络跨度上的第二点之间的第三网络跨度,重新配置引擎117可以重新配置网络设备140以缓解影响第一网络跨度和第二网络跨度的潜在SPoF,以使第三网络跨度不遍历潜在SPoF。也就是说,在地理上从潜在的单点故障充分去除第三网络跨度,以至于事件破坏第一、第二和第三网络跨度的可能性可以忽略不计。在一些实施方式中,在潜在SPoF处发生中断事件的情况下,通过在第一网络跨度上的第一点与第二网络跨度上的第二点之间设置第三网络跨度作为备份路由,重新配置引擎117可以重新配置网络设备140以缓解影响第一网络跨度和第二网络跨度的潜在SPoF。在这种情况下,在沿着第一和第二网络跨度的数据业务都被中断的情况下,网络设备140可以将数据业务快速地重新路由至第三网络跨度,而不必计算新的路由或等待来自控制器的指令。在一些实施方式中,重新配置引擎117可以通过在第一网络跨度和不遍历潜在SPoF的第三网络跨度之间划分通过网络设备140的数据业务,来重新配置网络设备140以缓解影响第一网络跨度和第二网络跨度的潜在SPoF。网络跨度有时可以包括逻辑上捆绑在一起以充当相应网络设备140之间的单个连接的多个光纤或电缆。在一些实施方式中,重新配置引擎117可以指示网络设备140逻辑上对这些捆绑重新分组,从而使该捆绑包括来自两个不同网络跨度的电缆,其中一个网络跨度不会遍历潜在SPoF。因此,如果中断事件破坏了第一和第二网络跨度两者中的数据业务,则先前遍历第一网络跨度的一些——如果不是全部——数据业务可以代替捆绑而自动地重新路由到第三网络跨度。
在一些实施方式中,SPoF评估系统可以包括检测引擎118。检测引擎118可以通过将量化操作限制为仅被预定为具有非零或单点故障的风险不可忽略的一组点来帮助节省量化引擎114的计算资源。例如,在图4中,如框440所示,感兴趣的区域已被限制为整个地理面积的子集。检测引擎118可以确定量化引擎114在确定潜在SPoF时要考虑的该组点。该组点可以是感兴趣的地理区域中全部点的子集,该地理区域可以包括地球的一部分或全部。检测引擎可以将由映射引擎112确定的与每个多段线相对应的这组小区映射到相应的一系列一维区间。检测引擎118可以确定相应的一系列一维区间之间的一组重叠区间。每个重叠区间可以对应于表示候选潜在SPoF的位置的小区。检测引擎118可以通过该组重叠区间来生成该组点。在一些实施方式中,检测引擎118可以使用空间填充曲线——例如,希尔伯特曲线——将多组小区映射到相应多组一维区间。使用希尔伯特曲线将小区映射到一维区间的示例如图7所示,下面将对此进行详细说明。在一些实施方式中,可以应用其他空间填充曲线或形状,或者可以在不需要曲线的情况下在二维空间中确定重叠区域。在一些实施方式中,检测引擎118可以使用排序方法来确定重叠区间。例如,每个单独区间都有开放点和封闭点。检测引擎118可以根据每个区间的开放点对全部单独区间进行排序。然后,针对具有开放点和封闭点的每个单独区间,检测引擎118可以确定第二单独区间的开放点落在该单独区间的开放点和封闭点之间。该操作类似于为每个多段线所遍历的小区着色,并检测着色的小区在哪里重合或重叠。可以将重叠的小区视为候选潜在SPoF,用于定义由量化引擎114考虑的这组点。在执行检测操作时,表示网络跨度的多段线应映射到足够大的小区以在多段线周围创建合理的地理缓冲区。以这种方式将网络跨度映射到相对较大的小区会增加表示相应网络跨度的这组小区中检测到的重叠量。在提供给量化引擎114供考虑的这组点将包括许多点的意义上,该结果包括“假阳性”,对于这些点,量化引擎114将查找足够低的风险等级,在该等级下,量化引擎114无法确定它们对于任何实际阈值都是潜在SPoF。然而,在确定潜在SPoF时,将不会期望这些假阳性不利地增加量化引擎114上的计算负荷。另一方面,接受一定比例的假阳性以避免假阴性的发生可能是有益的,这是因为,通过检测引擎118对这组点的这种预筛选,未被检测到且因此未被提供给量化引擎114的任何点都不会被视为可能会存在SPoF。
图2示出了根据说明性实施方式的地图200,其包括两个网络跨度210和220、以及与较高风险等级阈值相对应的潜在单点故障230和240的两个区域。该组潜在SPoF 230和240是所指示的其中一个小区的中间或质心中发生的事件会破坏网络跨度210和220两者中的业务的风险等级高于阈值等级的区域。注意,指示潜在SPoF 230和240的小区可以具有不同的尺寸。
图3示出了根据说明性实施方式的地图300,其包括两个网络跨度210和220以及与较低风险等级阈值相对应的潜在单点故障330区域。地图300覆盖与地图200相似的地理区域,并且包括相同的两个网络跨度210和220。然而,地图300揭示了针对相对于地图200的较低阈值确定的一组潜在SPoF。也就是说,事件会破坏网络跨度210和220两者中的业务的风险较低,因此将区域或小区视为潜在SPoF 330。因此,地图300比地图200揭示了更多的潜在SPoF。注意,指示潜在SPoF 330的小区可以具有不同的尺寸。
图4示出了地图400,其包括三个网络跨度410、420和430、以及与第一网络跨度410和第二网络跨度420但非第三网络跨度430的破坏相对应的潜在单点故障区域(阴影区域)。在地图400中,在网络跨度430断开之前,这三个网络跨度410、420和430彼此接近地延伸一段距离。在地图400中,仅在定义的地理区域440内确定潜在SPoF。地图400因此示出了如下示例:检测引擎118已经预先确定了用于量化引擎114进行潜在SPoF确定的一组点。在一些实施方式中,可以将对要量化的这组点的限制手动输入到SPoF评估系统110中。如明暗处理450所示,可以以图形方式报告与每个点相关联的风险,其中较高的风险用较大的不透明度表示,零风险(或未量化的点)用透明区域表示。注意,量化引擎114中使用的小区可以具有与检测引擎118中使用的小区相同或更小的大小,并且随着小区大小的减小,量化引擎114的精度增加。
明暗处理表示一定幅度的事件可能影响第一网络跨度和第二网络跨度但不影响第三网络跨度的风险;即,较深的阴影表示较高的风险。多个但不完全的网络跨度破坏表示的故障情况与两个端点之间的全部网络跨度都被破坏的情况不同。在简单的示例中,如果网络跨度410和420被破坏,仍然有可能至少部分地通过网络跨度430重新路由业务。但是,破坏了全部三个网络跨度410、420和430的故障情形则可能不允许这种回退机会。
图5是示出了根据说明性实施方式的累积分布函数的计算的概念图。在此示例中,多段线——电缆A和电缆B——位于任意由x和y轴定义的平面上,并且宽度和高度是沿相应轴的尺寸。每个小区的边界平行于它们各自的轴。
电缆A和电缆B平行于x轴延伸,并且与x轴偏移±s,从而如Pstd(S)中所述,它们的间隔距离为2s,并且对于共享命运距离d>0,跨度为x=[0,d]。图5示出了小区510、520和530的三个列。每各列均沿y轴正方向无限延伸。每个小区具有单位宽度,因此其面积等于其高度h。
如前所述,对于小区j,其垂直居中于yj>0,两条电缆故障的阈值中断事件半径tj=yj+s,因为中断事件必须首先到达x轴然后到达附加间隔s,从而导致在轴下方的电缆发生故障。因此,除了y轴上方的中断事件的单位宽度列,引入|F+|等效于|F|,并且对于非负整数以h×(n+0.5)垂直居中的小区。
由于基于小区的计算仅仅是对连续值问题的离散近似,所以当小区的高度缩小到零时,我们可以取函数的极限,如小区510、520和530的连续列所示。因此,累积分布函数是直线近似Pstd的几何导数。
图6示出了根据说明性实施方式,针对地球上圆形冠(而不是针对网络跨度多段线)的基于小区的覆盖物的表示600、610和620,其精度等级提高了,实现方法是将其投影到立方体上并以四叉树的方式将每个面划分为任意深度(称为等级)。可以根据期望的映射的准确度和/或精度,使用不同大小的小区来映射任意形状(包括图6中的圆形冠或针对检测引擎118的网络跨度)。表示600、610和620逐渐利用更多的小区来映射相同的圆形冠,从而获得更高的精度。在一些情况下,可以将球投影到围绕球的立方体的六个平面上。立方体的每一个面都可以表示0级小区。然后可以进一步细分每一个面;例如,分成四个正方形(1级),每个正方形又可以进一步划分为四个正方形(2级),依此类推,直到达到所需的准确度或精度等级。在示例结果表示620中,圆形冠已在其边缘的区域中映射有相对较小的小区,但是在远离其边缘的区域中映射有相对较大的小区。如果对每个小区执行分析,那么,将形状和特征映射到大小不同的小区可以减少所需的处理量,从而节省计算资源。
图7示出了根据说明性实施方式的使用希尔伯特曲线在2D平面中的小区映射到一系列一维区间的示例映射。每个正方形700、710和720表示不同等级的细分:如果将主正方形视为0级,则正方形700中的四个细分为1级小区,正方形710中的16个细分为2级小区,并且正方形720中的64个细分为3级小区。在每个正方形700、710和720中,希尔伯特曲线可以传播通过如数字所示的每个小区。例如,在正方形700中,希尔伯特曲线传播通过以左下角的“1”、左上角的“2”、右上角的“3”和右下角的“4”开始的每个小区。在正方形710中,希尔伯特曲线呈现出更复杂的形状以遍历每个小区,并且在正方形720中,该形状仍然变得更加复杂。在每种情况下,希尔伯特曲线都会遍历正方形的每个小区。当且仅当它们的对应区域(和/或其相应部分)在2D表示中重叠时,一维表示中的区间(和/或其一部分)才会重叠。因此,希尔伯特曲线可用于将二维空间映射为一维构造。一维构造可以分解为一系列一维区间。例如,希尔伯特曲线可以映射为零到一的区间。当希尔伯特曲线遍历小区时,每个小区的区间可以是总区间的适当分数。例如,在具有四个小区的正方形700中,对于总体区间为零到一的希尔伯特曲线,与每个小区对应的区间可以如下:0-0.25表示左下角的小区,0.25-0.5表示左上角的小区,0.5-0.75表示右上角的小区,而0.75-1.0表示右下角的小区。在正方形710中,区间将为0-0.0625、0.0625-0.125、0.125-0.1875等。此约定只能用于将二维空间的单个小区或小区子集映射到一系列一维区间。例如,如果我们仅关注正方形700中标记为“2”的小区,则表示正方形700中感兴趣面积的一维区间将为0.25-0.50。同样,如果我们仅关注正方形710中标记为“6”的小区,则表示正方形710中感兴趣面积的一维区间将为0.3125-0.375。这样,感兴趣的小区——例如,包含表示网络跨度的多段线的一部分的小区——可以转换为一系列一维区间。如果地球上的每个点都向上投影直到与围绕地球的假想立方体相交,则立方体的六个面中的每个面的总区间可以为0-1、1-2,以此类推,直到6,每个面可细分为2x个小区,x的值足以提供所需的空间分辨率。在一些实施方式中,可以使用其他空间填充形状;例如,Peano曲线或Moore曲线。
图8示出了根据说明性实施方式的评估计算机网络中的单点故障的示例方法800的流程图。方法800包括接收近似于网络跨度的多段线(阶段810)。方法800包括确定在点处的事件会影响至少两条多段线的风险等级(阶段860)。方法800包括确定一组点中是否存在更多点要评估(判定框870)。如果有更多点要评估,则方法800返回到阶段860。如果已经评估了该组点中的全部点,则方法800进入阶段880。方法800包括确定总体故障风险(阶段880)。方法800包括输出报告,该报告指示被确定为潜在SPoF的至少一个点(阶段890)。方法800可以由诸如先前描述的SPoF缓解系统110之类的SPoF缓解系统来执行。
方法800包括接收近似于网络跨度的多段线(阶段810)。SPoF缓解系统可以接收表示网络跨度的数据。在一些实施方式中,诸如先前描述的映射引擎112之类的映射引擎可以将表示网络跨度的数据转换为多段线。多段线可以是一系列由地理坐标表示并由测地线段连接的顶点。
方法800包括确定在点处的事件会影响至少两个网络跨度的风险等级(阶段860)。诸如先前描述的SPoF评估系统110的量化引擎114的量化引擎可以量化在给定点处的事件会影响至少两个网络跨度的风险等级。风险等级与以该点为中心并具有与全部网络跨度相交的圆周的圆的半径成反比。在一些实施方式中,量化引擎可以确定地理区域中的一些(但不是全部)网络跨度会受到影响的潜在SPoF情况。量化引擎可以确定感兴趣的一组点的风险等级。在一些实施方式中,可以使用以下参照阶段820-850所述的检测过程来预先筛选感兴趣的这组点。
方法800包括确定这组点中是否存在更多点要评估(判定框870)。如果有更多点要评估,则方法800返回到阶段860。如果已经评估了该组点中的全部点,则方法800进入阶段880。
方法800包括确定总体故障风险(阶段880)。量化可以使用先前描述的算法和公式来计算这组点中全部点的故障概率之和。
方法800包括输出指示被确定为潜在SPoF的至少一个点的报告(阶段890)。量化引擎可以基于针对某点的风险等级来计算该点是否为潜在SPoF。一个点是否为潜在SPoF的计算可能是概率性的;也就是说,量化可以量化每个点的风险,并确定风险最高的点是潜在SPoF。在一些实施方式中,量化可以确定具有高于某个阈值的风险的点是潜在SPoF。量化引擎可以将该数据传递给报告引擎,诸如先前描述的报告引擎116。报告引擎可以输出报告,该报告指示所有被确定为潜在SPoF的点。该报告可以包括数字文件或传输,该数字文件或传输包括指示被确定为潜在SPoF的点的数据。在一些实施方式中,可以根据需要执行SpoF的评估,并根据请求输出报告。在一些实施方式中,评估过程可以定期或持续运行,并在确定潜在SPoF时输出报告。
在一些实施方式中,方法800可以包括重新配置网络交换机以缓解潜在SPoF。如果量化引擎确定某点的风险等级超过阈值,则报告引擎可以将该点的指示提供给重新配置引擎,诸如先前描述的SPoF评估系统110的重新配置引擎117。重新配置引擎117可以将指令或命令发送到一个或多个网络设备,诸如环境100的网络设备140,以实现网络的重新配置,以上面参照图1描述的一种或多种方式来缓解潜在SPoF。例如,重新配置引擎可以按照多种方式实现SPoF缓解,包括重新配置网络设备140以经由不同的网络跨度将业务路由到目的地、重新配置网络设备140以将网络跨度设置为备份路由以在一个或多个其他网络跨度出现故障时处理业务、以及重新配置网络设备140以在遍历潜在SPoF的网络跨度和不遍历潜在SPoF的另一网络跨度之间划分数据业务。
在一些实施方式中,方法800可以包括另外的步骤以确定在点处的中断事件是否可以破坏多个附近的网络跨度,但是少于全部附近的网络跨度。
在一些实施方式中,方法800可以包括另外的阶段以生成表示候选潜在SPoF的一组点。在一些实施方式中,该组点表示感兴趣的地理区域。这些预筛选操作可以通过减少要检查的点数来节省确定潜在SPoF所需的计算资源。在这些实施方式中,方法800可以包括将表示网络跨度的多段线映射到多组小区(阶段820),将表示网络跨度的多组小区映射到一系列一维区间(阶段830),从这一系列一维区间中确定一组重叠区间(阶段840),并从这组重叠区间生成一组点(阶段850)。这组点可用于将风险量化操作限制到较小的候选集,从而节省了计算资源并加快了潜在SPoF的确定和缓解。
方法800包括将表示网络跨度的多段线映射到多组小区(阶段820)。映射操作可以由一个或多个映射引擎执行,诸如先前描述的SPoF评估系统110的映射引擎112。映射引擎可以接收表示计算机网络的网络跨度的数据作为输入,将数据转换为多段线(如果其尚不是多段线的形式),然后将多段线映射到多组小区,其中每个小区表示地理区域。在一些实施方式中,SPoF评估系统110可以包括多个映射引擎112,用于在并行操作中将多个网络跨度映射到相应多组小区;即,相应的映射引擎112可以在重叠的时间段内映射单独的多段线。
方法800可以包括将表示网络跨度的多组小区映射到一系列一维区间(阶段830)。诸如先前描述的SPoF评估系统110的检测引擎118之类的检测引擎可以将与网络跨度相对应的相应多组小区映射到表示由网络跨度所遍历的小区的相应系列的一维区间。在一些实施方式中,将网络跨度映射到一系列一维区间可以包括在希尔伯特曲线上将每组小区映射到一系列区间。
方法800可以包括从一系列一维区间中确定一组重叠区间(阶段840)。检测引擎可以从相应的一系列一维区间中确定一组重叠区间,这些重叠区间表示来自两个不同网络跨度中重叠或重合的小区。每个重叠区间可以对应于表示候选潜在SPoF区域的小区。在一些实施方式中,重叠区间的确定可以通过根据每个单个区间的开放点对相应系列的一维区间中组合后的单个区间进行排序来完成。然后,对于具有开放点和封闭点的第一单独区间,检测引擎可以确定第二单独区间的开放点落在第一单独区间的开放点和封闭点之间(或者没有落在它们之间,视情况而定),针对所有单独区间均依此类推。
方法800可以包括根据该组重叠区间生成一组点(阶段850)。检测引擎可以从这组重叠区间中确定表示候选潜在SPoF的一组点。检测引擎可以将这组点提供给量化引擎,以确定从阶段860开始针对每个点的风险等级。
图9是说明根据说明性实施方式的可用于实现本文描述和说明的系统的元件和方法的计算机系统1500的通用架构的框图。计算系统1500可以用于实现上述一个或多个设备,包括SPoF评估系统110、网络设备130、几何库120和/或地图库130。计算系统1500可以被使用实现上述SPoF评估系统110的一个或多个组件,包括映射引擎112,量化引擎114、重新配置引擎117和/或可选检测引擎118。计算系统1500可用于实现在图8中所示的计算机网络方法800中评估单点故障。
概括而言,计算系统1510包括至少一个处理器1550,该至少一个处理器用于根据指令执行动作;以及一个或多个存储设备1570或1575,该一个或多个存储设备1570或1575用于存储指令和数据。所图示的示例计算系统1510包括一个或多个处理器1550,该一个或多个处理器1550经由总线1515与具有连接至一个或多个网络设备1524的一个或多个网络接口端口1522的至少一个网络接口控制器1520、存储器1570以及任何其他设备1580通信;例如,I/O接口。通常,处理器1550将执行从存储器接收的指令。所示的处理器1550合并或直接连接到高速缓存存储器1575。
更详细地,处理器1550可以是处理例如从存储器1570或高速缓存1575中提取的指令的任何逻辑电路。在许多实施例中,处理器1550是微处理器单元或专用处理器。计算设备1500可以基于能够如本文所述进行操作的任何处理器或处理器的集合。在一些实施方式中,处理器1550能够执行在图8中示出的计算机网络中的故障的评估单点。处理器1550可以是单核或多核处理器。处理器1550可以是多个处理器。在一些实施方式中,处理器1550可以被配置为运行多线程操作。在一些实施方式中,处理器1550可以托管一个或多个虚拟机或容器以及用于管理虚拟机或容器的操作的管理程序或容器管理器。在这样的实施方式中,可以在处理器1550上提供的虚拟化或容器化环境内实施在图8中示出的计算机网络方法800中的故障的评估单点。
存储器1570可以是适合于存储计算机可读数据的任何设备。存储器1570可以是具有固定存储的设备或用于读取可移动存储介质的设备。示例包括所有形式的非易失性存储器、介质和存储器设备,半导体存储器设备(例如,EPROM,EEPROM,SDRAM和闪存设备),磁盘、磁光盘和光盘(例如,CD ROM,DVD-ROM和光盘)。计算系统1500可以具有任何数量的存储器设备1570。在一些实施方式中,存储器1570可以包括与在图8中示出的计算机网络方法800中的故障的评估单点相对应的指令。在一些实施方式中,存储器1570支持可由计算系统1510提供的虚拟机或容器执行环境访问的虚拟化或容器化的存储器。
高速缓存存储器1575通常是计算机存储器的形式,其紧邻处理器1550放置以进行快速读取。在一些实施方式中,高速缓存存储器1575是处理器1550的一部分或与处理器1550在同一芯片上。在一些实施方式中,存在多个级别的高速缓存1575,例如,L2和L3高速缓存层。
网络接口控制器1520管理经由网络接口1522(也称为网络接口端口)的数据交换。网络接口控制器1520处理用于网络通信的OSI模型的物理层和数据链路层。在一些实施方式中,一些网络接口控制器的任务由处理器1550处理。在一些实施方式中,网络接口控制器1520是处理器1550的一部分。在一些实施方式中,计算系统1510具有多个网络接口控制器1520。网络接口1522是用于物理网络链路的连接点。在一些实施方式中,网络接口控制器1520支持无线网络连接,并且接口端口1522是无线接收器/发射器。通常,计算设备1510经由到网络接口1522的物理或无线链路与其他网络设备1524交换数据。在一些实施方式中,网络接口控制器1520实现诸如以太网的网络协议。
其他网络设备1524经由网络接口端口1522连接到计算设备1510。其他网络设备可以是例如先前参考图1描述的网络设备140。其他网络设备1524可以是对等计算设备、网络设备或具有网络功能的任何其他计算设备。例如,第一网络设备1524可以是诸如网络集线器、网桥、交换机或路由器之类的网络设备,其将计算设备1510连接至诸如互联网的数据网络。
其他设备1580可以包括I/O接口、外部串行设备端口和任何附加协处理器。例如,计算系统1510可以包括用于连接输入设备(例如,键盘、麦克风、鼠标或其他定点设备)、输出设备(例如,视频显示器、扬声器或打印机)或其他存储设备(例如,便携式闪存驱动器或外部介质驱动器)的接口(例如,通用串行总线(USB)接口)。在一些实施方式中,计算设备1500包括诸如协处理器的附加设备1580,例如,数学协处理器可以辅助处理器1550进行高精度或复杂的计算。
本说明书中描述的主题和操作的实现可以在数字电子电路中或在有形介质、固件或硬件(包括在本说明书中公开的结构及其等同结构)上体现的计算机软件中或其一种或多种的组合中实施。本说明书中描述的主题的实现可以实现为在有形介质上体现的一个或多个计算机程序,即,计算机程序指令的一个或多个模块,该计算机程序指令编码在一个或多个计算机存储介质上,以供数据处理装置执行或控制数据处理装置的操作。计算机存储介质可以是计算机可读存储设备、计算机可读存储基板、随机或串行访问存储器阵列或设备或其一个或多个的组合,或包括在其中。计算机存储介质还可以是一个或多个单独的组件或介质(例如,多个CD,磁盘或其他存储设备)或包括在其中。该计算机存储介质可以是有形的和非暂时性的。
本说明书中描述的操作可以被实现为由数据处理设备对存储在一个或多个计算机可读存储设备上或从其他源接收的数据执行的操作。可以在数据处理装置的本机环境内或者在由数据处理装置托管的一个或多个虚拟机或容器内执行操作。
计算机程序(也称为程序、软件、软件应用、脚本或代码)可以用任何形式的编程语言(包括编译或解释语言、声明性或过程语言)编写,并且可以部署为任何形式,包括部署独立程序或适合在计算环境中使用的模块、组件、子例程、对象或其他单元。计算机程序可以但不必对应于文件系统中的文件。程序可以存储在保存其他程序或数据的文件的一部分(例如,存储在标记语言文档中的一个或多个脚本)、专用于所讨论的程序的单个文件或多个协调文件(例如,存储一个或多个模块、子程序或部分代码的文件)中。可以部署计算机程序以在一个计算机或位于一个站点或分布于多个站点并通过通信网络互连的多个计算机或一个或多个虚拟机或容器上执行。通信网络的示例包括局域网(“LAN”)和广域网(“WAN”),网间网(例如,互联网)和对等网络(例如ad hoc对等网络)。
本说明书中描述的过程和逻辑流程可以由执行一个或多个计算机程序的一个或多个可编程处理器执行,以通过对输入数据进行操作并生成输出来执行动作。过程和逻辑流程也可以由专用逻辑电路执行,并且装置也可以实现为专用逻辑电路,例如FPGA(现场可编程门阵列)或ASIC(专用集成电路)。
尽管本说明书包含许多具体的实现细节,但是这些细节不应被解释为对任何发明或可能要求保护的内容的范围的限制,而应被解释为对专用于特定发明的特定实施方式的特征的描述。本说明书在单独实施方式的上下文中描述的某些特征也可以在单个实施方式中组合实现。相反,在单个实施方式的上下文中描述的各种特征也可以在多个实施方式中单独实现或以任何合适的子组合来实现。而且,尽管以上可以将特征描述为以某些组合起作用并且甚至最初如此要求保护,但是在某些情况下可以从组合中删除所要求保护的组合中的一个或多个特征,并且所要求保护的组合可以针对子组合或子组合的变体。
类似地,虽然在附图中以特定顺序描绘了操作,但是这不应被理解为要求以所示的特定顺序或以连续的顺序执行这样的操作,或者执行所有示出的操作,以实现期望的结果。在某些情况下,多任务和并行处理可能是有利的。此外,在上述实施方式中的各种系统组件的分离不应被理解为在所有实施方式中都需要这种分离,并且应当理解,所描述的程序组件和系统通常可以一起集成在单个软件产品中或封装成多个软件产品。
对“或”的引用可以被解释为包括性的,使得使用“或”描述的任何术语可以指示单个、多于一个和所有描述术语中的任何一个。标签“第一”、“第二”、“第三”等不一定指示顺序,并且通常仅用于区分相似的项或元素。
对本公开中描述的实施方式的各种修改对于本领域的技术人员而言是显而易见的,并且在不脱离本公开的精神或范围的情况下,本文中定义的一般原理可以应用于其他实施方式。因此,权利要求书旨在不限于本文所示出的实施方式,而是应被赋予与本文所公开的本公开、原理及新颖特征一致的最广范围。
要求保护的是:

Claims (20)

1.一种评估计算机网络中的单点故障SPoF的方法,所述方法在一个或多个处理器上执行,并且包括:
至少接收近似于第一网络跨度的第一多段线和近似于第二网络跨度的第二多段线;
针对表示地理位置的一组点中的每个点,确定该点处的事件会影响至少所述第一多段线和所述第二多段线的风险等级;
通过将针对所述一组点中的每个点的风险等级相组合来确定总体故障风险;以及
基于针对至少一个点的风险等级,输出指示所述至少一个点被确定为潜在SPoF的报告。
2.根据权利要求1所述的方法,包括通过以下步骤来生成所述一组点:
将至少所述第一多段线映射到第一组小区并且将所述第二多段线映射到第二组小区;
将至少所述第一组小区映射到第一系列一维区间并且将所述第二组小区映射到第二系列一维区间;
确定至少所述第一系列一维区间和所述第二系列一维区间之间的一组重叠区间,其中每个重叠区间对应于表示候选潜在SPoF的小区;以及
从所述一组重叠区间生成所述一组点。
3.根据权利要求2所述的方法,其中,将所述第一组小区映射到第一系列一维区间并且将所述第二组小区映射到第二系列一维区间包括:将每组小区映射到希尔伯特曲线上的一系列区间。
4.根据权利要求2所述的方法,其中:
所述一组重叠区间中的每个单独区间都具有开放点和封闭点;以及
确定所述一组重叠区间包括:
根据每个单独区间的开放点,对所述第一系列一维区间和所述第二系列一维区间的组合后的单独区间进行排序;以及
针对具有开放点和封闭点的第一单独区间,确定第二单独区间的开放点落在所述第一单独区间的所述开放点和所述封闭点之间。
5.根据权利要求1所述的方法,其中,所述风险等级是第一风险等级,所述方法包括:
针对所述一组点中的每个点,确定该点处的事件会影响所述第一多段线和所述第二多段线但不会影响近似于第三网络跨度的第三多段线的第二风险等级。
6.根据权利要求1所述的方法,包括:
基于所述报告,重新配置所述计算机网络的网络设备,以缓解所述至少一个潜在SPoF。
7.根据权利要求6所述的方法,其中,重新配置所述网络设备包括:将通过所述网络设备的数据业务重新路由到所述第一网络跨度上的第一点与所述第一网络跨度上的第二点之间的第三网络跨度,使得所述第三网络跨度不会遍历所述潜在SPoF。
8.根据权利要求6所述的方法,其中,重新配置所述网络设备包括:在所述潜在SPoF处发生中断事件的情况下,将所述第一网络跨度上的第一点与所述第一网络跨度上的第二点之间的第三网络跨度设置为备份路由。
9.根据权利要求6所述的方法,其中,重新配置所述网络设备包括:在所述第一网络跨度和不遍历所述潜在SPoF的第三网络跨度之间划分通过所述网络设备的数据业务。
10.根据权利要求1所述的方法,其中:
一组点中的每个点都包括基线风险等级和事件半径的区域特定分布,所述基线风险等级和所述区域特定分布表示地理区域相关故障事件概率;并且
针对每个点的风险等级包括针对该点的所述基线风险等级加上该点处的事件会影响至少所述第一多段线和所述第二多段线的风险。
11.一种用于评估计算机网络中的单点故障SPoF的系统,所述系统包括一个或多个处理器和存储指令的存储器,所述指令被配置为使所述一个或多个处理器执行以下操作:
至少接收近似于第一网络跨度的第一多段线和近似于第二网络跨度的第二多段线;
针对表示地理位置的一组点中的每个点,确定该点处的事件会影响至少所述第一多段线和所述第二多段线的风险等级;
通过将针对所述一组点中的每个点的风险等级相组合来确定总体故障风险;以及
基于针对至少一个点的风险等级,输出指示所述至少一个点被确定为潜在SPoF的报告。
12.根据权利要求11所述的系统,其中,所述指令被配置为通过使所述一个或多个处理器执行以下操作来使所述一个或多个处理器生成所述一组点:
将至少所述第一多段线映射到第一组小区并且将所述第二多段线映射到第二组小区;
将至少所述第一组小区映射到第一系列一维区间并且将所述第二组小区映射到第二系列一维区间;
确定至少所述第一系列一维区间和所述第二系列一维区间之间的一组重叠区间,其中每个重叠区间对应于表示候选潜在SPoF的小区;以及
从所述一组重叠区间生成所述一组点。
13.根据权利要求12所述的系统,其中,所述指令被配置为使所述一个或多个处理器执行以下操作:
通过将每组小区映射到希尔伯特曲线上的一系列区间,将所述第一组小区映射到第一系列一维区间并且将所述第二组小区映射到第二系列一维区间。
14.根据权利要求12所述的系统,其中:
所述一组重叠区间中的每个单独区间都具有开放点和封闭点;以及
所述指令被配置为通过使所述一个或多个处理器执行以下操作来使所述一个或多个处理器确定所述一组重叠区间:
根据每个单独区间的开放点,对所述第一系列一维区间和所述第二系列一维区间的组合后的单独区间进行排序;以及
针对具有开放点和封闭点的第一单独区间,确定第二单独区间的开放点落在所述第一单独区间的所述开放点和所述封闭点之间。
15.根据权利要求11所述的系统,其中,所述风险等级是第一风险等级,并且所述指令被配置为使所述一个或多个处理器执行以下操作:
针对所述一组点中的每个点,确定该点处的事件会影响所述第一多段线和所述第二多段线但不会影响近似于第三网络跨度的第三多段线的第二风险等级。
16.根据权利要求11所述的系统,包括被配置为使所述一个或多个处理器执行以下操作的指令:
基于所述报告,重新配置所述计算机网络的网络设备以缓解所述至少一个潜在SPoF。
17.根据权利要求16所述的系统,包括被配置为使所述一个或多个处理器执行以下操作的指令:
通过将通过所述网络设备的数据业务重新路由到所述第一网络跨度上的第一点与所述第一网络跨度上的第二点之间的第三网络跨度,使得所述第三网络跨度不会遍历所述潜在SPoF,来重新配置所述网络设备。
18.根据权利要求16所述的系统,包括被配置为使所述一个或多个处理器执行以下操作的指令:
通过在所述潜在SPoF处发生中断事件的情况下,将所述第一网络跨度上的第一点与所述第一网络跨度上的第二点之间的第三网络跨度设置为备份路由,来重新配置所述网络设备。
19.根据权利要求16所述的系统,包括被配置为使所述一个或多个处理器执行以下操作的指令:
通过在所述第一网络跨度和不遍历所述潜在SPoF的第三网络跨度之间划分通过所述网络设备的数据业务,来重新配置所述网络设备。
20.根据权利要求11所述的系统,其中:
一组点中的每个点都包括基线风险等级和事件半径的区域特定分布,所述基线风险等级和所述区域特定分布表示地理区域相关故障事件概率;并且
针对每个点的风险等级包括针对该点的所述基线风险等级加上该点处的事件会影响至少所述第一多段线和所述第二多段线的风险。
CN201980026292.7A 2018-07-18 2019-07-16 对由于网络基础设施的地理空间接近性所导致的物理风险的定量分析 Active CN112020845B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/039,003 US10938631B2 (en) 2018-07-18 2018-07-18 Quantitative analysis of physical risk due to geospatial proximity of network infrastructure
US16/039,003 2018-07-18
PCT/US2019/041975 WO2020018518A1 (en) 2018-07-18 2019-07-16 Quantitative analysis of physical risk due to geospatial proximity of network infrastructure

Publications (2)

Publication Number Publication Date
CN112020845A CN112020845A (zh) 2020-12-01
CN112020845B true CN112020845B (zh) 2023-09-19

Family

ID=67480439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980026292.7A Active CN112020845B (zh) 2018-07-18 2019-07-16 对由于网络基础设施的地理空间接近性所导致的物理风险的定量分析

Country Status (5)

Country Link
US (1) US10938631B2 (zh)
EP (1) EP3824597B1 (zh)
CN (1) CN112020845B (zh)
DK (1) DK3824597T3 (zh)
WO (1) WO2020018518A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11397861B2 (en) 2020-07-22 2022-07-26 Pandemic Insights, Inc. Privacy-protecting pandemic-bio-surveillance multi pathogen systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335182A (zh) * 2012-06-04 2015-02-04 阿尔卡特朗讯公司 基于云的应用的单点故障消除的方法和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2024300A (en) * 1998-12-01 2000-06-19 Thor Simon Improved signaling system for telecommunications
IL149960A0 (en) * 2000-09-21 2001-11-10 Hal Tech Corp System and method for network infrastructure management
IL147518A (en) * 2002-01-08 2006-09-05 Eci Telecom Ltd Method and device for selecting a communication path
US7583605B2 (en) * 2005-03-10 2009-09-01 At&T Intellectual Property I, L.P. Method and system of evaluating survivability of ATM switches over SONET networks
US9066254B2 (en) * 2010-10-28 2015-06-23 Electronics And Telecommunications Research Institute Mobile station, base station, and relay station for a wireless access system
US20120158445A1 (en) * 2010-12-16 2012-06-21 Cox Communications, Inc. Geo-Spatial Mapping and Service Provision Analysis
US8510150B2 (en) * 2011-03-04 2013-08-13 Verizon North Llc Fiber to the premises network modeling systems and methods
US8769304B2 (en) * 2011-06-16 2014-07-01 OneID Inc. Method and system for fully encrypted repository
US9280409B2 (en) * 2011-10-28 2016-03-08 Hewlett Packard Enterprise Development Lp Method and system for single point of failure analysis and remediation
US10477199B2 (en) * 2013-03-15 2019-11-12 Arris Enterprises Llc Method for identifying and prioritizing fault location in a cable plant
WO2015130461A2 (en) 2014-02-26 2015-09-03 Google Inc. System and method for conflating road datasets
US20190207807A1 (en) * 2015-04-02 2019-07-04 Elementum Scm (Cayman) Ltd. Method and system for determining and locating nodal weaknesses in a network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335182A (zh) * 2012-06-04 2015-02-04 阿尔卡特朗讯公司 基于云的应用的单点故障消除的方法和装置

Also Published As

Publication number Publication date
WO2020018518A1 (en) 2020-01-23
EP3824597B1 (en) 2022-07-13
US10938631B2 (en) 2021-03-02
DK3824597T3 (da) 2022-10-10
CN112020845A (zh) 2020-12-01
EP3824597A1 (en) 2021-05-26
US20200028735A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
Aydin et al. Integration of stress testing with graph theory to assess the resilience of urban road networks under seismic hazards
Campbell et al. Drone arc routing problems
Lunt et al. Measurement-induced criticality and entanglement clusters: A study of one-dimensional and two-dimensional Clifford circuits
Angeloudis et al. Security and reliability of the liner container-shipping network: analysis of robustness using a complex network framework
US8996341B2 (en) Generating and evaluating expert networks
US10726268B2 (en) Building black box
US11308603B2 (en) Detection and monitoring of waste disposal in an environmental location using artificial intelligence
US20190102505A1 (en) Semiconductor package floating metal checks
CN112020845B (zh) 对由于网络基础设施的地理空间接近性所导致的物理风险的定量分析
CN112040506A (zh) 一种无线传感网络的可靠性评估方法、装置及存储介质
Vass et al. How to model and enumerate geographically correlated failure events in communication networks
Vass et al. The Earth is nearly flat: Precise and approximate algorithms for detecting vulnerable regions of networks in the plane and on the sphere
US10467888B2 (en) System and method for dynamically adjusting an emergency coordination simulation system
Hu et al. Spatial vulnerability of network systems under spatially local hazards
US11196659B2 (en) Route calculation method, route calculation apparatus and program
Pais-Montes et al. Identification of shipping schedule cancellations with AIS data: an application to the Europe-Far East route before and during the COVID-19 pandemic
CN114826147A (zh) 一种光伏发电站的故障巡检方法、装置及介质
CN109031309A (zh) 一种组网气象雷达系统的拓扑结构优化方法及装置
Liu et al. Vulnerability change of container shipping network on Maritime Silk Road under simulation disruption
US11175679B2 (en) Drone elastic map
Vass et al. Vulnerable regions of networks on sphere
Gardner et al. Determining geographic vulnerabilities using a novel impact based resilience metric
JP5871892B2 (ja) 下位ノードのリング網への収容設計装置及びリング網上の機能配備位置決定装置及びバックアップの配備位置決定装置及びバックアップ要否決定装置
CN115616616B (zh) 一种确定卫星定位系统可靠性的方法、装置、设备及介质
US11594022B2 (en) Power line georectification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant