CN112016205B - 一种自耦变压器卷铁心退火质量的分析方法 - Google Patents

一种自耦变压器卷铁心退火质量的分析方法 Download PDF

Info

Publication number
CN112016205B
CN112016205B CN202010881784.9A CN202010881784A CN112016205B CN 112016205 B CN112016205 B CN 112016205B CN 202010881784 A CN202010881784 A CN 202010881784A CN 112016205 B CN112016205 B CN 112016205B
Authority
CN
China
Prior art keywords
wound
wound core
core
annealing
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010881784.9A
Other languages
English (en)
Other versions
CN112016205A (zh
Inventor
吴振宇
周利军
张陈擎宇
周猛
陈田东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202010881784.9A priority Critical patent/CN112016205B/zh
Publication of CN112016205A publication Critical patent/CN112016205A/zh
Application granted granted Critical
Publication of CN112016205B publication Critical patent/CN112016205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Power Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Manufacturing & Machinery (AREA)
  • Operations Research (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

本发明公开了一种自耦变压器卷铁心退火质量的测评分析:通过高进度拟合卷铁心硅钢片内部磁场强度和磁通密度之间的耦合关系,并与卷铁心硅钢片内部涡流场的计算模型相结合,从而计算卷铁心涡流损耗值;通过对卷铁心进行退火,并计算退火完成后卷铁心涡流损耗的测量值,最后对比计算值与测量值,判断卷铁心退火质量。本发明提出了适用于卷铁心变压器的涡流损耗计算方法,能够有效对卷铁心退火效果进行评估,有利于提高卷铁心的退火工艺,有助于变压器的优化设计方案和服役性能的评估。

Description

一种自耦变压器卷铁心退火质量的分析方法
技术领域
本发明属于自耦变压器卷铁心退火质量检测技术领域,具体涉及一种考虑自耦变压器卷铁心退火质量的评估方法。
背景技术
现阶段我国主要采用叠铁心结构的变压器,尽管新材料的问世和制造工艺的进步使得铁心损耗显著降低,但叠铁心因其大量接缝的存在,拐角处磁密畸变严重且存在大量的漏磁损耗,整体降损的效果并不理想。相比于传统的叠铁心变压器,卷铁心变压器具有体积小、无接缝、空载损耗小、噪声低等优点,能有效降低变压器的空载损耗。卷铁心硅钢带卷绕过程中会受到机械应力影响,破坏晶粒磁畴分子排列,增加了损耗,因此需要退火工艺可以恢复其引起的破坏,复原其导磁性能,通过对比退火完成后的卷铁心损耗测量值和计算值对比判断退火质量,但是卷铁心变压器存在相互关联的逐级卷绕结构、心柱截面宽度渐变、铁窗内外磁路长度不均匀等特殊性质,相比传统的叠铁心,其电磁环境及性质将发生显著改变,用经典公式所述的边界条件和参数计算去准确衡量铁心的涡流损耗是不合理的。因此,提出一套适用于卷铁心变压器的退火质量评估方法具有十分迫切的工程意义。
发明内容
本发明的目的是提供一种自耦变压器卷铁心退火质量的分析方法,并通过如下技术手段实现:
一种自耦变压器卷铁心退火质量的分析方法,其特征在于,包括以下步骤:
1)测试卷铁心硅钢片内部各点的磁场强度Hz(x)和磁通密度Bz(x),通过对实测的磁特性参数Hz(x)和Bz(x)进行高精度的数值拟合,得到它们的非线性耦合关系:
Bz(x)=μ0[αarctan(βHz(x))+γHz(x)] (1)
式中α、β是与磁场强度Hz(x)相关的拟合系数,γ是与磁通密度Bz(x)相关的拟合系数,μ0是真空磁导率;
卷铁心变压器通常运行频率为工频50Hz,其集肤效应在低频运行环境几乎可以忽略,磁场强度Hz(x)在卷铁心硅钢片内部各点的变化不会很剧烈,可以用卷铁心截面磁场强度幅值Hm代替,因此(1)式改写为:
Bz(x)=μ0[αarctan(βHm)+γHm] (2)
Figure GDA0003106106620000011
式中Hm是卷铁心截面磁场强度幅值,U2为自耦变压器的二次侧电压,μavg为卷铁心材料在非饱和区磁密区的平均磁导率,f为励磁频率,N为励磁绕组匝数,S为卷铁心的截面积,n为变压器变比;
2)卷铁心变压器具有磁路长度和截面宽度远大于硅钢片的厚度的特性,依据磁准静态场麦克斯韦方程的微分方程,可以得出卷铁心硅钢片内部涡流场复数形式标准方程:
Figure GDA0003106106620000021
式中j为虚数单位,σ为卷铁心材质的电导率;
3)结合(3)(4)两式对卷铁心内部涡流场和截面磁场强度的描述,可以得到卷铁心磁场强度Hz(x)表达式:
Figure GDA0003106106620000022
Figure GDA0003106106620000023
式中C为与硅钢片边界条件有关的待定参数,d为硅钢片厚度;
4)通过(5)式对卷铁心磁场强度Hz(x)的描述,在依据安培环路定律、工程电磁学有功功率的定义,可以得到卷铁心涡流损耗Peddy的表达式:
Figure GDA0003106106620000024
5)计算退火质量指标M,从退火曲线库中选取对应参数卷铁心的退火曲线对卷铁心进行退火,退火曲线库式基于不同卷铁心参数进行的大量退火试验得到的退火温度随时间变化的曲线库;退火完成后,使用功率分析仪对卷铁心进行损耗测量,并用贝尔托蒂公式从总损耗中分离出涡流损耗部分P测量,根据指标M判断卷铁心退火质量:
Figure GDA0003106106620000025
若M≤5%,则判定卷铁心性能良好。
本发明提供的退火质量分析方法,提出了适用于卷铁心变压器的涡流损耗计算方法,能够有效对卷铁心退火效果进行评估,有利于提高卷铁心的退火工艺,有助于变压器的优化设计方案和服役性能的评估。
附图说明
图1为本发明中卷铁心整体结构正视图。
具体实施方式
下面结合附图对本发明的实施流程作进一步的详述。
一种考虑自耦变压器卷铁心材料非线性磁性能的涡流损耗分析方法,其特征在于,卷铁心材质为高导磁冷轧晶粒取向硅钢片,包括以下步骤:
1)测试卷铁心硅钢片内部各点的磁场强度Hz(x)和磁通密度Bz(x),通过对实测的磁特性参数Hz(x)和Bz(x)进行高精度的数值拟合,得到它们的非线性耦合关系:
Bz(x)=μ0[αarctan(βHz(x))+γHz(x)] (9)
式中α、β是与磁场强度Hz(x)相关的拟合系数,γ是与磁通密度Bz(x)相关的拟合系数,μ0是真空磁导率;
卷铁心变压器通常运行频率为工频50Hz,其集肤效应在低频运行环境几乎可以忽略,磁场强度Hz(x)在卷铁心硅钢片内部各点的变化不会很剧烈,可以用卷铁心截面磁场强度幅值Hm代替,因此(9)式改写为:
Bz(x)=μ0[αarctan(βHm)+γHm] (10)
Figure GDA0003106106620000031
式中Hm是卷铁心截面磁场强度幅值,U2为自耦变压器的二次侧电压,μavg为卷铁心材料在非饱和区磁密区的平均磁导率,f为励磁频率,N为励磁绕组匝数,S为卷铁心的截面积,n为变压器变比;
2)卷铁心变压器具有磁路长度和截面宽度远大于硅钢片的厚度的特性,依据磁准静态场麦克斯韦方程的微分方程,可以得出卷铁心硅钢片内部涡流场复数形式标准方程:
Figure GDA0003106106620000032
式中j为虚数单位,σ为卷铁心材质的电导率;
3)结合(11)(12)两式对卷铁心内部涡流场和截面磁场强度的描述,可以得到卷铁心磁场强度Hz(x)表达式:
Figure GDA0003106106620000033
Figure GDA0003106106620000041
式中C为与硅钢片边界条件有关的待定参数,d为硅钢片厚度;
4)通过(13)式对卷铁心磁场强度Hz(x)的描述,在依据安培环路定律、工程电磁学有功功率的定义,可以得到卷铁心涡流损耗Peddy的表达式:
Figure GDA0003106106620000042
5)计算退火质量指标M,从退火曲线库中选取对应参数卷铁心的退火曲线对卷铁心进行退火,退火曲线库式基于不同卷铁心参数进行的大量退火试验得到的退火温度随时间变化的曲线库;退火完成后,使用功率分析仪对卷铁心进行损耗测量,并用贝尔托蒂公式从总损耗中分离出涡流损耗部分P测量,根据指标M判断卷铁心退火质量:
Figure GDA0003106106620000043
若M≤5%,则判定卷铁心性能良好。

Claims (1)

1.一种自耦变压器卷铁心退火质量的分析方法,其特征在于,包括以下步骤:
1)计算卷铁心硅钢片内部磁场强度Hz(x)和磁通密度Bz(x)之间的方程关系式,通过对卷铁心硅钢片内部各点磁场强度Hz(x)和磁通密度Bz(x)实测数据进行高精度的数值拟合,可以得到它们的耦合表达式:
Bz(x)=μ0[αarctan(βHz(x))+γHz(x)] (1)
式中α、β是与磁场强度Hz(x)相关的拟合系数,γ是与磁通密度Bz(x)相关的拟合系数,μ0是真空磁导率;
自耦变压器通常运行频率为工频50Hz,其集肤效应在低频运行环境几乎可以忽略,因此磁场强度Hz(x)在卷铁心硅钢片内部各点的变化比较轻微,可以用卷铁心截面磁场强度幅值Hm代替,(1)式改写为:
Bz(x)=μ0[αarctan(βHm)+γHm] (2)
Figure FDA0003106106610000011
式中Hm是卷铁心截面磁场强度幅值,U2为自耦变压器的二次侧电压,μavg为卷铁心材料在非饱和区磁密区的平均磁导率,f为励磁频率,N为励磁绕组匝数,S为卷铁心的截面积,n为变压器变比;
2)计算卷铁心硅钢片内部涡流场复数形式标准方程,依据磁准静态场麦克斯韦方程的微分方程,以及卷铁心变压器磁路长度和截面宽度远大于硅钢片的厚度,可以得出方程:
Figure FDA0003106106610000012
式中j为虚数单位,σ为卷铁心材质的电导率;
3)结合(3)(4)两式对卷铁心内部涡流场和截面磁场强度的描述,可以得到卷铁心磁场强度Hz(x)表达式:
Figure FDA0003106106610000013
Figure FDA0003106106610000014
式中C为与硅钢片边界条件有关的待定参数,d为硅钢片厚度;
4)通过(5)式对卷铁心磁场强度Hz(x)的描述,在依据安培环路定律、工程电磁学有功功率的定义,可以得到卷铁心涡流损耗Peddy的表达式:
Figure FDA0003106106610000021
5)计算退火质量指标M,从退火曲线库中选取对应参数卷铁心的退火曲线,对卷铁心进行退火;退火完成后,使用功率分析仪和测量线圈对卷铁心进行损耗测量,并用贝尔托蒂公式从总损耗中分离出涡流损耗部分P测量,根据指标M判断卷铁心退火质量:
Figure FDA0003106106610000022
若M≤5%,则判定卷铁心性能良好。
CN202010881784.9A 2020-08-28 2020-08-28 一种自耦变压器卷铁心退火质量的分析方法 Active CN112016205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010881784.9A CN112016205B (zh) 2020-08-28 2020-08-28 一种自耦变压器卷铁心退火质量的分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010881784.9A CN112016205B (zh) 2020-08-28 2020-08-28 一种自耦变压器卷铁心退火质量的分析方法

Publications (2)

Publication Number Publication Date
CN112016205A CN112016205A (zh) 2020-12-01
CN112016205B true CN112016205B (zh) 2021-08-13

Family

ID=73503783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010881784.9A Active CN112016205B (zh) 2020-08-28 2020-08-28 一种自耦变压器卷铁心退火质量的分析方法

Country Status (1)

Country Link
CN (1) CN112016205B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113553743B (zh) * 2021-07-29 2023-08-11 西安西电变压器有限责任公司 一种变压器铁心接缝磁致伸缩特性等效计算方法和装置
CN114420435B (zh) * 2022-01-25 2023-11-24 沈阳工业大学 一种变压器用混合材料卷铁心截面设计方法
CN115656025B (zh) * 2022-11-22 2024-03-12 西南交通大学 一种海上变压器铁心抗腐蚀能力的评估方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119959B2 (ja) * 2012-11-05 2017-04-26 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN108693418B (zh) * 2018-04-02 2019-07-12 西南交通大学 一种大型卷铁心退火效果的测评方法
CN111270064B (zh) * 2020-01-23 2020-10-02 西南交通大学 一种卷铁心退火工艺的控制方法及退火效果的测评方法

Also Published As

Publication number Publication date
CN112016205A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN112016205B (zh) 一种自耦变压器卷铁心退火质量的分析方法
Ditchburn et al. Eddy-current nondestructive inspection with thin spiral coils: Long cracks in steel
CN110399695B (zh) 一种考虑磁通密度不均匀分布的卷铁心涡流损耗评估方法
CN112016204B (zh) 一种考虑自耦变压器卷铁心材料非线性磁性能的涡流损耗分析方法
Daut et al. Magnetizing current, harmonic content and power factor as the indicators of transformer core saturation
CN111931310B (zh) 一种考虑相异磁边值的卷铁心层间短路涡流损耗评估方法
Krings et al. Manufacturing influence on the magnetic properties and iron losses in cobalt-iron stator cores for electrical machines
CN108693418B (zh) 一种大型卷铁心退火效果的测评方法
CN111270064B (zh) 一种卷铁心退火工艺的控制方法及退火效果的测评方法
Sundaria et al. Effects of stator core welding on an induction machine–Measurements and modeling
Li et al. An improved loss-separation method for transformer core loss calculation and its experimental verification
CN110399693A (zh) 一种片间短路下变压器卷铁心涡流损耗的计算方法
Boglietti et al. Effects of punch process on the magnetic and energetic properties of soft magnetic material
JP7283458B2 (ja) 鉄心の電磁界解析方法
Moses Comparison of transformer loss prediction from computed and measured flux density distribution
Ktena et al. On the use of differential permeability and magnetic Barkhausen Noise Measurements for Magnetic NDT Applications
Popescu et al. On the physical basis of power losses in laminated steel and minimum-effort modeling in an industrial design environment
CN104375100A (zh) 一种差分式初始磁导率材质检测探头
CN104375099A (zh) 一种基于初始磁导率方法的材质检测探头
EP2761318B1 (en) Device and testing procedure for determination of magnetic circuit quality
Hane Hysteresis Modeling for Power Magnetic Devices Based on Magnetic Circuit Method
CN111400883B (zh) 基于频谱压缩的磁声发射信号特征提取方法
Stupakov et al. Dynamic properties of micro-magnetic noise in soft ferromagnetic materials
Yang et al. Core loss measurement in a fabricated stator of a single-sided axial flux permanent magnet machine
Ducharne et al. Fractional derivative resolution of the anomalous magnetic field diffusion through a ferromagnetic steel rod: Application to eddy current testing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant